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Abstract. In the frame work of plane harmonic wave solution, we investigate the phase velocities of longitudinal

micro-rotational (MR), micro-isotropical (MI), and micro strain (MS) waves. Two sets of MR waves, one set of

MI and MS waves are obtained. These waves are dispersive in nature. Micro non-rotational (MNR) waves are

obtained as a particular case of MR waves. Micro-isotropical shear (MIS) and micro strain shear (MSS) waves are

obtained as a particular case of MI and MS waves. MNR waves are dispersive in nature, while MIS and MSS waves

are non-dispersive and they depend only on elastic constants. With the help of MATLAB programme, numerical

example is considered, and speeds are plotted against frequency ratios and wave number.

Keywords: micro-isotropic; micro-elasticity; plane longitudinal waves.

2010 AMS Subject Classification: Primary 20M99, 13F10; Secondary 13A15, 13M05.

1. INTRODUCTION

Eringen and his co-researchers [1, 2] are developed the non linear theory of micro elasticity.

Eringen [3] modified the linear theory of micropolar elasticity. The basic difference between

the theory of micropolar elasticity and classical theory of elasticity is only the introduction of
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an independent micro rotation vector. With this reason, the motion in the micropolar solids is

characterized by six degrees of freedom, namely three of translation and three of rotation. The

introduction between two parts of micropolar body is transmitted not only by a force vector but

also by a couple resulting in a symmetric force stress tensor, and couple stress tensor. Propaga-

tion of waves in micro polar elastic solids was studied by many authors like Parfitt and Eringen

[4], Tomar and Gogna [5], Tomer et.al. [6] and Tomer and Gogna [7, 8]. Singh and Tomer [9]

are studied the plane wave propagation in thermo elastic solids with voids. Pochhmer [10] and

Chree [11] discussed the longitudinal waves in a cylinder within the frame work of classical

theory of elasticity. The velocity of longitudinal waves in a cylindrical bars was derived by

Bancroft [12]. Oliver [13] investigated the wave propagation in a cylindrical rods under the

pulse techniques. In recent, Somaiah [14] studied the plane wave propagation in micro stretch

elastic solids.

2. BASIC EQUATIONS

The basic governing equations of displacements, micro-rotations and micro-strains for a

micro-isotropic, micro-elastic solid in the absence of body forces and body couples are given

by Nowacki [15] as follows:

(1) (µ +K)∇2~u+(λ +µ)∇∇.~u+K∇×~φ = ρ~̈u

(2) γ∇
2~φ +(α +β )∇∇.~φ +K∇×~u−2K~φ = ρJ~̈φ

(3) τ1φpp,kkδi j + τ2φ(i j),kk−σ1φppδi j−σ2φ(i j) =
1
2

ρJφ̈(i j)

where λ ,µ are Lames constants, K,τ1,τ2 are elastic constants,ρ is the density, J is the moment

of micro inertia.α,β ,γ are micro-rotational constants,σ1,σ2 are respectively isotropical and

strain parameters, δi j is the Kronecker delta and double dot on right hand side is the second

order partial derivative with respect to time t .
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3. FORMULATION AND SOLUTION OF THE PROBLEM

Equations (1) and (2) can be written as

(4) c2
1∇

2~u+ c2
2∇∇.~u+ω

2
0 ∇×~φ =

∂ 2~u
∂ t2

(5) c2
4∇

2~φ + c2
5∇∇.~φ + c2

6∇×~u− c2
7
~φ =

∂ 2~φ

∂ t2

While equation (3) written by Somaiah.K and Sambaiah.K [16] as follows:

(6) (3τ1 +2τ2)∇
2
φpp− (3σ1 +σ2)φpp =

ρJ
2

∂ 2φpp

∂ t2

and

(7) τ2∇
2
φ(i j)−σ2φ(i j) =

ρJ
2

∂ 2φ(i j)

∂ t2

The equations(4) and (5) are coupled in ~u and ~φ , while equations (6) and (7) are uncoupled in

φpp and φ(i j),

where

(8) c2
1 =

µ +K
ρ

;c2
2 =

λ +µ

ρ
;ω

2
0 =

K
ρ

;c2
4 =

γ

ρJ
;c2

5 =
α +β

ρJ
;c2

6 =
K
ρJ

=
ω2

0
J

;C2
7 =

2K
ρJ

=
2ω2

0
J

and ∇2is Laplacian.

For plane harmonic solution in the positive direction of unit vector n̂, we may seek the solu-

tion of equations (4) to(7) as,

(9) [~u,~φ ,φpp,φ(i j)] = [~A,~B,Cpp,D(i j)]exp[iq(n̂.~r− vt)]

where ~A,~B are vector amplitudes,Cpp,D(i j)are scalar amplitudes, q is the wave number,~r is the

position vector, v is the phase velocity. Thus,

(10) q =
2π

l
;~r = xkik;ω = qv

where l is the wave length, xk are the components of position vector and ω is the angular

frequency of the solid.
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4. LONGITUDINAL MICRO-ROTATIONAL WAVES

On using eq. (9) into eq. (4) and eq. (5) we obtain,

(11) q2(c2
1− v2)~A+ c2

2q2n̂(n̂.~A)−ω
2
0 iq(n̂×~B) = 0

and

(12) [q2(c2
4− v2)+ c2

7]~B+ c2
5q2n̂(n̂.~B)− c2

6iq(n̂×~A) = 0

Taking scalar product of equation (11) with vector ~A we obtain,

(13) q2(c2
1− v2 + c2

2)A
2−ω

2
0 iq~A · (n̂×~B) = 0

where

(14) ~A.~A = A2

Solving eq. (12) for ~B , we get

(15) ~B =
c2

6iq
(c2

4 + c2
5− v2)q2 + c2

7
(n̂×~A)

where

(16) n̂(n̂ ·~B) = ~B

On using eq.(15) into eq. (13) we obtain,

(17) [(c2
1 + c2

2− v2)(C2
4 + c2

5− v2)]q2 +[(
ω2

0
2
− v2)+(c2

1 + c2
2)]

2ω2
0

J
= 0

For plane longitudinal wave, take q = ω

v in equation(17) we obtain the following quadratic

equation in v2 ;

(18) P(v2)2 +Qv2 +R = 0

where

(19) P =
ω2

ω2
0
− 2

J
,Q =

2(c2
1 + c2

2)+ω2
0

J
−(c2

1+c2
2+c2

4+c2
5)

ω2

ω2
0

and R = (c2
1+c2

2)(c
2
4+c2

5)
ω2

ω2
0
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The roots of equation (18) are given by

(20) v2
r1
=

1
2
[
−Q
P

+
(Q2−4PR)

1
2

P
],v2

r2
=

1
2
[
−Q
P
− (Q2−4PR)

1
2

P
]

Equation(20) represents the speed of two sets longitudinal micro-rotational (MR) waves and

they are not encountered in any classical theory of elasticity and they are influenced by micro-

rotational parameters α,β ,γ . Also they are dispersive in nature. The classical results can be

obtained as a particular case if and only if K → 0(i.e.,ω2
0 = c2

6 = c2
7 = 0) in equation (17) we

obtained the speeds of micro-rotational (MR) waves as,

(21) v2
1 =

λ +2µ

ρ
or v2

2 =
α +β + γ

ρJ

and these are non dispersive in nature.

4.1. Particular case. In the absence of micro-rotational parameters (i.e., α = β = γ = 0) in

eq. (18), we obtain the speed of longitudinal wave as,

(22) v2 = (c2
1 + c2

2)+ [
ω2

0
( ω

ω2
0
)2J−2

]

Equation (22) is known as the speed of micro non rotational(MNR) waves and these waves are

also dispersive in nature. The speed of waves shown in eq. (22) approaches the speed v2
1 in the

case of classical result.

5. LONGITUDINAL MICRO-ISOTROPICAL AND MICRO-STRAIN WAVES

On using eqution (9) in the equations (6) and (7), we obtained the speed of micro-isotropical

(MI) wave vp and the speed of micro strain (MS) wave v(i j)are given by

(23) v2
p =

2
ρJ

[(3τ1 +2τ2)+(
3σ1 +σ2

q2 )]

and

(24) v2
(i j) =

2
ρJ

[τ2 +
σ2

q2 ], i = 1,2; j = 2,3; i 6= j

From equations (23) and (24), we observed that the speed of two distinct micro-isotropical

(MI) and two distinct micro-strain (MS) waves are also depends on the wave number, so they

are dispersive in nature, and they are influenced by isotropical and strain parameters σ1,σ2.
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5.1. Particular case. In the absence of isotropical and strain parameters(i.e,σ1 = 0;σ2 = 0),

the eq.(6) and eq.(7) are reduces to

(25) (3τ1 +2τ2)∇
2
φpp =

ρJ
2

∂ 2φpp

∂ t2

and

(26) τ2∇
2
φ(i j) =

ρJ
2

∂ 2φ(i j)

∂ t2

Equations (25) and (26) represents micro-isotropical shear (MIS) waves and micro-strain shear

(MSS) waves respectively, and their speeds v∗p and v∗(i j) are given by

(27) v∗
2

p =
2(3τ1 +2τ2)

ρJ

and

(28) v∗
2

(i j) =
2τ2

ρJ

It is observed that isotropical and strain shear waves are non-dispersive and they are depends on

elastic constants.

6. NUMERICAL RESULTS AND DISCUSSION

In order to study the computational results in great detail, we have taken the physical con-

stants for aluminium epoxy material from [17] as: λ = 7.59×1010N/m2; µ = 1.89×1010N/m2;

J = 0.000196m2;K = 0.0149×1010N/m2;ρ = 2190kg/m3;γ = 0.0268×1010N. Micro-rotational

parameters taken from [18] as: α = 0.036×1010N;β = 0.037×1010N . Due to unavailability

of isotropical and strain solids, we take the micro-isotropical and micro-strain parameters as:

σ1 = 0.003×103N;σ2 = 0.0012×103N;τ1 = 0.03×103N and τ2 = 0.062×103N.

To study the behavior of micro-rotational(MR) waves, we take the non-dimensional material

frequencies ω with range 0.1× 104 ≤ ω ≤ 10× 104 .The variations of frequency ratios ω2

ω2
0

versus the speed v2
r2

of micro-rotational (MR) wave-A and the speed of v2
r2

micro-rotational

wave-B are shown in figures (1) to (3). From comparative figures we observed that the speeds

v2
r1

and v2
r2

are symmetric to each other and they are coincide at frequency ratio 1× 104 . The

comparative speeds v2, v2
r1

andv2
r2

versus frequency ratios ω2

ω2
0

are shown in figures (4) to (6).
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From these figures we observed that the MNR waves are fall down to low speed at frequency

ratio less than 1×104 , and suddenly jumped to high speed at frequency ratio 1×104

FIGURE 1. Variation of frequency ratio versus wave speed
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FIGURE 2. Variation of frequency ratio versus wave speed

FIGURE 3. Variation of frequency ratio versus wave speed
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The speed of micro-isotropical (MI) waves and micro-strain (MS) waves versus nondimen-

sional wave number q with ratio 0.1 ≤ q ≤ 10 are shown in figure (7), and we observed that

micro-strain (MS) waves are slower than the micro-isotropical (MI) waves in the given range of

wave number.

FIGURE 4. Variation of frequency ratio versus wave speed
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FIGURE 5. Variation of frequency ratio versus wave speed

FIGURE 6. Variation of frequency ratio versus wave speed



390 K. SOMAIAH, A.RAVI KUMAR

FIGURE 7. Variation of frequency ratio versus wave speed

7. CONCLUSIONS

Under the theoretical computations and numerical examples of plane longitudinal waves in a

micro-isotropic, micro-elastic solid, we concluded that:

• Two sets of MR waves and one set of MI and MS waves are propagate with distinct

speeds.

• MR, MNR, MI and MS waves are dispersive in nature, while MIS and MSS waves are

non-dispersive.

• MIS and MSS waves are constant and they are only elastic constant dependent waves.

• MS waves slower than MI waves.
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