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Abstract. Sometimes, it is not possible to find a general solution for some differential equations using some

classical methods, like separation of variables. In such a case, one can try to use theory of tensor product of

Banach spaces to find certain solutions, called atomic solutions. The goal of this paper is to find atomic solution

for Bate Man Burgers equation.
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1. INTRODUCTION

In [8], a new definition called α−conformable fractional derivative was introduced:

Let α ∈ (0,1), and f : E ⊆ (0,∞)→ R. For x ∈ E let:

Dα f (x) = lim
ε→0

f (x+ εx1−α)− f (x)
ε

.

If the limit exists then it is called the α− conformable fractional derivative of f at x.
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For x = 0, if f is α−differentiable on (0,r) for some r > 0, and lim
x→0

Dα f (0) exists then we

define Dα f (0) = lim
x→0

Dα f (0).

The new definition satisfies:

(1) Tα(a f +bg) = aTα( f )+bTα(g), for all a,b ∈ R.

(2) Tα(λ ) = 0, for all constant functions f (t) = λ .

Further, for α ∈ (0,1] and f ,g are α−differentiable at a point t, with g(t) 6= 0. Then

(3) Tα( f g) = f Tα(g)+gTα( f ).

(4) Tα(
f
g ) =

gTα ( f )− f Tα (g)
g2 , g(t) 6= 0.

We list here the fractional derivatives of certain functions,

(1) Tα(t p) = p t p−α .

(2) Tα(sin 1
α

tα) = cos 1
α

tα .

(3) Tα(cos 1
α

tα) =−sin 1
α

tα .

(4) Tα(e
1
α

tα

) = e
1
α

tα

.

On letting α = 1 in these derivatives, we get the corresponding classical rules for ordinary

derivatives.

One should notice that a function could be α−conformable differentiable at a point but not

differentiable, for example, take f (t) = 2
√

t. Then T1
2
( f )(0) = 1.

This is not the case for the known classical fractional derivatives, since T1( f )(0) does not

exist.

For more on fractional calculus and its applications we refer to [1]-[13].

2. ATOMIC SOLUTION

Let X and Y be two Banach spaces and X∗ be the dual of X . Assume x ∈ X and y ∈ Y. The

operator T : X∗→ Y, defined by

T (x∗) = x∗(x)y

is a bounded one rank linear operator. We write x⊗y for T. Such operators are called atoms.

Atoms are among the main ingredient in the theory of tensor products.

Atoms are used in theory of best approximation in Banach spaces, [13].
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One of the known result, see [16 ], that we need in our paper is: if the sum of two atoms is

an atom, then either the first components are dependent or the second are dependent.

For more On tensor products of Banach spaces we refer to [14] and [16].

Our main object in this paper is to find an atomic solution of the equation.

Dβ

t U +UDα
x U = Dα

x Dα
x U +U2 ...............(1)

This is called the fractional Bate Man Burgers equation.

3. PROCEDURE

Step (i).

u(x, t) = P(x)⊗Q(t) .........(∗)

Substitute (∗) in equation (1) to get:

P(x)⊗Qβ (t)+P(x)Pα(x)⊗Q2(t) = P2α(x)⊗Q(t)+P2(x)⊗Q2(t) .......... (2)

Here P(x) and Q(t) are the unknowns.

We will assume that

P(0) = 1 and Q(0) = 1..........(∗∗)

Step (ii). Collecting terms in (2) to get:

P(x)⊗Qβ (t)+(P(x)Pα(x)−P2(x))⊗Q2(t) = P2α(x)⊗Q(t) ............ (3)

In equation (3), we have the sum of two atoms is an atom. Hence using [15 ], we have two

cases to consider:

Case (i):

P(x) = P(x)Pα(x)−P2(x)
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we divide both sides by P(x) where P(x) 6= 0 we get:

Pα(x)−P(x)−1 = 0...........(4)

This is a fractional linear differential equations. Hence we can use the result in [16], or use the

fact that Pα(x) = x(1−α)P′(x) to get:

x(1−α)P′(x) = P(x)+1

So,
P′(x)

P(x)+1
= xα−1

Thus :

ln(P(x)+1) =
xα

α
+ k

where K is an constant .

Hence:

P(x)+1 = ce
xα

α

where c = ek.

consequently:

P(x) = ce
xα

α −1

conditions (∗) implies that c = 2.

Hence, the solution of equation (4) is

P(x) = 2e
xα

α −1 ...............(4).

Now we go back to equation (3) to get:

(2e
xα

α −1)Qβ (t)+(2e
xα

α −1)(2e
xα

α )Q2(t) = (2e
xα

α )Q(t)+(2e
xα

α −1)2Q2(t) (5)

i.e, (2e
xα

α −1)Qβ (t)+ [4e
2xα

α −2e
xα

α −4e
2xα

α +4e
xα

α −1]Q2(t)−2e
xα

α Q(t) = 0
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Then

(2e
xα

α −1)Qβ (t)+(2e
xα

α −1)Q2(t)−2e
xα

α Q(t) = 0

Hence we obtain this equation:

Qβ (t)+Q2(t)− 2e
xα

α

(2e
xα

α −1)
Q(t) = 0 (6)

Now (6) is well defined for all x. In particular, it is true for x = 0 :

So, equation (6) becomes:

Qβ (t)+Q2(t)−2Q(t) = 0

This is a fractional nonlinear differential equation. hence using properties of conformable frac-

tional derivative we get:

t1−β Q
′
(t)+Q2(t)−2Q(t) = 0

Hence,
dQ

Q2−2Q
+ tβ−1dt = 0

From which we get:
1
2

ln
∣∣∣∣(Q−2)

Q

∣∣∣∣+ tβ

β
= c

Using the conditions in (∗∗), we get c = 0. Consequently,

Q(t) =
2

1− e
−2tβ

β

......................(7)

So equations (4) and (7) give us the atomic solution P(x)⊗Q(t) of (1) for the first case.

Case (ii):

Qβ (t) = Q2(t) (ii)

Hence,

t1−β Q′(t) = Q2(t)

So :
dQ

Q2(t)
= tβ−1dt

This implies:
−1

Q(t)
=

tβ

β
+ c
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Hence, using conditions in (∗∗) we get Q(0) = 1. Thus c =−1. Consequently,

Q(t) =− −1
tβ

β
−1

=
β

β − tβ
....................(8)

Now we back to equation (3) we get:

P(x)(
β

β − tβ
)2 +P(x)Pα(x)(

β

β − tβ
)2 = P2α(x)(

β

β − tβ
)+P2(x)(

β

β − tβ
)2

This is well defined for every t. In particular, for t = 0, we get:

P2α(x)−P(x)Pα(x)−P(x)+P2(x) = 0 (9)

This is a differential equation in which x is missing. So put Pα(x) = θ .

Then,

P2α(x) = DαPα(x) = Dα
θ = x1−α dθ

dx
= x1−α dθ

dP
dP
dx

= θθ
′

where ,

θ
′ =

dθ

dP

. Thus equation (9) becomes

θθ
′−Pθ −P+P2 = 0.................(10)

Clearly, θ = P is a solution for (9). But Pα(x) = θ . Hence Pα(x) = P. This has a solution

P(x) = ce
tα
α

Since P(0) = 1, we get c = 1. Thus

P(x) = e
tα
α .................(11)

From (7) and (10) we get the atomic solution for the second case.

Remark: Results in this paper are part of the Ph.D thesis of A. Bushnaque under the supervision

of Professors: Al-Horani and Khalil.
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