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Abstract: In this paper we study under which conditions there is exactly one quasi-continuous function whose graph 

is contained in the closure of the graph of a graph quasi-continuous function. Also, we study the relation between a 

graph cliquish function and a cliquish function whose graph is contained in the closure of the graph of the graph 

cliquish function.  
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1.INTRODUCTION AND BASIC NOTATIONS 

Z. Grande [1] in 1977 introduced the notion of graph continuity of functions. K. Sakalava [10], 

[11] studied the relation between graph continuous function 𝑓 and a continuous function 𝑔 such 

that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) and showed that this relation is neither one-to-one nor onto i.e., there is a 

continuous function 𝑔 whose graph is contained in the closure of the graph of infinitely many 

graph continuous functions  and also there is a graph continuous function 𝑓 such that the closure 

of the graph of 𝑓 contains the graph of several continuous functions.  A. Mikuka [5] in 2003 
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introduced the notion of graph quasi-continuity and studied the relations between graph continuous 

functions and other class of functions. Some operations on graph continuous and graph quasi-

continuous function was investigated by Mikuka [6]. We introduced the notion of graph cliquish 

functions and studied the relation between graph cliquish functions and other types of continuous 

functions in [4]. 

In this paper, we deal with the result that for a continuous function 𝑓 there is one and only one 

quasi-continuous function 𝑔 with 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) and also the result on graph cliquish functions. 

 In what follows 𝑋,𝑌 are topological spaces and 𝑀 is a metric space with metric 𝑑. For a subset 

𝐴 ⊆ 𝑋, 𝑐𝑙(𝐴), 𝑖𝑛𝑡(𝐴) denote the closure and the interior of 𝐴 respectively. If 𝐺(𝑓) denotes the 

graph of 𝑓: 𝑋 → 𝑌(𝑓: 𝑋 → 𝑀) then the symbol 𝑐𝑙(𝐺(𝑓)) denotes the closure of 𝐺(𝑓) in the product 

topology of 𝑋 × 𝑌(𝑋 × 𝑀𝑑 , 𝑀𝑑 being the topology on 𝑀 induced by 𝑑). By 𝐶(𝑓), 𝑄(𝑓), 𝐴𝐸(𝑓) 

we denote the set of all points at which 𝑓 is continuous, quasi-continuous and almost continuous 

(in the sense of Husain) respectively.  

The letter ℝ stands for the set of all real numbers, ∅ denotes the empty set and 𝑆(𝑥, 𝑟) denotes the 

open sphere with centre 𝑥 and radius  𝑟. 

Let us recall some basic definitions which will be used throughout this paper. 

Definition 1.1:  A subset 𝐴 of 𝑋 is called semi-open if there exists an open set 𝑂 such that 𝑂 ⊆

𝐴 ⊆ 𝑐𝑙(𝑂)[3]. 

Definition 1.2:  A function 𝑓: 𝑋 → 𝑌 is said to be: 

-quasi-continuous at a point 𝑥0 ∈ 𝑋 if for each open neighbourhood 𝑈 of 𝑥0 and each open 

neighbourhood 𝑉 of 𝑓(𝑥0), there exists a non-empty open set 𝐺 ⊆ 𝑈 such that 𝑓(𝐺) ⊆ 𝑉 [7]. 

-almost continuous (in the sense of Husain) at a point 𝑥 ∈ 𝑋 if for any neighbourhood 𝑉 of 𝑓(𝑥), 

the set 𝑖𝑛𝑡(𝑐𝑙(𝑓−1(𝑉))) is a neighbourhood of 𝑥 [2]. 

𝑓 is called quasi-continuous (almost continuous) if it is such at each point. 
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Definition 1.3:  A function 𝑓: 𝑋 → 𝑀 is said to be cliquish at a point 𝑥 ∈ 𝑋 if for each 𝜖 > 0 and 

each open neighbourhood 𝑈 of 𝑥, there exists a non-empty open set 𝐺 ⊆ 𝑈 such that 

𝑑(𝑓(𝑦), 𝑓(𝑧)) < 𝜖 whenever 𝑦, 𝑧 ∈ 𝐺 [12]. 

𝑓 is called cliquish if it is such at every point. 

Definition 1.4: A function 𝑓: 𝑋 → 𝑌 is said to be graph continuous [1] (graph quasi-continuous 

[5], graph cliquish [4]) if there exists a continuous (quasi-continuous, cliquish) function 𝑔: 𝑋 → 𝑌 

such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). 

The following implications follow from the above definitions: 

     Continuity   ⟹   quasi-continuity     ⇒     cliquish 

             ⇓                                 ⇓                         ⇓ 

Graph continuity  ⇒ graph quasi-continuity ⇒graph cliquish 

And all of these are not invertible [4, 5]. 

 

2. RESULTS ON GRAPH QUASI-CONTINUOUS FUNCTIONS 

A fundamental result given in [11] shows that for any continuous function 𝑔 with 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)) and for any point 𝑥 of quasi-continuity of 𝑓 we have 𝑓(𝑥) = 𝑔(𝑥). The following 

theorem gives an essential connection between graph quasi-continuous functions and quasi-

continuous functions.  

Theorem 2.1: Let 𝑓: 𝑋 → 𝑌 be graph quasi-continuous where 𝑌 is a Hausdroff space. Then for 

each quasi-continuous function 𝑔: 𝑋 → 𝑌 such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) and each 𝑥 ∈ 𝐶(𝑓) we have 

𝑓(𝑥) = 𝑔(𝑥). 

Proof: If possible, let 𝑓(𝑥) ≠ 𝑔(𝑥) for some 𝑥 ∈ 𝐶(𝑓).  

Since 𝑌 is a Hausdorff space, there exists an open neighbourhood 𝑉of 𝑓(𝑥) and an open 

neighbourhood 𝑊of 𝑔(𝑥) such that 𝑉 ∩ 𝑊 = ∅.  

Since 𝑥 ∈ 𝐶(𝑓), there exists an open neighbourhood 𝑈 of 𝑥 such that 𝑓(𝑈) ⊆ 𝑉.  

Now 𝑥 ∈ 𝑄(𝑔), so there exists a non-empty open set 𝐻(⊆ 𝑈) such that 𝑔(𝐻) ⊆ 𝑊. 
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Let 𝑥1 ∈ 𝐻.  Then (𝑥1, 𝑔(𝑥1)) ∈ 𝑐𝑙(𝐺(𝑓)).  

So, (𝐻 × 𝑊) ∩ 𝐺(𝑓) ≠ ∅. 

 Choose 𝑥2 ∈ 𝐻 such that 𝑓(𝑥2) ∈ 𝑊. Then 𝑓(𝑥2) ∈ 𝑉 ∩ 𝑊. This contradicts that 𝑉 ∩ 𝑊 = ∅. 

Remark 2.1: Let 𝑓: 𝑋 → 𝑌 be continuous then 𝑓 is graph quasi-continuous. Theorem 2.1 states 

that there is unique quasi-continuous function (viz 𝑓 itself) whose graph is contained in the closure 

of the graph of 𝑓 under the condition 𝑌 being a Hausdroff space. 

Remark 2.2: The assumption “𝑌 is a Hausdroff space” is essential in the Theorem 2.1. It follows 

from the following example.  

Example 2.1: Consider ℝ with the usual topology 𝜏𝑢 and ℝ with the topology 𝜏 =

{𝐴 ⊆ ℝ: 𝑂 ∈ 𝐴} ∪ {∅}. (ℝ, 𝜏) is not a Hausdroff space. The functions 𝑓, 𝑔: (ℝ, 𝜏𝑢) → (ℝ, 𝜏) are 

defined as 𝑓(𝑥) = 0; ∀ 𝑥 ∈ ℝ and 𝑔(𝑥) = {
0,   𝑥 ≤ 0
1;   𝑥 > 0

 . Now, 𝑓 is continuous and 𝑔 is quasi-

continuous. Also, 𝑐𝑙(𝐺(𝑓)) = ℝ × ℝ. So, 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). But 𝑓 ≠ 𝑔. 

Remark 2.3: In the Theorem 2.1, the assumption ‘𝑥 ∈ 𝐶(𝑓)’ cannot be replaced by ‘𝑥 ∈ 𝑄(𝑓)’. 

We give the following example. 

Example 2.2: Consider the real line ℝ. Let  𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ be defined by 𝑓(𝑥) =

{
0,   𝑥 ≤ 0
1;   𝑥 > 0

 and 𝑔(𝑥) = {
0,   𝑥 < 0
1;   𝑥 ≥ 0

.  𝑔 is quasi-continuous and 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). Here 𝑂 ∈ 𝑄(𝑓) 

and 𝑂 ∉ 𝐶(𝑓). But 𝑓(0) ≠ 𝑔(0). 

The next theorem gives a sufficient condition for a function to be graph quasi-continuous.  

Theorem 2.2: Let 𝑓: 𝑋 → 𝑌  and 𝐴 be a dense subset of 𝑋. Let 𝑔: 𝑋 → 𝑌 be a quasi-continuous 

function such that 𝑓(𝑥) = 𝑔(𝑥) for any 𝑥 ∈ 𝐴. Then 𝑓 is graph quasi-continuous. 

Proof:   It is sufficient to show that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)).  

Let 𝑥 ∈ 𝑋, 𝑈 be an open neighbourhood of 𝑥 and 𝑉 be an open neighbourhood of 𝑔(𝑥).  

Since 𝑥 ∈ 𝑄(𝑔), there is a non-empty open set 𝐻 ⊆ 𝑈 such that 𝑔(𝐻) ⊆ 𝑉.  

Choose 𝑥1 ∈ 𝐻 ∩ 𝐴. 
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Then 𝑥1 ∈ 𝐻, 𝑓(𝑥1) = 𝑔(𝑥1) ∈ 𝑉.  

So, (𝑥1, 𝑓(𝑥1)) ∈ (𝑈 × 𝑉) ∩ 𝐺(𝑓).  

Hence (𝑥, 𝑔(𝑥)) ∈ 𝑐𝑙(𝐺(𝑓)). 

Theorem 2.3: For a function 𝑓: 𝑋 → 𝑌 (𝑌 being a Hausdroff space), where 𝐶(𝑓) is dense in 𝑋, the 

followings are equivalent: 

i) 𝑓 is graph quasi-continuous 

ii) there exists a quasi-continuous function 𝑔: 𝑋 → 𝑌 and a dense subset 𝐴 of 𝑋 such that 

𝑓(𝑥) = 𝑔(𝑥) for any 𝑥 ∈ 𝐴. 

Proof: It easily follows from the Theorem 2.1 and the Theorem 2.2. 

 

3. RESULTS ON GRAPH CLIQUISH FUNCTIONS 

The following lemmas, theorems, results are known. 

Lemma 3.1: Let 𝐴 ⊆ 𝑊 ⊆ 𝑋. If 𝐴 is semi-open in 𝑋 then 𝐴 is semi-open in the subspace 𝑊  [3]. 

Lemma 3.2: If a set 𝐴 is dense and semi-open in 𝑋 and a set 𝐵 is dense in 𝑋 then 𝐴 ∩ 𝐵 is dense 

in 𝑋  [5]. 

Theorem 3.1: Let 𝑓: 𝑋 → 𝑀 be graph cliquish. Then for any 𝜖 > 0 the set 𝐴(𝑓, 𝑔, 𝜖) =

{𝑥 ∈ 𝑋: 𝑑(𝑓(𝑥), 𝑔(𝑥)) < 𝜖} is dense in 𝑋, for any cliquish function 𝑔: 𝑋 → 𝑀 with 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓))  [4].  

Theorem 3.2:  If 𝑓: 𝑋 → 𝑀 and 𝑔: 𝑋 → 𝑀 are cliquish functions such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) then  

𝐴(𝑓, 𝑔, 𝜖)  is semi-open for any 𝜖 > 0 [4]. 

Theorem 3.3:  If 𝑓: 𝑋 → 𝑀 is cliquish then  𝑋 ∖ 𝐶(𝑓) is of first category [8]. 

Theorem 3.4: In a Baire space the complement of every set of first category is dense [9]. 

Result 3.1: If 𝑓: 𝑋 → 𝑌 is almost continuous at a point 𝑥 ∈ 𝑋 then there exists an open 

neighbourhood 𝑈 of 𝑥 such that 𝑓−1(𝑉) is dense in 𝑈 for any neighbourhood 𝑉 of 𝑓(𝑥). 

It easily follows from the definition of almost continuity. 
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Theorem 3.5: Let  𝑓: 𝑋 → 𝑀 be quasi-continuous and  𝑔: 𝑋 → 𝑀 be cliquish such that 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)). Then 𝑓(𝑥) = 𝑔(𝑥) for each 𝑥 ∈ 𝐴𝐸(𝑔). 

Proof: If possible, let 𝑓(𝑥) ≠ 𝑔(𝑥) for some 𝑥 ∈ 𝐴𝐸(𝑔).  

Suppose 𝑟 = 𝑑(𝑓(𝑥), 𝑔(𝑥)). Then 𝑟 > 0. 

Since 𝑥 ∈ 𝐴𝐸(𝑔), there is an open neighbourhood 𝑈of 𝑥 such that 𝑔−1 (𝑆(𝑔(𝑥),
𝑟

4
)) is dense in 𝑈 

by the Result 3.1. 

Using the Theorem 3.1 we can say that 𝐴 (𝑓, 𝑔,
𝑟

4
) is dense in 𝑋 and hence dense in the open 

subspace 𝑈of 𝑋. 

Also, 𝐴 (𝑓, 𝑔,
𝑟

4
) is semi-open in 𝑈 by the Theorem 3.2 and using the Lemma 3.1. 

Hence by the Lemma 3.2, 𝐴 (𝑓, 𝑔,
𝑟

4
) ∩ 𝑔−1 (𝑆(𝑔(𝑥),

𝑟

4
) is dense in 𝑈. 

Now since 𝑥 ∈ 𝑄(𝑓), there exists a non-empty open set 𝐻 ⊆ 𝑈 such that 𝑓(𝐻) ⊆ 𝑆 (𝑓(𝑥),
𝑟

2
). 

Choose 𝑥1 ∈ 𝐻 ∩  𝐴 (𝑓, 𝑔,
𝑟

4
) ∩ 𝑔−1 (𝑆(𝑔(𝑥),

𝑟

4
). 

Then 𝑥1 ∈ 𝐻, 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) <
𝑟

4
, 𝑑(𝑔(𝑥1), 𝑔(𝑥)) <

𝑟

4
. 

Now, 𝑑(𝑓(𝑥1), 𝑔(𝑥)) ≤  𝑑(𝑓(𝑥1), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥)) <
𝑟

2
. 

So, 𝑓(𝑥1) ∈ 𝑆 (𝑔(𝑥),
𝑟

2
) 

Then 𝑓(𝑥1) ∈ 𝑆 (𝑔(𝑥),
𝑟

2
) ∩ 𝑆 (𝑓(𝑥),

𝑟

2
). 

Thus, we arrive at a contradiction as 𝑆 (𝑔(𝑥),
𝑟

2
) ∩ 𝑆 (𝑓(𝑥),

𝑟

2
) = ∅. 

Remark 3.1: In the theorem 3.5 the quasi-continuity of 𝑓 can not be replaced by the cliquishness 

of 𝑓 even if 𝑔 is continuous. 

It follows from the following example 

Example 3.1: Consider ℝ with the topology 𝜏 = {𝐴 ⊆ ℝ: 𝑂 ∈ 𝐴} ∪ {∅} and ℝ with the usual 

metric 𝑑.  
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The functions 𝑓, 𝑔: (ℝ, 𝜏) → (ℝ, 𝑑) are defined as 𝑓(𝑥) = {
0,   𝑥 = 0
1;   𝑥 ≠ 0

 and 𝑔(𝑥) = 0 ∀𝑥 ∈ ℝ. 

𝑓 is cliquish on (ℝ, 𝜏) and fails to be quasi-continuous at any 𝑥 ≠ 0. 

𝑔 is continuous on (ℝ, 𝑑). 

Here 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) . But 𝑓(𝑥) ≠ 𝑔(𝑥) for any 𝑥 ≠ 0. 

Theorem 3.6: Let 𝑋 be a Baire space and 𝑓: 𝑋 → 𝑀 be graph cliquish. Then for each cliquish 

function 𝑔: 𝑋 → 𝑀 such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) and each 𝑥 ∈ 𝐶(𝑓) ∩ 𝑄(𝑔) we have 𝑓(𝑥) = 𝑔(𝑥). 

Proof: If possible, let 𝑓(𝑥) ≠ 𝑔(𝑥) for some 𝑥 ∈ 𝐶(𝑓) ∩ 𝑄(𝑔). 

Suppose 𝑟 = 𝑑(𝑓(𝑥), 𝑔(𝑥)). Then 𝑟 > 0. 

Since 𝑥 ∈ 𝐶(𝑓), there is an open neighbourhood 𝑈of 𝑥 such that 𝑓(𝑈) ⊆ 𝑆(𝑓(𝑥),
𝑟

2
). 

Since 𝑥 ∈ 𝑄(𝑔), there exists a non-empty open set 𝐻 ⊆ 𝑈 such that 𝑔(𝐻) ⊆ 𝑆(𝑔(𝑥),
𝑟

6
). 

By the theorems 3.3 and 3.4, 𝐶(𝑔) is dense in 𝑋 and so 𝑄(𝑔) is dense in 𝑋. 

Choose 𝑥1 ∈ 𝐻 ∩ 𝑄(𝑔). 

Then there exists a non-empty open set 𝐻′ ⊆ 𝐻 such that 𝑔(𝐻′) ⊆ 𝑆(𝑔(𝑥),
𝑟

6
). 

By the theorem 3.1, 𝐴 (𝑓, 𝑔,
𝑟

6
) is dense in 𝑋. 

Choose 𝑥2 ∈ 𝐻′ such that 𝑑(𝑓(𝑥2), 𝑔(𝑥2)) <
𝑟

6
 

Now, 𝑑(𝑓(𝑥2), 𝑔(𝑥)) ≤  𝑑(𝑓(𝑥2), 𝑔(𝑥2)) + 𝑑(𝑔(𝑥2), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥)) 

                                   <
𝑟

6
+

𝑟

6
+

𝑟

6
=

𝑟

2
 

So, 𝑓(𝑥2) ∈ 𝑆 (𝑔(𝑥),
𝑟

2
) 

Also,  𝑓(𝑥2) ∈ 𝑆 (𝑓(𝑥),
𝑟

2
) 

Thus, we arrive at a contradiction as 𝑆 (𝑔(𝑥),
𝑟

2
) ∩ 𝑆 (𝑓(𝑥),

𝑟

2
) = ∅. 
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