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Abstract. The divisor graph, denoted by D(Zp[x,n]), is the graph whose vertex set is the set of all polynomials

of degree at most n whose coefficients are from field Zp and its any two distinct vertices are adjacent if one is a

divisor of the other. In this paper, (i) we determine the degree of each vertex of D(Zp[x,3]) and also discuss its

girth, size, degree sequence, irregularity index etc. (ii) We also establish that two polynomials of same degree k in

Zp[x,n] having different number of irreducible factors, the one with fewer number of irreducible factors has smaller

degree. (iii) Further, if two polynomials of same degree k in Zp[x,n] having same number of irreducible factors

but different number of distinct irreducible factors, the one with fewer number of distinct irreducible factors has

smaller degree.
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1. INTRODUCTION

The study of algebraic structures through graphs and investigation of these graphs has been a

growing area of research. Firstly, the idea of divisor graph was given by Singh and Santhosh [2]

and further investigated by Chartrand, Muntean, Saenpholphant and Zhang [1]. This concept
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also studied several divisor graphs and their properties. A divisor graph G(V ) is an ordered

pair (V,E) where vertex set V is subset of set of integers and for all u 6= u ∈ V,uv ∈ E if and

only if u|v or v|u. The degree of a vertex associated with a finite group is also used to study the

structural properties of graph[6, 12], motivated by this concept we obtain results for degree of

vertices in divisor graph.

In section 3, we obtain results for the degree of vertices of D(Zp[x,3]) of the type ax3+bx2+

cx+d where a,b,c,d ∈ Zp which are generalization of results in [7]. We also characterize the

minimum degree vertex as the irreducible polynomial and show that for any prime p, the graph

D(Zp[x,3]) is neither complete nor cyclic. We also obtain the degree sequence and irregularity

index for D(Zp[x,3]).

In section 4, we prove that two polynomial of same degree k in D(Zp[x,n]), but number of

irreducible factors of polynomials are different, then degree of polynomial in graph D(Zp[x,n])

has degree least degree which has less number of irreducible factors. Also, we prove that two

polynomial of same degree k in D(Zp[x,n]) and same number of number of irreducible factors of

polynomials but number of distinct number of irreducible factors of polynomials are different,

then degree of polynomial in graph D(Zp[x,n]) has degree least degree which has less number

of distinct number of irreducible factors of polynomials.

2. NUMBER OF IRREDUCIBLE POLYNOMIALS

Let π(r,k),π∗(r,k) denotes number of monic polynomials and non-monic polynomials of

degree r in Zp[x] having k associative irreducible factors respectively. By [9], we know that

π(r,1) = 1
r ∑d|r µ(d)p

r
d where µ denotes the Moebius function. Further, the irreducible poly-

nomials of degree r are nothing but associates of monic irreducible polynomials of degree r. So

π∗(r,1) = π(r,1).Assumption π(r,1) = 0 if r is not a positive integer.

Theorem 1. π∗(r,k) =


π∗(r/k,1) i f k divides r

0 otherwise.

Proof. Depending upon whether k divides r, we consider following cases:

1. If k divides r, then every polynomial of degree r having k associate irreducible factors

can be written as product of irreducible polynomial of degree r/k with their k−1 monic
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associates. Number of irreducible polynomials of degree r/k are π∗(r/k,1) and has

unique monic associate. Hence π∗(r,k) = π∗(r/k,1).

2. If k does not divide r, then no polynomial of degree r having k associate irreducible

factors. Hence π∗(r,k) = 0.

This proves the theorem. �

Theorem 2. The number π∗(r,(k−1)(1)+1(1)) is given by
∑

r−1
i=1 (p−1)π(i,1)π(r−i,1)−(p−1)π( r

2 ,1)
2 if k = 2

∑
b r−1

k−1c
i=1 (p−1)π(i,1)π(r− (k−1)i,1)− (p−1)π( r

k ,1) if k > 2.

Proof. Let f (x) ∈ Zp[x] be a polynomial of degree r which can be factorised into k irreducible

polynomial such that at least k−1 factors are associate. So, we can write f (x) as arg(x)
k−1h(x)

where g(x),h(x) are irreducible monic polynomial of at-least one degree and ar is non-zero

coefficient of highest power in f (x).

It is given that deg( f (x)) = r, so h(x) is r− (k− 1)deg(g(x)). Here f (x) = arg(x)
k−1h(x), so

possibilities of degree of g(x) is from 1 to b r−1
k−1c because degree h(x) is at-least one.

Possibilities of irreducible monic polynomial of degree i are π(i,1) and possibilities of monic

irreducible polynomial of degree r− (k−1)i are π(r− (k−1)i,1) where b r−1
k−1c.

Here, we want to count such cases where g(x) and h(x) must be non-associate. If g(x) and

h(x) are associate, then degree of f (x) is k×deg(h(x)), so k|r and degree of g(x) is r
k .

Case 1: For k > 2, g(x)k−1 and h(x) are different groups, so possibilities

of f (x) when g(x) and h(x) may or may not be associate are

∑
b r−1

k−1c
i=1 (p−1)π(i,1)π(r− (k−1)i,1). Possibilities of f (x) when g(x) and h(x) are associate

of each other are (p−1)π( r
k ,1). Hence, we get

π
∗(r,(k−1)(1)+1(1)) =

b r−1
k−1c

∑
i=1

(p−1)π(i,1)π(r− (k−1)i,1)− (p−1)π(
r
k
,1).

Case 2: For k = 2, g(x) and h(x) are same groups and no distinction is possible between the

groups, then the two groups can be interchanged without giving a new group, so possibilities of

f (x) when g(x) and h(x) may or may not be associate are ∑
r−1
i=1 (p−1)π(i,1)π(r−i,1)

2 . Possibilities of
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f (x) when g(x) and h(x) are associate of each other are (p−1)π( r
2 ,1)

2 . Hence, we get

π
∗(r,(1)(1)+(1)(1)) =

∑
r−1
i=1 (p−1)π(i,1)π(r− i,1)− (p−1)π( r

2 ,1)
2

.

�

Theorem 3. The number π∗(r,1+1+1) is given by

∑
r−2
i=1 ∑

r−1−i
j=1 (p−1)π(i,1)π( j,1)π(r− i− j,1)−3π∗(r,2+1)−π∗( r

3 ,1)

6
.

Proof. Let f (x) ∈ Zp[x] of degree r be such as which can be factorized into three irreducible

factors. So, we can write f (x) as arg(x)h(x)s(x) where g(x),h(x),s(x) are irreducible monic

polynomials of degree at-least one and ar is non zero coefficient of highest power in f(x). It is

given that deg( f (x)) = r, so, if we assume that degg(x) = i and degh(x) = j, then degs(x) =

r− i− j. Here f (x) = arg(x)h(x)s(x).So, possibilities of degree of g(x) is from 1 to r− 2

because h(x) and s(x) will have at-least one degree and accordingly possibilities of degree of

h(x) is from 1 to r− 1− deg(g(x)). Possibilities of irreducible monic polynomial of degree i

are π(i,1).

Here we want to count such cases where g(x),h(x) and s(x) must be mutually non-associate,so

we have exclude the cases when two are associate and when all the three are associate.Here pos-

sibilities of monic irreducible polynomial f (x) are π(i,1).

Possibilities of arg(x)h(x)s(x) are ∑
r−2
i=1 ∑

r−1−i
j=1 (p−1)π(i,1)π( j,1)π(r− i− j,1), possibili-

ties of arg(x)h(x)s(x) when two out of three g(x),h(x),s(x) being associate are 3C1(p−1)µ(r,2+

1). Possibilities when arg(x)h(x)s(x) when all three g(x),h(x),s(x) being associate are (p−

1)µ( r
3 ,1). Possibilities when arg(x)h(x)s(x) when all three g(x),h(x),s(x) are monic and non

associate are ∑
r−1
i=1 ∑ j=1 r− i−1(p−1)µ(i,1)µ( j,1)µ(r− i− j,1)−3(p−1)µ(r,2+1)−(p−

1)µ( r
3 ,1) In this case g(x),h(x), and s(x) are same groups and no distiction is possible between

the groups then any two of them can be interchanged without giving a new group, so total possi-

bilities for polynomial f (x) reduces to
∑

r−1
i=1 ∑

r−i−1
j=1 (p−1)µ(i,1)µ( j,1)µ(r−i− j,1)−3(p−1)µ(r,2+1)−(p−1)µ( r

3 ,1)
6 .

This completes the proof. �
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3. THE DIVISOR GRAPH D(Zp[x,3])

Theorem 4. Let V = Zp[x,3] be the vertex set, then Divisor graph D(V ) has following results

for the degree of their vertices.

(i). deg(0x3 +0x2 +0x+0) = p4−1.

(ii). deg(0x3 +0x2 +0x+d) = p4−1 where d 6= 0.

(iii). deg(0x3 +0x2 + cx+d) = p3 + p−2 where c 6= 0.

(iv). deg(bx2 + cx+d) = p2 + p−2 where b 6= 0 and bx2 + cx+d is irreducible polynomial.

(v). deg(bx2+cx+d) = p2+2p−3 where b 6= 0 and bx2+cx+d is reducible and has identical

roots.

(vi). deg(bx2+cx+d) = p2+3p−4 where b 6= 0 and bx2+cx+d is reducible and has distinct

roots.

(vii). deg(ax3 +bx2 + cx+d) = 2p−2 where a 6= 0 and ax3 +bx2 + cx+d is irreducible.

(viii). deg(ax3 +bx2 +cx+d) = 4p−4 where a 6= 0 and ax3 +bx2 +cx+d has a linear factor

and the other quadratic factor is further irreducible.

(ix). deg(ax3 + bx2 + cx+ d) = 4p− 4 where a 6= 0 and (ax3 + bx2 + cx+ d) is reducible to

linear factors and has three identical roots.

(x). deg(ax3 + bx2 + cx+ d) = 6p− 6 where a 6= 0 and (ax3 + bx2 + cx+ d) is reducible to

linear factors and has two identical roots.

(xi). deg(ax3 + bx2 + cx+ d) = 8p− 8 where a 6= 0 and (ax3 + bx2 + cx+ d) is reducible to

linear factors and has three distinct roots provided p > 2.

Proof. We know that every unit of Zp[x] is a non-zero polynomial of degree zero of the form

0x3 +0x2 +0x+d, where d 6= 0, so the number of units in Zp[x] are p−1. Then every polyno-

mial of degree one or two have p−1 associates. Also the number of polynomials of degree one

and degree two exactly are p(p−1) and p2(p−1) respectively.

(i) Every polynomial except zero polynomial divides zero polynomial, but no polynomial is

divisible by zero polynomial.
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We get deg+(0x3+0x2+0x+0) = p4−1, deg−(0x3+0x2+0x+0) = 0, deg+−(0x3+0x2+

0x+0) = 0.

Hence deg(0x3 + 0x2 + 0x+ 0) = deg+(0x3 + 0x2 + 0x+ 0) + deg−(0x3 + 0x2 + 0x+ 0)−

deg+−(0x3 +0x2 +0x+0) = p4−1+0−0 = p4−1

(ii) Every unit of Zp[x] divides zero polynomial, every non-zero polynomial of degree zero,

every polynomial of degree one, two and three. Furthermore it is easy to see that units are di-

visible only by units.

We get deg+(0x3+0x2+0x+d) = (p−1)−1 = p−2, deg−(0x3+0x2+0x+d) = 1+(p−

1)+ p(p−1)+ p2(p−1)+ p3(p−1)−1 = p4−1, deg+−(0x3+0x2+0x+d) = (p−1)−1 =

p−2.

Hence deg(0x3 + 0x2 + 0x+ d) = deg+(0x3 + 0x2 + 0x+ d)+ deg−(0x3 + 0x2 + 0x+ d)−

deg+−(0x3 +0x2 +0x+d) = p−2+ p4−1− (p−2) = p4−1.

(iii) One can easily show that the polynomial cx + d, where c 6= 0 and c,d ∈ Zp has ex-

actly one root in Zp( say α), so cx+ d can be rewritten as b(x−α). Hence every polynomial

of degree one having root α is associate with polynomial bx+ c. No polynomial other than

units and associates of polynomial cx+ d divides cx+ d. We get deg+(0x3 + 0x2 + cx+ d) =

(p−1)+(p−1)−1 = 2p−3.

The zero polynomial and every associate of polynomial cx+ d is divisible by cx+ d. Fur-

thermore reducible polynomials of degree two and three with at-least one of the roots as α are

divisible by cx+d. Reducible polynomials of degree two with at-least one root as α are of the

form α1(x−β )(x−α), where α1 6= 0,and number of such polynomials are exactly p(p−1) and

that of degree three are of the form α1(x2 +β1x+ γ1)(x−α) and number of such polynomials

are p2(p−1) respectively.
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We get deg+(0x3 +0x2 + cx+d) = (p−1)+(p−2) = 2p−3, deg−(0x3 +0x2 + cx+d) =

1+(p−2)+ p(p−1)+ p2(p−1) = p3−1, deg+−(0x3+0x2+cx+d) = (p−1)−1 = p−2.

Hence deg(0x3+0x2+cx+d)= deg+(0x3+0x2+cx+d)+deg−(0x3+0x2+cx+d)−deg+−(0x3+

0x2 + cx+d) = 2p−3+ p3−1− (p−2) = p3 + p−2.

(iv) Let bx2+cx+d be an irreducible polynomial with b 6= 0 and b,c,d ∈ Zp. Then bx2+cx+

d divides zero polynomial, associates of bx2 + cx+ d and polynomials of degree three having

one of the quadratic factors as (bx2 + cx+ d) of the form α1(x−β )(bx2 + cx+ d), number of

such polynomils over Zp are p(p−1) but (bx2 + cx+d) is divisible only by units of Zp[x] and

associates of polynomial bx2 + cx+d.

We get deg+(bx2+cx+d) = (p−1)+(p−2) = 2p−3, deg−(ax2+bx+c) = 1+(p−2)+

p(p− 1) = p2− 1, deg+−(ax2 + bx+ c) = (p− 1)− 1 = p− 2. Hence deg(bx2 + cx+ d) =

deg+(bx2 + cx+d)+deg−(bx2 + cx+d)−deg+−(ax2 +bx+ c) = (2p−3)+(p2−1)− (p−

2) = p2 + p−2.

(v) Let bx2 + cx+ d be a reducible polynomial with b 6= 0 and b,c,d ∈ Zp and both roots

are identical (say α,α). So bx2 + cx+ d can be rewritten as b(x−α)2. Thus bx2 + cx+ d di-

vides zero polynomial, associates of bx2 + cx+d and polynomials of degree three of the form

α1(x−β )(bx2 + cx+d) having one of the quadratic factors as bx2 + cx+d. But is divisible by

units of Zp[x], associates of polynomial (x−α) and associates of polynomial bx2 + cx+d.

We get deg+(bx2+cx+d) = (p−1)+(p−1)+(p−1)−1 = 3p−4, deg−(bx2+cx+d) =

1 + (p− 1)− 1 + p(p− 1) = p2 − 1, deg+−(bx2 + cx + d) = (p− 1)− 1 = p− 2. Hence

deg(bx2 + cx+d) = deg+(ax2 +bx+ c)+deg−(ax2 +bx+ c)−deg+−(bx2 + cx+d) = (3p−

4)+(p2−1)− (p−2) = p2 +2p−3.

(vi) Let bx2+cx+d be a reducible polynomial with b 6= 0 and b,c,d ∈ Zp and both roots are

distinct (say α,β ). Then bx2 + cx+d divides zero polynomial, associates of ax2 +bx+ c, and

polynomials of degree three of the form α1(x−β )(bx2 + cx+ d) having one of the quadratic
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factors as bx2 + cx+ d. But is divisible by units of Zp[x], associates of polynomial (x−α),

associates of polynomial (x−β ) and associates of polynomial bx2 + cx+d.

(vii) Let ax3 +bx2 + cx+d be an irreducible polynomial with a 6= 0 and a,b,c,d ∈ Zp. Then

ax3+bx2+cx+d divides zero polynomial and associates of ax3+bx2+cx+d, but is divisible

by units of Zp[x] and associates of polynomial ax3 +bx2 + cx+d.

We get deg+(bx2 + cx + d) = (p− 1) + (p− 1)− 1 = 2p− 3, deg−(ax2 + bx + c) = 1 +

(p− 1)− 1 = p− 1, deg+−(ax2 + bx+ c) = (p− 1)− 1 = p− 2. Hence deg(bx2 + cx+ d) =

deg+(bx2+cx+d)+deg−(bx2+cx+d)−deg+−(ax2+bx+c)= (2p−3)+(p−1)−(p−2)=

2p−2.

(viii) Let ax3 + bx2 + cx+ d be a reducible polynomial with a 6= 0 and a,b,c,d ∈ Zp which

has only one root (say α) in Zp and the other quadratic factor is further irreducible over Zp. That

is of the form a(x−α)(x2+mx+n) where a,α,m,n∈ Zp. Then ax3+bx2+cx+d divides zero

polynomial and associates of ax3 + bx2 + cx+ d but is divisible by units of Zp[x], associates

of polynomial (x−α), associates of polynomial (x2 +mx+ n) and associates of polynomial

ax3 +bx2 + cx+d.

We get deg+(ax3+bx2+cx+d)= (p−1)+(p−1)+(p−1)+(p−1)−1= 4p−5, deg−(ax3+

bx2+cx+d) = 1+(p−1)−1= p−1, deg+−(ax3+bx2+cx+d) = (p−1)−1= p−2. Hence

deg(ax3+bx2+cx+d) = deg+(ax3+bx2+cx+d)+deg−(ax3+bx2+cx+d)−deg+−(ax3+

bx2 + cx+d) = (4p−5)+(p−1)− (p−2) = 4p−4.

(ix) Let ax3 + bx2 + cx+ d be a reducible polynomial with a 6= 0 and a,b,c,d ∈ Zp with

p > 2 which has three identical roots (say α ,α ,α ) in Zp and is of the form a(x−α)3. Then

ax3 +bx2 + cx+d divides zero polynomial and associates of ax3 +bx2 + cx+d but is divisible

by units of Zp[x], associates of polynomial (x−α), (x−α)2 and (x−α)3.

We get deg+(ax3 + bx2 + cx + d) = (p− 1) + (p− 1) + (p− 1) + (p− 1)− 1 = 4p− 5,

deg−(ax3+bx2+cx+d) = 1+(p−1)−1 = p−1, deg+−(ax3+bx2+cx+d) = (p−1)−1 =

p−2. Hence deg(ax3+bx2+cx+d) = deg+(ax3+bx2+cx+d)+deg−(ax3+bx2+cx+d)−
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deg+−(ax3 +bx2 + cx+d) = (4p−5)+(p−1)− (p−2) = 4p−4.

(x) Let ax3 + bx2 + cx+ d be a reducible polynomial with a 6= 0 and a,b,c,d ∈ Zp which

has two identical roots (say α ,α ,β ) in Zp and is of the form a(x−α)2(x− β ). Then ax3 +

bx2 + cx+ d divides zero polynomial and associates of ax3 + bx2 + cx+ d but is divisible by

units of Zp[x], associates of polynomial (x−α), associates of polynomial (x−α)2, associates

of polynomial (x−β ) and associates of polynomial (x−α)(x−β ).

We get deg+(ax3+bx2+cx+d) = (p−1)+(p−1)+(p−1)+(p−1)+(p−1)+(p−1)−

1 = 6p−7, deg−(ax3 +bx2 + cx+d) = 1+(p−1)−1 = p−1, deg+−(ax3 +bx2 + cx+d) =

(p−1)−1 = p−2. Hence deg(ax3 +bx2 + cx+d) = deg+(ax3 +bx2 + cx+d)+deg−(ax3 +

bx2 + cx+d)−deg+−(ax3 +bx2 + cx+d) = (6p−7)+(p−1)− (p−2) = 6p−6.

(xi) Let ax3 + bx2 + cx+ d be a reducible polynomial with a 6= 0 and a,b,c,d ∈ Zp which

has three distinct roots (say α,β ,γ , ) in Zp and is of the form a(x−α)(x− β )(x− γ). Then

ax3 +bx2 + cx+d divides zero polynomial and associates of ax3 +bx2 + cx+d but is divisible

by units of Zp[x], associates of polynomial (x−α), associates of polynomial (x−β ), associates

of polynomial (x− γ), associates of polynomials (x−α)(x−β ),(x−β )(x− γ),(x− γ)(x−α)

and associate of polynomial ax3 +bx2 + cx+d.

We get deg+(ax3 + bx2 + cx+ d) = (p− 1)+ 3(p− 1)+ 3(p− 1)+ (p− 1)− 1 = 8p− 9,

deg−(ax3+bx2+cx+d) = 1+(p−1)−1 = p−1, deg+−(ax3+bx2+cx+d) = (p−1)−1 =

p−2. Hence deg(ax3+bx2+cx+d) = deg+(ax3+bx2+cx+d)+deg−(ax3+bx2+cx+d)−

deg+−(ax3 +bx2 + cx+d) = (8p−9)+(p−1)− (p−2) = 8p−8.

�

Corollary 1. For any prime p, the divisor graph D(Zp[x,3]) never becomes a complete graph.

Proof. For any prime p, there exist at least two non-associate as well as irreducible polyno-

mial x and x+ 1, so neither x divides x+ 1 nor x+ 1 divides x. Hence, these vertices are not

connected.Therefore, D(Zp[x,3]) is not complete.This completes the proof. �

Corollary 2. For any prime p, the divisor graph D(Zp[x,3]) never becomes a cyclic graph.



NUMBER OF IRREDUCIBLE FACTORS AND DEGREE 1373

Proof. For any prime p, polynomial x3 + (p− 1)x2 has three roots 0,0,1, so by part (x) of

Theorem 4 degree of this vertex is 6p-6 which never becomes two. Hence we get a vertex

whose degree is not two, so divisor graph of set of all polynomials of degree at most three from

Zp[x] never becomes a cyclic graph. �

Corollary 3. The girth of divisor graph D(Zp[x,3] is three for every prime p.

Proof. If p is any prime, then (0x2 + 0x + 1)|(x2 + 0x + 0), (0x2 + x + 0)|(x2 + 0x + 0) and

(0x2 + 0x+ 1)|(0x2 + x+ 1). So, we get a cycle formed with vertices 0x2 + 0x+ 1,x2 + 0x+

0,0x2+x+0 of length three in simple graph D(Zp[x,3]), hence girth of D(Zp[x,3]) is three. �

Corollary 4. The divisor graph D(Zp[x,3]) is Eulerian if and only if p is an odd prime.

Proof. Suppose D(Zp[x,3]) is Eulerian and if possible, let p be an even prime. Clearly, p = 2.

Then by Theorem 4 the degree of verities 0x2+0x+0,0x2+0x+1,x2+0x+1 in divisor graph

must be odd. Hence we get more than 2 vertices with odd degree, then graph cannot have Euler

circuit, that is a contradiction. Hence p must be an odd prime.

Conversely, if p is an odd prime then p4−1, p3+ p−2, p2+ p−2, p2+2p−3,2p−2,4p−

4,6p−6,8p−8 are all even. Thus degree of each vertex of divisor graph is even, hence divisor

graph is Eulerian. �

Corollary 5. A vertex corresponding to any irreducible polynomial of degree three has mini-

mum degree among all vertices of divisor graph D(Zp[x,3]).

Proof. For every prime p, we have 2p−2 < 4p−4 < 6p−6 < 8p−8, 2p−2 < p2 + p−2 <

p2 + 2p− 3,2p− 2 < p3 + p− 2 and 2p− 2 < p4− 1because p > 1. By Theorem 4, every

irreducible polynomial of degree three has degree 2p− 2 and remaining vertices have degree

p4−1 or p3 + p−2 or p2 + p−2 or p2 +2p−3 or 4p−4 or 6p−6 or 8p−8. Hence we get

the desired result. �

Corollary 6. For any prime p,D(Zp[x,3]) is a non-planer graph.

Proof. To show this, we find two partition each with three vertices such that each vertices of

first partition is adjacent to all the vertices of second partition in divisor graph D(Zp[x,3]).We
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take vertices 0,1,x in first partition and vertices x2,x3,x2 + x in second partition, so that each

vertices in first is adjacent to second partition , so divisor graph D(Zp[x,3]) has sub-graph which

is isomorphic to K3,3. Hence, divisor graph D(Zp[x,3]) is a non-planer graph for every prime

p. �

Corollary 7. The size of divisor graph D(Zp[x,3]) is p(p−1)(7p3−p2−p−1)
2 .

Proof. From parts (i) and (ii) of Theorem 4, every polynomial of degree zero and zero polyno-

mial has degree p4−1 and the exact number of such polynomials are p. By theorem 1,possibilities

for polynomials of the type π∗(1,1) are p(p−1), by part (iii) of Theorem 4, degree of vertices

corresponding to such polynomials is p3 + p− 2.By theorem 1,possibilities for polynomials

of the type π∗(2,1) are p(p−1)2

2 , by part (iv) of Theorem 4, degree of vertices correspond-

ing to such polynomials is p2 + p− 2.By theorem 1,possibilities for polynomials of the type

π∗(2,2) are p(p−1), by part (v) of Theorem 4, degree of vertices corresponding to such poly-

nomials is p2 + 2p− 3.By theorem 2,possibilities for polynomials of the type π∗(2,1+ 1) are
p(p−1)2

2 , by part (vi) of Theorem 4, degree of vertices corresponding to such polynomials is

p2+3p−4.By theorem 1,possibilities for polynomials of the type π∗(3,1) are p(p−1)2(p+1)
3 , by

part (vii) of Theorem 4, degree of vertices corresponding to such polynomials is 2p−2.By the-

orem 2,possibilities for polynomials of the type π∗(3,1+1) are p2(p−1)2

2 , by part (viii) of Theo-

rem 4, degree of vertices corresponding to such polynomials is 4p−4.By theorem 1,possibilities

for polynomials of the type π∗(3,3) are p(p− 1), by part (ix) of theorem 4, degree of ver-

tices corresponding to such polynomials is 4p− 4.By theorem 2,possibilities for polynomials

of the type π∗(3,2 + 1) are p(p− 1)2, by part (x) of Theorem 4, degree of vertices corre-

sponding to such polynomials is 6p−6.By theorem 3,possibilities for polynomials of the type

π∗(3,1+1+1) are p(p−1)2(p−2)
3! , by part (xi) of Theorem 4, degree of vertices corresponding to

such polynomials is 8p−8.

Therefore the sum of degrees of all the vertices in D(Zp[x,3]) is p(p−1)(7p3− p2− p−1).

By Fundamental theorem of graph theory [8], sum of degrees of all the vertices in the graph

D(Zp[x,3]) is twice the sum of edges in it. We know that size of graph is equal to number of

edges in it. Hence the size of graph D(Zp[x,3]) is p(p−1)(7p3−p2−p−1)
2 . �
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Corollary 8. The divisor graph D(Zp[x,3]) has a not Hamiltonian circuit for any prime p.

Proof. If p is a prime, we have to show that divisor graph D(Zp[x,3]) does not possess Hamil-

tonian circuit.

If possible, let C be a Hamiltonian circuit of divisor graph D(Zp[x,3]). We know that there

exists p(p−1)2(p+1)
3 irreducible polynomials of degree three and the number of units and zero

polynomial are p in Zp[x,3]. Since every irreducible polynomial of degree three in Zp[x,3]

is either adjacent with zero element, unit element or its associate polynomial only. Pick any

unit or zero polynomial from Hamiltonian circuit C which moves to irreducible polynomial

of degree three (say) x1, one can move to at most p− 2 associates of x1 continuously before

moving to remaining unit or zero element in C and C contains at most p− 1 such moves

because C has at-least one move from unit or zero polynomial to irreducible polynomial of

degree three so that these vertices also get covered. So C forms Hamiltonian circuit only if
# irreducible polynomials o f degree three f rom Zp[x,3]

p−1 ≤ p−1

=⇒ p(p−1)2(p+1)
2(p−1) ≤ (p−1)

=⇒ p(p+1)≤ 3, but no prime satisfies this.Hence we get contradiction with the fact that C is

Hamiltonian circuit. �

Corollary 9. The degree sequence and irregularity index of D(Zp[x,3]) are given by

DS(D(Zp[x,3])) = p4−1
p times

, p3 + p−2
p(p−1) times

, p2 + p−2
p(p−1)2

2 times

, p2 +2p−3
p(p−1) times

, p2 +3p−4
p(p−1)2

2 times

,

8p−8
p(p−1)2(p+1)

3 times

, 6p−6
p2(p−1)2

2 times

, 4p−4
p2(p−1) times

, 2p−2
p(p−1)2(p−2)

3! times

and

t(D(Zp[x,3])) =


6, i f p is an even prime,

8, i f p is 3 or 5.

9, i f p is a odd prime.

Proof. By Theorem 4, the degree of vertices are p4−1, p3+ p−2, p2+3p−4, p2+2p−3, p2+

p−2,8p−8,6p−6,4p−4,2p−2 with multiplicity

p, p(p−1), p(p−1)2

2 , p(p−1), p(p−1)2

2 , p(p−1)2(p+1)
3 , p2(p−1)2

2 , p(p−1)+ p(p−1)2, p(p−1)2(p−2)
3 ,

respectively .This completes the proof of first part. For irregularity index, we have p4−1, p3 +

p−2, p2+3p−4, p2+2p−3, p2+ p−2,8p−8,6p−6,4p−4,2p−2 all are pairwise unequal

for every prime greater than 5.If p = 2, we get degree’s of various vertices as 15,8,6,5,4,2.If
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p = 3, we get degree’s of various vertices as 80,28,16,14,12,10,8,4.If p = 5, we get degree’s

of various vertices as 624,128,36,32,28,24,16,8.Hence t(D(Zp[x,3])) is 6,8,8,9 for p being

even prime, 3 ,5 or odd prime greater than 5 respectively. �

4. RESULTS ON THE BASIS OF NUMBER OF IRREDUCIBLE FACTORS

Theorem 5. The degree of irreducible polynomial of degree 1≤ k≤ n as vertex of divisor graph

D(Zp[x,n]) is pn−k+1 + p−2

Proof. Let f (x) be an irreducible polynomial of degree 1≤ k≤ n. Then f (x) divides polynomial

of form f (x)g(x) where g(x) is a polynomial of degree less than or equal to n−k, but is divisible

by units of Zp[x] and associates of polynomial f (x). Possibilities for all polynomial of degree

less than or equal to n− k are pn−k+1

We get deg+( f (x))= (p−1)+(p−1)−1= 2p−3, deg−( f (x))= pn−k+1−1, deg+−( f (x))=

(p−1)−1 = p−2.

Hence deg( f (x)) = deg+( f (x))+deg−( f (x))−deg+−( f (x)) = (2p−3)+(pn−k+1−1)−(p−

2) = pn−k+1 + p−2. �

Theorem 6. The degree of vertex which is polynomial of degree 2≤ k ≤ n and decomposed as

product of two non-associate irreducible polynomials in divisor graph D(Zp[x,n]) is pn−k+1 +

3p−4

Proof. Let f (x) be a reducible polynomial of degree 2 ≤ k ≤ n and which can expressed as

product of exactly two irreducible non associative non constant factors (say f1(x) and f2(x)),

then f (x) divides polynomial of form f (x)g(x) where g(x) is a polynomial of degree less than

or equal to n− k, but is divisible by units of Zp[x], associates of polynomial f1(x),associates of

polynomial f2(x) and associates of polynomial f (x).

Possibilities for all polynomial of degree less than or equal to n− k are pn−k+1

We get deg+( f (x)) = (p− 1) + (p− 1) + (p− 1) + (p− 1)− 1 = 4p− 5, deg−( f (x)) =

pn−k+1−1, deg+−( f (x)) = (p−1)−1 = p−2.

Hence deg( f (x)) = deg+( f (x))+deg−( f (x))−deg+−( f (x)) = (4p−5)+(pn−k+1−1)−(p−

2) = pn−k+1 +3p−4. �



NUMBER OF IRREDUCIBLE FACTORS AND DEGREE 1377

Theorem 7. The degree of vertex which is polynomial of degree 3≤ k ≤ n and decomposed as

product of three mutually non-associate irreducible polynomials in divisor graph D(Zp[x,n]) is

pn−k+1 +7p−8

Proof. Let f (x) be a reducible polynomial of degree 3 ≤ k ≤ n and which can expressed as

product of exactly three mutually non-associate irreducible polynomials and non constant fac-

tors (say f1(x), f2(x) and f3(x)), then f (x) divides polynomial of form f (x)g(x) where g(x) is a

polynomial of degree less than or equal to n− k, but is divisible by units of Zp[x], associates of

polynomial f1(x), f2(x), f3(x), f1(x) f2(x), f1(x) f3(x), f2(x) f3(x) and f (x).

Possibilities for all polynomial of degree less than or equal to n− k are pn−k+1

We get deg+( f (x)) = 7(p−1)−1 = 7p−8, deg−( f (x)) = pn−k+1−1, deg+−( f (x)) = (p−

1)−1 = p−2.

Hence deg( f (x)) = deg+( f (x))+deg−( f (x))−deg+−( f (x)) = (7p−8)+(pn−k+1−1)−(p−

2) = pn−k+1 +7p−8. �

The following theorem generalizes last three results.

Theorem 8. The degree of vertex which is polynomial of degree 1≤ s≤ k≤ n and decomposed

as product of s mutually non-associate irreducible polynomials in divisor graph D(Zp[x,n]) is

pn−k+1 +(2s−1)p−2s

Corollary 10. Two polynomials of same degree k in Zp[x,n] having mutually non-associate

irreducible, the one with fewer number of irreducible factors has smaller degree.

Proof. Let f (x) and g(x) be two polynomials of same degree k having s1 and s2 mutually

non-associate irreducible factors with s1 ≤ s2, then deg( f (x)) = pn−k+1 +(2s1−1)p−2s1 and

deg(g(x)) = pn−k+1 +(2s2−1)p−2s2

By use of s1 ≤ s2, we have deg(g(x))− deg( f (x)) = (2s2 − 2s1)p− (2s2 − 2s1) = (2s2 −

2s1)(p−1)> 0.Hence deg( f (x))≤ deg(g(x)) �

Theorem 9. The degree of vertex which is polynomial of degree 2 ≤ k ≤ n and decomposed

as product of two irreducible polynomials but both irreducible polynomials are associates in

divisor graph D(Zp[x,n]) is pn−k+1 +2p−3.
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Proof. Let f (x) be a reducible polynomial of degree 2 ≤ k ≤ n and which can expressed as

product of exactly two irreducible associates non constant factors i.e., f (x) = a( f1(x))2 where

f1(x) is irreducible polynomial and a f1(x) where a is units in zp[x], then f (x) divides polynomial

of form f (x)g(x) where g(x) is a polynomial of degree less than or equal to n−k, but is divisible

by units of Zp[x], associates of polynomial f1(x) and associates of polynomial f (x).

Possibilities for all polynomial of degree less than or equal to n− k are pn−k+1

We get deg+( f (x)) = (p− 1)+ (p− 1)+ (p− 1)− 1 = 3p− 4, deg−( f (x)) = pn−k+1− 1,

deg+−( f (x)) = (p−1)−1 = p−2.

Hence deg( f (x)) = deg+( f (x))+deg−( f (x))−deg+−( f (x)) = (3p−4)+(pn−k+1−1)−(p−

2) = pn−k+1 +2p−3. �

Now generalization of above result, we have following result

Theorem 10. The degree of vertex which is polynomial of degree 2≤ s≤ k≤ n and decomposed

as product of s irreducible polynomials but exactly two irreducible polynomials are associates

in divisor graph D(Zp[x,n]) is pn−k+1 +(2s−2)p− (2s−1)

Theorem 11. The degree of vertex which is polynomial of degree 3 ≤ k ≤ n and decomposed

as product of three irreducible polynomials which are mutually associates in divisor graph

D(Zp[x,n]) is pn−k+1 +3p−4.

Proof. Let f (x) be a reducible polynomial of degree 3 ≤ k ≤ n and which can expressed as

product of exactly two irreducible associates non constant factors i.e., f (x) = a( f1(x))3 where

f1(x) is irreducible polynomial and a f1(x) where a is units in zp[x], then f (x) divides polyno-

mial of form f (x)g(x) where g(x) is a polynomial of degree less than or equal to n− k, but is

divisible by units of Zp[x], associates of polynomial f1(x) , associates of polynomial ( f1(x))2and

associates of polynomial f (x).

Possibilities for all polynomial of degree less than or equal to n− k are pn−k+1.

We get deg+( f (x)) = (p− 1) + (p− 1) + (p− 1) + (p− 1)− 1 = 4p− 5, deg−( f (x)) =

pn−k+1−1, deg+−( f (x)) = (p−1)−1 = p−2.

Hence deg( f (x)) = deg+( f (x))+deg−( f (x))−deg+−( f (x)) = (4p−5)+(pn−k+1−1)−(p−

2) = pn−k+1 +3p−4. �
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Now we generalize the above result.

Theorem 12. The degree of vertex which is polynomial of degree 1 ≤ s ≤ k ≤ n and decom-

posed as product of s irreducible polynomials which are mutually associates in divisor graph

D(Zp[x,n]) is pn−k+1 + sp− s−1.

5. CONCLUSION

In this paper, we obtained relation of number of monic and non monic polynomials of a

particular degree with its degree as a vertex in its corresponding divisor graph. The polynomial

with fewer number of distinct irreducible factors will have the smaller degree.
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