Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 1, 467-476
https://doi.org/10.28919/jmcs/5195
ISSN: 1927-5307

SOME 4-TOTAL MEAN CORDIAL GRAPHS DERIVED FROM WHEEL

R. PONRAJ ${ }^{1, *}$, S. SUBBULAKSHMI ${ }^{2, \dagger}$, S. SOMASUNDARAM ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. In this paper we investigate the 4-total mean cordial labeling behaviour of helm, closed helm, flower graph, sunflower graph, gear graph, subdivision of wheel, web graph.

Keywords: wheel; helm; flower graph; gear graph; web graph.
2010 AMS Subject Classification: 05C78.

1. Introduction

Graphs in this paper are finite, simple and undirected. k-total mean cordial labeling of graphs have been introduced in [3] and they investigate the 4-total mean cordial labeling behaviour of path, cycle, star, bistar, wheel, subdivision of star, subdivision of bistar, subdivision of comb, subdivision of crown, subdivision of doublecomb, subdivision of jellyfish, subdivision of ladder, subdivision of triangular snake in [3, 4]. In this paper, we investigate the 4-total mean cordial labeling behaviour of helm, closed helm, flower graph, sunflower graph, gear graph, subdivision of wheel, web graph. Terms are not defined here follow from Harary [2] and Gallian [1].

[^0]
2. 4-Total Mean Cordial Graph

Definition 2.1. Let G be a graph. Let $f: V(G) \rightarrow\{0,1, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil . f$ is called k-total mean cordial labeling of G if $\left|t_{m f}(i)-t_{m f}(j)\right| \leq 1$, for all $i, j \in\{0,1, \ldots, k-1\}$, where $t_{m f}(x)$ denotes the total number of vertices and edges labelled with $x, x \in\{0,1, \ldots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3. Preliminaries

Definition 3.1. The graph $W_{n}=C_{n}+K_{1}$ is called a wheel, where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$, $V\left(K_{1}\right)=\{u\}$.

Definition 3.2. The Helm H_{n} is the graph obtained from the wheel W_{n} with $V\left(H_{n}\right)=V\left(W_{n}\right) \cup$ $\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=E\left(W_{n}\right) \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Definition 3.3. Closed $\mathrm{Helm} C H_{n}$ is a graph obtained from the helm H_{n} with vertex set $V\left(\mathrm{CH}_{n}\right)=$ $V\left(H_{n}\right)$ and $E\left(C H_{n}\right)=E\left(H_{n}\right) \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$.

Definition 3.4. A flower graph is the graph obtained from a helm H_{n} by joining each pendent vertices v_{i} to the central vertex u of the helm.

Definition 3.5. The sunflower graph $S F_{n}$ is obtained by taking a wheel $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}, V\left(K_{1}\right)=\{u\}$ and new vertices $v_{1}, v_{2}, \ldots, v_{n}$ where v_{i} is join by the vertices $u_{i} u_{i+1}(\bmod n)$.

Definition 3.6. The web graph $W b_{n}$ is the graph obtained from a closed helm $C H_{n}$ with $V\left(W b_{n}\right)=$ $V\left(C H_{n}\right) \cup\left\{x_{i}: 1 \leq i \leq n\right\}$ and $E\left(W b_{n}\right)=E\left(C H_{n}\right) \cup\left\{v_{i} x_{i}: 1 \leq i \leq n\right\}$.

Notation 1. $[x]$ denote the greatest integer $\leq x$.

4. Main Results

Theorem 4.1. The Helm graph H_{n} is 4-total mean cordial for all values of n.
Proof. Take the vertex set and edge set of H_{n} as in definition 3.2. Clearly, $\left|V\left(H_{n}\right)\right|+\left|E\left(H_{n}\right)\right|=$ $5 n+1$.

Assign the label 2 to the central vertex u.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Now we consider the vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the labels $0,0,2,3$ respectively to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$. Then we assign the label $0,0,2,3$ respectively to the vertices $u_{5}, u_{6}, u_{7}, u_{8}$. We now assign the label $0,0,2,3$ respectively to the vertices $u_{9}, u_{10}, u_{11}, u_{12}$. Continuing in this process until reach the vertex u_{n}. In this case, the vertices $u_{4 r-3}, u_{4 r-2}, u_{4 r-1}, u_{4 r}$ receive the labels $0,0,2,3$. Now we move to the vertices $v_{1}, v_{2}, \ldots, v_{n}$. Assign the labels 0,1 , 2,3 to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$. Now we assign the label $0,1,2,3$ respectively to the vertices $v_{5}, v_{6}, v_{7}, v_{8}$. We now assign the label $0,1,2,3$ respectively to the vertices $v_{9}, v_{10}, v_{11}, v_{12}$. Proceeding like this process until we reach the vertex v_{n}. Clearly, the vertices $v_{4 r-3}, v_{4 r-2}, v_{4 r-1}, v_{4 r}$ receive the labels $0,1,2,3$ respectively.
Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in case 1 . Next we assign the labels 2,0 respectively to the vertices $u_{4 r+1}, v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. As in case 1 , assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in case 1. Now we assign the labels $3,0,0,2$ respectively to the vertices $u_{4 r+1}, u_{4 r+2}, v_{4 r+1}, v_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in case 1 . Finally we assign the labels $3,2,0,1,1,0$ respectively to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}, v_{4 r+1}, v_{4 r+2}, v_{4 r+3}$.

This vertex labeling f is a 4-total mean cordial labeling follows from the Tabel 1

Nature of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$5 r$	$5 r$	$5 r+1$	$5 r$
$n=4 r+1$	$5 r+1$	$5 r+2$	$5 r+2$	$5 r+1$
$n=4 r+2$	$5 r+3$	$5 r+2$	$5 r+3$	$5 r+3$
$n=4 r+3$	$5 r+4$	$5 r+4$	$5 r+4$	$5 r+4$

TABLE 1

Case 5. $n=3$.
A 4-total mean cordial labeling is given in Table 2

n	u	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
$n=3$	2	0	2	3	0	0	2
TABLE 2							

Theorem 4.2. The closed helm CH_{n} is 4-total mean cordial for all values of n.

Proof. Take the vertex set and edge set of $C H_{n}$ as in definition 3.3. Clearly, $\left|V\left(C H_{n}\right)\right|+$ $\left|E\left(C H_{n}\right)\right|=6 n+1$.

Assign the label 0 to the central vertex u.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 1$. Now we consider the vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2 r}$. Then we assign the label 2 to the $2 r$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r}$. We now move to the vertices $v_{1}, v_{2}, \ldots, v_{n}$. Assign the label 1 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Next we assign the label 2 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$. Finally we assign the label 3 to the $2 r$ vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \geq 1$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2} r$. Next we assign the label 2 to the $2 r$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r}$. Now we assign the label 3 to the vertex $u_{4 r+1}$. Next we assign the label 2 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$ and assign the label 0 to the vertex $v_{4 r+1}$. Finally we assign the label 3 to the $2 r$ vertices $v_{2 r+2}, v_{2 r+3}, \ldots, v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$. Let $n=4 r+2, r \geq 1$. Assign the label 0 to the $2 r+1$ vertices $u_{1}, u_{2}, \ldots, u_{2 r+1}$. Next we assign the label 2 to the $2 r+1$ vertices $u_{2 r+2}, u_{2 r+3}, \ldots, u_{4 r+2}$. Now we assign the label 1 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 2 to the $r+1$ vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r+1}$. Finally we assign the label 3 to the $2 r+1$ vertices $v_{2 r+2}, v_{2 r+3}, \ldots, v_{4 r+2}$. Case 4. $n \equiv 3(\bmod 4)$.

Let $n=4 r+3, r \geq 1$. Assign the label 0 to the $2 r+1$ vertices $u_{1}, u_{2}, \ldots, u_{2 r+1}$. Then we assign the label 2 to the $2 r+1$ vertices $u_{2 r+2}, u_{2 r+3}, \ldots, u_{4 r+2}$. Now we assign the label 1 to the vertex $u_{4 r+3}$. Next we assign the label 1 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 2 to the r
vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$. Now we assign the label 3 to the $2 r+2$ vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{4 r+2}$. Finally we assign the label 0 to the vertex $v_{4 r+3}$.

This vertex labeling f is 4-total mean cordial labeling follows from the Tabel 3

Nature of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$6 r$	$6 r+1$	$6 r$	$6 r$
$n=4 r+1$	$6 r+1$	$6 r+2$	$6 r+2$	$6 r+2$
$n=4 r+2$	$6 r+3$	$6 r+3$	$6 r+4$	$6 r+3$
$n=4 r+3$	$6 r+5$	$6 r+5$	$6 r+4$	$6 r+5$
TABLE 3				

Case 5. $n=3$.
A 4-total mean cordial labeling is given in Table 4

Value of n	u	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
$n=3$	0	0	2	1	0	3	3

Theorem 4.3. Flower graph $F L_{n}$ is 4-total mean cordial for all n.

Proof. Take the vertex set and edge set of $F l_{n}$ as in definition 3.4. Note that $\left|V\left(F L_{n}\right)\right|+$ $\left|E\left(F L_{n}\right)\right|=6 n+1$. Assign the label 1 to the central vertex u.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Consider vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2 r}$. Then we assign the label 2 to the r vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{3 r}$. Next we assign the label 3 to the r vertices $u_{3 r+1}, u_{3 r+2}, \ldots, u_{4 r}$. Now we move to the vertices $v_{1}, v_{2}, \ldots, v_{n}$. Assign the label 0 to the $r+1$ vertices $v_{1}, v_{2}, \ldots, v_{r+1}$. Next we assign the label 1 to the $r-1$ vertices $v_{r+2}, v_{r+3}, \ldots, v_{2 r}$. Finally we assign the label 3 to the $2 r$ vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{4 r}$.
Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in case 1 . Next we assign the labels 3,0 respectively to the vertices $u_{4 r+1}, v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in case 1 . Now we assign the labels $3,0,0,0$ respectively to the vertices $u_{4 r+1}, u_{4 r+2}, v_{4 r+1}, v_{4 r+2}$.
Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. As in case 1 , assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$. Finally we assign the labels $3,3,2,0,0,0$ respectively to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}, v_{4 r+1}, v_{4 r+2}, v_{4 r+3}$.

Tabel 5 shows that the vertex labeling f is a 4-total mean cordial labeling

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$6 r+1$	$6 r$	$6 r$	$6 r$
$n=4 r+1$	$6 r+2$	$6 r+1$	$6 r+2$	$6 r+2$
$n=4 r+2$	$6 r+3$	$6 r+3$	$6 r+4$	$6 r+3$
$n=4 r+3$	$6 r+4$	$6 r+5$	$6 r+5$	$6 r+5$
TABLE 5				

Case 5. $n=3$.
A 4-total mean cordial labeling is given in Table 6

n	u	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
$n=3$	2	0	0	3	0	1	3

Theorem 4.4. The sunflower graph $S F_{n}$ is 4-total mean cordial, for all n.
Proof. Take the vertex set and edge set of $S F_{n}$ as in definition 3.5. Clearly that $\left|V\left(S F_{n}\right)\right|+$ $\left|E\left(S F_{n}\right)\right|=6 n+1$. Assign the label 0 to the central vertex u.
Case 1. n is even.
We consider the vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the label 0 to the $\frac{n}{2}$ vertices $u_{1}, u_{2}, \ldots, u_{n}$. Then we assign the label 1 to the $\frac{n}{2}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \ldots, u_{n}$. We now move to the vertices $v_{1}, v_{2}, \ldots, v_{n}$. Next assign the label 2 to the $\frac{n-2}{2}$ vertices $v_{1}, v_{2}, \ldots, v_{\frac{n-2}{2}}$. Now we assign the label 3 to the $\frac{n+2}{2}$ vertices $v_{\frac{n}{2}}, v_{\frac{n+2}{2}}, \ldots, v_{n}$.

Case 2. n is odd.
Assign the label 0 to the $\frac{n-1}{2}$ vertices $u_{1}, u_{2}, \ldots, u_{\frac{n-1}{2}}$. Next we assign the label 2 to the $\frac{n+1}{2}$ vertices $u_{\frac{n+1}{2}}, u_{\frac{n+3}{2}}, \ldots, u_{n}$. Assign the label 2 to the $\frac{n-3}{2}$ vertices $v_{1}, v_{2}, \ldots, v_{\frac{n-3}{2}}$. We now assign the label 3 to the $\frac{n+1}{2}$ vertices $v_{\frac{n-1}{2}}, v_{\frac{n+1}{2}}, \ldots, v_{n-1}$. Finally we assign the label 0 to the vertex v_{n}.

This vertex labeling f is 4-total mean cordial labeling follows from the Tabel 7

Nature of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$	
n is even	$\frac{3 n}{2}$	$\frac{3 n}{2}$	$\frac{3 n}{2}$	$\frac{3 n+2}{2}$	
n is odd	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$	
TABLE 7					

Theorem 4.5. The Gear graph G_{n} is 4-total mean cordial for every n.

Proof. Take the vertex set and edge set of the wheel W_{n} as in definition 3.1. Let v_{i} be the vertex which subdivide the edge $u_{i} u_{i+1}(1 \leq i \leq n-1)$ and v_{n} be the vertex which subdivide the edge $u_{n} u_{1}$. Clearly $\left|V\left(G_{n}\right)\right|+\left|E\left(G_{n}\right)\right|=5 n+1$.

Assign the label 2 to the central vertex u.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Consider the rim vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2 r}$. Then we assign the label 1 to the vertex $u_{2 r+1}$. Now we assign the label 2 to the $r-1$ vertices $u_{2 r+2}, u_{2 r+3}, \ldots, u_{3 r}$. We now assign the label 3 to the r vertices $u_{3 r+1}, u_{3 r+2}, \ldots, u_{4 r}$. Now we move to the vertices $v_{1}, v_{2}, \ldots, v_{n}$. Assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Next we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$. We now assign the label 2 to the r vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{3 r}$. Finally we assign the label 3 to the r vertices $v_{3 r+1}, v_{3 r+2}, \ldots, v_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. As in the Case 1 , assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$. Finally assign the labels 0,3 to the vertices $u_{4 r+1}, v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r+1)$ as in Case 2 . Next assign the labels 2,0 to the vertices $u_{4 r+2}, v_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Finally we assign the labels $3,2,0,0$ to the vertices $u_{4 r+2}, u_{4 r+3}, v_{4 r+2}, v_{4 r+3}$.

The Table 8, establish that this vertex labeling f is a 4-total mean cordial labeling of gear G_{n}.

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$5 r$	$5 r+1$	$5 r$	$5 r$
$n=4 r+1$	$5 r+1$	$5 r+2$	$5 r+2$	$5 r+1$
$n=4 r+2$	$5 r+3$	$5 r+3$	$5 r+3$	$5 r+2$
$n=4 r+3$	$5 r+4$	$5 r+4$	$5 r+4$	$5 r+4$
TABLE 8				

Case 5. $n=3$.
A 4-total mean cordial labeling for this case is given in Table 9

Value n	u	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
$n=3$	2	0	1	3	0	0	3
TABLE 9							

Theorem 4.6. The subdivision of the wheel $W_{n}, S\left(W_{n}\right)$ is 4-total mean cordial for all values of n.

Proof. Take the vertex set and edge set of the wheel W_{n} as in definition 3.1. Let x_{i} be the vertex which subdivide the edge $u u_{i}(1 \leq i \leq n)$ and y_{i} be the vertex which subdivide the edge $u_{i} u_{i+1}(1 \leq i \leq n-1)$ and y_{n} be the vertex which subdivide the edge $u_{n} u_{1}$. Clearly, $\left|V\left(W_{n}\right)\right|+$ $\left|E\left(W_{n}\right)\right|=7 n+1$.

Assign the label 1 to the central vertex u. Now we consider the vertices $x_{1}, x_{2}, \ldots, x_{n}$. Assign the label 0 to the n vertices $x_{1}, x_{2}, \ldots, x_{n}$.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Consider the vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the labels 0 to the r vertices
$u_{1}, u_{2}, \ldots, u_{r}$. Next we assign the label 2 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2 r}$. We now assign the label 3 to the $2 r$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r}$. Now we consider the vertices $y_{1}, y_{2}, \ldots, y_{n}$. Assign the label 3 to the r vertices $y_{1}, y_{2}, \ldots, y_{r}$. Now we assign the label 0 to the r vertices $y_{r+1}, y_{r+2}, \ldots, y_{2 r}$. Then we now assign the label 2 to the $2 r-1$ vertices $y_{2 r+1}, y_{2 r+2}, \ldots, y_{4 r-1}$. Finally we assign the label 1 to the vertex $y_{4 r}$.
Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Assign the labels 0 to the r vertices $u_{1}, u_{2}, \ldots, u_{r}$. Next we assign the label 2 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2 r}$. We now assign the label 3 to the $2 r+1$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r+1}$. Next we assign the label 3 to the r vertices $y_{1}, y_{2}, \ldots, y_{r}$. Now we assign the label 0 to the $r+1$ vertices $y_{r+1}, y_{r+2}, \ldots, y_{2 r+1}$. Then we now assign the label 2 to the $2 r-2$ vertices $y_{2 r+2}, y_{2 r+3}, \ldots, y_{4 r-1}$. Now we assign the label 3 to the vertex $y_{4 r}$. Finally we assign the label 2 to the vertex $y_{4 r+1}$.
Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. We now assign the label 0 to the r vertices $u_{1}, u_{2}, \ldots, u_{r}$. Next we assign the label 2 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2 r}$. We now assign the label 3 to the $2 r+2$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r+2}$. Assign the label 3 to the r vertices $y_{1}, y_{2}, \ldots, y_{r}$. Now we assign the label 0 to the $r+1$ vertices $y_{r+1}, y_{r+2}, \ldots, y_{2 r+1}$. Then we now assign the label 2 to the $2 r-1$ vertices $y_{2 r+2}, y_{2 r+3}, \ldots, y_{4 r}$. Finally we assign the labels 3,1 to the vertices $y_{4 r+1}, y_{4 r+2}$.
Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. Assign the labels 0 to the r vertices $u_{1}, u_{2}, \ldots, u_{r}$. Next we assign the label 2 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2 r}$. We now assign the label 3 to the $2 r+3$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r+3}$. Assign the labels 3 to the r vertices $y_{1}, y_{2}, \ldots, y_{r}$. Now we assign the label 0 to the $r+2$ vertices $y_{r+1}, y_{r+2}, \ldots, y_{2 r+2}$. Then we now assign the label 2 to the $2 r-2$ vertices $y_{2 r+3}, y_{2 r+4}, \ldots, y_{4 r}$. Finally we assign the labels $3,3,1$ to the vertices $y_{4 r+1}, y_{4 r+2}, y_{4 r+3}$.

This vertex labeling f is a 4-total mean cordial labeling follows from the Tabel 10
Case 5. $n=3$.
A 4-total mean cordial labeling for this case is given in Table 11

Theorem 4.7. The web graph $W b_{n}$ is 4-total mean cordial, for all n.

Nature of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$7 r$	$7 r$	$7 r$	$7 r+1$
$n=4 r+1$	$7 r+2$	$7 r+2$	$7 r+2$	$7 r+2$
$n=4 r+2$	$7 r+3$	$7 r+4$	$7 r+4$	$7 r+4$
$n=4 r+3$	$7 r+5$	$7 r+5$	$7 r+6$	$7 r+6$

Value of n	u	u_{1}	u_{2}	u_{3}	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}
$n=3$	1	0	3	3	0	0	0	2	2	2

Proof. Take the vertex set and edge set of the web graph $W b_{n}$ as in definition 3.6. Clearly that $\left|V\left(W b_{n}\right)\right|+\left|E\left(W b_{n}\right)\right|=8 n+1$.

Assign the label 2 to the central vertex u.
We now consider the vertices $u_{1}, u_{2}, \ldots, u_{n}$. Assign the label 0 to the n vertices $u_{1}, u_{2}, \ldots, u_{n}$. Then we consider the vertices $v_{1}, v_{2}, \ldots, v_{n}$. We now assign the label 2 to the n vertices $v_{1}, v_{2}, \ldots, v_{n}$. We now move to the vertices $x_{1}, x_{2}, \ldots, x_{n}$. Finally we assign the label 3 to the n vertices $x_{1}, x_{2}, \ldots, x_{n}$. Clearly $t_{m f}(0)=t_{m f}(1)=2 n, t_{m f}(2)=2 n+1$ and $t_{m f}(3)=2 n$.

CONFLICT OF Interests

The author(s) declare that there is no conflict of interests.

References

[1] J.A. Gallian, A Dynamic survey of graph labeling, Electron. J. Comb. 19 (2016), \#Ds6.
[2] F. Harary, Graph theory, Addision Wesley, New Delhi (1969).
[3] R. Ponraj, S. Subbulakshmi, S. Somasundaram, k-Total mean cordial graphs, J. Math. Comput. Sci. 10(5) (2020), 1697-1711.
[4] R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-Total mean cordial labeling in subdivision graphs, J. Algorithms Comput. 52 (2020), 1-11.

[^0]: *Corresponding author
 E-mail address: ponrajmaths@gmail.com
 ${ }^{\dagger}$ Research Scholar, Reg. No: 19124012092011
 Received November 10, 2020

