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Abstract. Let G = (V,E) be a graph. A subset S of V is called a neighborhood set of G if union of induced

subgraph of N[s] is isomorphic to G, where union is taken over all s in S. A defensive alliance is a non-empty

subset S of V satisfying the condition that every v ∈ S has at most one more neighbor in V − S than it has in S.

The minimum cardinality of any defensive alliance of G is called the alliance number of G. Further, a subset of

V which is both a neighborhood set of G as well as a defensive alliance of G is called a neighborhood alliance

set, or simply an na-set. The minimum cardinality of an na-set is called neighborhood alliance number of G. The

minimum cardinality (in possible cases) of various types of na-sets of join of a graph G with K1, specifically when

G is Kn−1, Kn, Cn and Pn are determined in this article.
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1. INTRODUCTION

The topology of a network of multiprocessor, or local area network is usually modeled by a

graph in which vertices represent nodes (processors) while undirected edges stand for ‘links’

or other types of connections. In the design of such networks, there are a number of features

that must be taken into account. The most common ones, however, seem to be limitations on

the vertex degrees and on the diameter. The network interpretation of these two parameters is

obvious. The degree of a vertex is the number of the connections attached to a node, while

the diameter indicates the largest number of links that must be traversed in order to transmit a

message between any two nodes.

The dominating set and neighborhood sets play an important role in computer and commu-

nication networks to route the information between the nodes. The network models considered

in this article are such that one node (computer/server) is directly connected to all the other

nodes(computers).

P. Kristiansen et al. introduced the term alliances in a graph in [8] and more number of

variants of alliances are studied in [5], [3], [7], [9], [13], [6]. One can find a large amount

of related work being done in various fields of alliances in [2]. The neighborhood number in a

graph and its properties was first defined and studied in [11] by E. Sampathkumar and Prabha S.

Neeralagi. The concept of neighborhood resolving sets was introduced by B. Sooryanarayana

and studied varieties of neighborhood resolving sets of paths and cycles in [15]. Similar work

for the rational resolving sets is found in [10]. In [4], global defensive alliances were introduced

and studied. Motivated by these, the concept of neighborhood alliance set was introduced in [14]

by B.Sooryanarayana and studied the various conditioned neighborhood alliance sets for path

and cycle. In this article, the minimum cardinality of different types of neighborhood alliance

sets for certain graphs, in particular for Complete graphs, Wheel graphs, Star graphs and Fan

graphs are determined.

All the graphs considered here are simple, finite, undirected and connected. We use the

standard terminology, the terms not defined here may be found in [1]. Let G(V,E) be a graph

and v be a vertex of G. Let N(v) be the set of vertices adjacent to v in G and the cardinality of

N(v) is called the degree of the vertex v denoted as deg(v). Let N[v] = N(v)∪{v}. The union
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of two graphs G1 and G2, denoted as G1∪G2, is a graph G such that V (G) = V (G1)∪V (G2)

and E(G) = E(G1)∪E(G2). For two vertex disjoint graphs G1 and G2, the join of G1 and

G2, denoted as G1 +G2 , is a graph G such that V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪

E(G2)∪{xy : x ∈V (G1),y ∈V (G2)}.

Definition 1.1. [11] A subset S of the vertex set of G is called an neighborhood set (n-set) of

G whenever G ∼=
⋃

v∈S〈N[v]〉. Further, the minimum cardinality of an n-set of G is called the

neighborhood number of G and is denoted by ln(G).

Clearly, for every graph G,

(1) 1≤ ln(G)≤ |V (G)|−1

Remark 1.2. In any graph G = (V,E), if deg(v) = |V |−1, then every subset S of V containing

v is always an n-set.

Definition 1.3. [9] A defensive alliance or defensive alliance set (a-set) is a non-empty set S⊆V

such that for every v ∈ S, |N[v]∩S| ≥ |N(v)∩ (V −S)|.

The minimum cardinality of any defensive alliance of G is called the alliance number of G

and is denoted as la(G).

Clearly, for any graph G,

(2) 1≤ la(G)≤ |V (G)|−1

A subset S⊆V which is an neighborhood set of G and also a defensive alliance in G is called

a neighborhood alliance set or simply an na-set [14]. A neighborhood alliance set (na-set) is

called a minimal neighborhood alliance set if no proper subsets of it is an na-set. The minimum

cardinality of a na-set is called the neighborhood alliance number of G, denoted by lna(G).

The vertices of a defensive alliance set S are considered as defenders and the vertices which

are not in S are considered to be attackers. A global defensive alliance [4] S is a defensive

alliance, which is also a dominating set. In a global defensive alliance, every vertex of G is
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either an attacker or a defender. Every n-set is a dominating set. Thus, each na-set is a global

defensive alliance.

The main advantage of the neighborhood set over dominating set is that it covers all vertices,

as well as edges. Thus, na-set is defined as an extension of global defensive alliances.

Definition 1.4. For an na-set S of G,

(1) if S is also an n-set then S is an n?a-set and if S is not an n-set then S is an Na-set.

(2) if S is also an a-set then S is an na?-set and if S is not an a-set then S is an nA-set.

(3) if S is both an a-set as well as an n-set then S is an n?a?-set.

(4) if S is also an n-set but not an a-set then S is an n?A-set.

(5) if S is also an a-set but not an n-set then S is an Na?-set.

(6) if S is neither an n-set nor an a-set then S is an NA-set.

The minimum cardinality of a minimal n?a-set, a minimal Na-set, a minimal na?-set, a minimal

nA-set, a minimal n?a?-set, a minimal n?A-set, a minimal Na?-set and a minimal NA-set are

denoted by ln?a(G), lNa(G), lna?(G), lnA(G), ln?a?(G), ln?A(G), lNa?(G) and lNA(G) respectively.

Definition 1.5. Let S be a subset of V such that S and S both are not an a-sets, then S is an

A?-set. Let S be an A?-set. Further,

(1) if S is an n-set then S is an nA?-set.

(2) if S and S both are n-sets then S is an n?A?-set.

(3) if S is an n-set and S is not an n-set then S is an NA?-set.

(4) if S and S both are not an n-sets then S is an N?A?-set.

The minimum cardinality of a minimal nA?-set, a minimal n?A?-set, a minimal NA?-set and

a minimal N?A?-set are denoted by lnA?(G), ln?A?(G), lNA?(G) and lN?A?(G) respectively.

Definition 1.6. Let S be a subset of V such that S and S both are not an n-sets, then S is an

N?-set. Let S be an N?-set. Further,

(1) if S is an a-set then S is an N?a-set.

(2) if S and S both are a-sets then S is an N?a?-set.

(3) if S is an a-set and S is not an a-set then S is an N?A-set.
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The minimum cardinality of a minimal N?a-set, a minimal N?a?-set and a minimal N?A-set are

denoted by lN?a(G), lN?a?(G) and lN?A(G) respectively.

Remark 1.7. If S is a defensive alliance of the graph G, and v ∈ S, then at least bdeg(v)
2 c

neighbors of v should be in S.

The following results are recalled for immediate reference.

Theorem 1.8 ([8]). For any graph G of order n;

(i) la(G) = 1 if and only if there exists a pendant vertex v in G.

(ii) la(G) = 2 if and only if δ (G) ≥ 2 and G has two adjacent vertices of degree at most

three.

(iii) la(G) = 3 if and only if la(G) 6= 1, la(G) 6= 2 and G has an induced subgraph isomor-

phic to either (i) P3, with vertices, in order, u,v and w, where deg(u), deg(w) ≤ 3 and

deg(v)≤ 5 or (ii) isomorphic to K3, each vertex of which has degree at most 5.

Corollary 1.9 ([8]). For any cycle Ck and any wheel W1,k with k ≥ 3, a(Ck) = a(W1,k) = 2.

Theorem 1.10 ([8]). For the complete graph Kk on k vertices, a(Kk) = d k
2e.

Theorem 1.11 ([11]). For a path Pk on k vertices with k ≥ 2, ln(Pk) = b k
2c.

Theorem 1.12 ([11]). For a cycle Ck of length k ≥ 4, ln(Ck) = d k
2e.

Theorem 1.13 ([12]). A set S of vertices of a graph G is an n-set if and only if every edge of

〈V (G)−S〉 belongs to a triangle one of whose vertices belongs to S.

Corollary 1.14. A set S is an n-set of a triangular free graph G if and only if S is totally

disconnected.

Theorem 1.15 ([12]). For the complete graph Kk on k vertices, ln(Kk) = 1.

Remark 1.16. If S is a defensive alliance and S is totally disconnected, then by the above

Theorem 1.13 it is clear that S is an na-set.

Lemma 1.17 ([14]). For any two properties p,q of a graph G, lpq ≥max{lp, lq}.
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Throughout this article, we have considered G+K1 particularly when G∼= Kn−1,Cn,Kn and

Pn with V (K1) = x. Therefore there exists a full degree vertex x in Kk, W1,k, Sk and F1,k respec-

tively. This indicates that it is not possible to have a non-empty set S such that both S and S are

not n-sets(since vertex x may belong to either S or S and in either of the cases any one set will

be an n-set by Remark 1.2). Hence there is no N?-set. Thus we conclude:

Remark 1.18. For any integer k≥ 3, lN?a(W1,k), lN?A(W1,k), lN?a?(W1,k) and lN?A?(W1,k) do not

exist. Also, lN?a(G1), lN?a?(G1), lN?A(G1) and lN?A?(G1) do not exist for G1 ∼= Kk, Sk, F1,k,

where k is an integer such that k ≥ 1.

2. NEIGHBORHOOD ALLIANCE SETS OF A COMPLETE GRAPH

Lemma 2.1. For any positive integer k, every p-element subset of vertices of a complete graph

Kk is an na-set if and only if p≥ d k
2e.

Proof. Let p ∈ Z+ and S be an p-element subset of vertices of a complete graph Kk. Then,

for each vi ∈ S, |N[vi]∩ S| = p ≥ |N[vi]∩ S| = k− p if and only if p ≥ d k
2e. Therefore, by

Definition 1.3, S is an a-set if and only if p ≥ d k
2e. Also S contains a full degree vertex and

hence, by Remark 1.2, S is always an n-set of G. Hence the lemma. �

Theorem 2.2. For any integer k ≥ 1, lna(Kk) = d k
2e.

Proof. Follows directly by Lemma 2.1 as lna = min{|S| : S is an na-set}= d k
2e. �

Theorem 2.3. For any integer k ≥ 1, lna?(K2k) = k and lna?(K2k−1) does not exist.

Proof. Let S be an na?-set of Kn. Then, S is an na-set and hence by Lemma 2.1, |S| ≥ dn
2e. Also

S is an a-set (as S being an a?-set), and hence by Theorem 1.10, |S| = n−dn
2e ≥ d

n
2e. This is

possible only if n = 2k for some k ∈ Z+, |S| = |S| = k. Hence lna?(K2k) = k and lna?(K2k−1)

does not exist. �

Theorem 2.4. For any integer k ≥ 1, lnA(Kk) = dk+1
2 e.

Proof. Let S be an nA-set. Then, S is an na-set and S is not an a-set. Hence by Lemma 2.1, S

is a subset of V (G) with |S| ≥ d k
2e and the equality holds only when n is odd. Hence lnA(Kk) =

min{|S| : S is an nA-set}= dk+1
2 e. �
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From Theorem 2.4 and Remark 1.2 it follows that every nA-set of Kk is always an n?A-set

except for the cases k = 1,2. When k = 1 or 2, an n?A-set shall contain at least two vertices

(as being an A-set) and hence its complement is not an n-set (being an empty set). Thus we

conclude:

Theorem 2.5. For any integer k≥ 1, ln?A(Kk) = dk+1
2 e whenever k 6= 1,2 and ln?A(Kk) does not

exist if k = 1,2.

Let S be an A?-set of Kk. Then, by the proof of Lemma 2.1, it follows that |S| < d k
2e and

|S| < d k
2e. But then, k−b k

2c ≤ |S| < d
k
2e ⇒ k < d k

2e+ b
k
2c = k, a contradiction. Hence we

conclude:

Theorem 2.6. For any integer k ≥ 1, lnA?(Kk) and ln?A?(Kk) do not exist.

Let S be an na-set. So, by Lemma 2.1, |S| ≥ d k
2e ≥ 1 and hence S is non-empty for all k ≥ 2.

Thus, S has a full degree vertex. Therefore, by Remark 1.2, S is an n set. This shows that every

na-set is an n?a-set for all k ≥ 2. Further, when k = 1, S = /0 which is not an n-set. Thus we

conclude:

Theorem 2.7. For any integer k ≥ 2, ln?a(Kk) = d k
2e and ln?a(K1) does not exist.

Similar argument of n?a?-set S with Theorem 2.3 yields the following;

Theorem 2.8. For any integer k ≥ 1, ln?a?(K2k) = k and ln?a?(K2k−1) does not exist.

If S is an N-set of Kk, then by Remark 1.2, S = /0 and hence we have the following;

Theorem 2.9. For any integer k≥ 1, lNa(Kk) = lNA(Kk) = k. Further, lNa?(Kk) and lNA?(Kk) do

not exist.

3. NEIGHBORHOOD ALLIANCE SETS OF A WHEEL GRAPH

Throughout this section, let v be the central vertex and v1,v2, . . . ,vk be the k rim vertices

adjacent to v of a wheel W1,k in order.

Theorem 3.1. For any integer k ≥ 3, lna(W1,k) = 1+ b k
2c.
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Proof. Let S be an na-set of W1,k.

Case 1: v ∈ S.

Since S is an a-set, by Remark 1.7, at least bdeg(v)
2 c neighbors of v should be in S and hence

|S| ≥ 1+ bdeg(v)
2 c ≥ 1+ b k

2c.

Case 2: v /∈ S.

Define Si = {vi−1,vi,vi+1} and let Ti = S∩Si, for i = 1,2, . . . ,k, where vk+1 = v1.

Claim 1: |Ti| ≥ 2 for each i,1≤ i≤ k.

By Theorem 1.13, every edge of 〈V (G)−S〉 belongs to a triangle one of whose vertices be-

longs to S. Hence {vi−1,vi+1}⊆ Ti or vi ∈ Ti. In the second case, as deg(vi) = 3, by Remark 1.7,

at least one neighbor of vi in {vi−1,vi+1} to be in S. Hence the Claim 1 holds.

By Claim 1, it follows that for every three consecutive rim vertices of W1,k at least two of

them have to be in S. Hence |S| ≥ d2k
3 e.

Therefore, by the above cases, |S| ≥ min{1+ b k
2c,d

2k
3 e} = 1+ b k

2c. Hence lna(W1,k) ≥ 1+

b k
2c.

Now to prove the reverse inequality, consider the set S = {v,v1,v2,v3, . . . ,vb k
2c
}. The set S is

an n-set as v ∈ S (by Remark 1.2).

Also for every vertex u∈ S, |N[u]∩S| ≥ 3 > 1≥ |N(u)∩S| and hence S is also an a-set. Thus,

S is an na-set implies that lna(W1,k)≤ |S|= 1+ b k
2c. Hence the theorem. �

Theorem 3.2. For any integer k ≥ 3, lna?(W1,k) = 1+ b k
2c.

Proof. Let S be an na?-set. Then, by Theorem 3.1, lna?(W1,k) ≥ 1+ b k
2c. On the other hand,

for the na-set S = {v,v1,v2, . . . ,vb k
2c
} considered in the proof of Theorem 3.1, its complement is

S = {vb k
2 c+1,vb k

2 c+2, . . . ,vk}. For every vertex vi ∈ S, |N[vi]∩S| ≥ 2≥ |N(vi)∩S| implies that S

is an a-set. Thus, S is an na?-set. Therefore, lna?(W1,k)≤ |S|= 1+b k
2c. Hence the theorem. �

Theorem 3.3. For any integer k ≥ 4, lnA(W1,k) = 1+ b k
2c and lnA(W1,3) = 3.

Proof. For k = 3, the result follows by Theorem 2.4.

Let k≥ 4 and S be an nA-set of W1,k. Then, by Theorem 3.1 it follows that lnA(W1,k)≥ 1+b k
2c.

Now to prove the reverse inequality, consider the set S = {v,v1,v3,v5, . . . ,vk−1} for k even and

S= {v,v1,v3,v5, . . . ,vk−2} for k odd. Clearly, S is an n-set (as v∈ S and by Remark 1.2). Further,
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the set S is an a-set because for each u ∈ S, |N[u]∩S| ≥ 2≥ |N(u)∩S|. And the set S is not an

a-set because v2 ∈ S and 1 = |N[v2]∩S| 6≥ |N(v2)∩S|= 3. Therefore, the set S is an nA-set and

hence lnA(W1,k)≤ |S|= 1+ b k
2c. �

Theorem 3.4. For any integer k ≥ 6, lnA?(W1,k) = 3.

Proof. Let S be an nA∗-set of W1,k. If |S| ≤ 2, then v ∈ S (by Theorem 1.13 as k ≥ 6 and S is an

n-set). Then, we observe that |N[v]∩S| ≥ k−1 > 2≥ |N(v)∩S| and |N[vi]∩S| ≥ 2≥ |N(vi)∩S|

for each vi ∈ S, implies that S is an a-set, a contradiction. So, |S| ≥ 3. Thus, lnA?(W1,k)≥ 3.

To prove the reverse inequality, consider the set S = {v,vi,vi+2} for 1≤ i≤ k−2. This set S

is an n-set (since v ∈ S and by Remark 1.2) and also not an a-set (since |N[v]∩S|= 3 6≥ k−2 =

|N(v)∩S|). Further, for the vertex vi+1 ∈ S, |N[vi+1]∩S|= 1 6≥ 3 = |N(vi+1)∩S|. This proves

that S is an nA?-set. So, lnA?(W1,k)≤ |S|= 3. Hence the theorem. �

Lemma 3.5. For any positive integer k≥ 3, if p≥ k−1 then every p-element subset of vertices

of a wheel graph W1,k is an a-set.

Proof. Let S be a p-element subset of vertices of W1,k. If p = k or k+1, then the result follows

by Definition 1.3 as |S| ≤ 2. Now for the case p = k−1, we have for every w ∈ S, |N[w]∩S| ≥

2≥ |N(w)∩S| and hence S is an a-set. �

Remark 3.6. For any integer k, 3≤ k ≤ 5, lnA?(W1,k) does not exist.

Theorem 3.7. For any integer k ≥ 4, lNa(W1,k) = 1+ b k
2c.

Proof. Let S be an Na-set. Then, S is an na-set and S is not an n-set. Hence from Theorem 3.1,

it follows that lNa(W1,k)≥ 1+ b k
2c.

On the other hand, for the na-set S = {v,v1,v2, . . . ,vb k
2 c
} considered in the proof of Theo-

rem 3.1, its complement is not an n-set (since v,v1,v2 ∈ S, the edge v1v2 /∈ E(
⋃

x∈S〈N[x]〉)).

Thus, S is an Na-set. Hence lNa(W1,k)≤ |S|= 1+ b k
2c. Therefore, lNa(W1,k) = 1+ b k

2c. �

Theorem 3.8. For any integer k ≥ 4, lNa?(W1,k) = 1+ b k
2c.

Proof. Let S be an Na?-set. Then, S is an Na-set and S is also an a-set. Hence from Theorem 3.7,

it follows that lNa?(W1,k)≥ 1+ b k
2c.
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On the other hand, for the Na-set S = {v,v1,v2, . . . ,vb k
2c
} considered in the proof of Theo-

rem 3.7, its complement is S= {vb k
2 c+1,vb k

2 c+2, . . . ,vk}. For every vertex vi ∈ S, |N[vi]∩S| ≥ 2≥

|N(vi)∩S| implies that S is an a-set. Therefore, S is an Na?-set. Thus, lNa?(W1,k)≤ |S|= 1+b k
2c.

Hence lNa?(W1,k) = 1+ b k
2c. �

Theorem 3.9. For any integer k ≥ 4, lNA(W1,k) =

 2+ b k
2c for k = 4,5.

1+ b k
2c for k ≥ 6.

Proof. Let S be an NA-set of W1,k. Then, S is an na-set and S is neither an n-set nor an a-set.

So, v ∈ S and |S| ≥ 1+ b k
2c for any integer k ≥ 4 (by Theorem 3.1).

For k = 4, consider S = {v,v1,v2,v3}, which is an n-set (since v ∈ S and by Remark 1.2)

and also an a-set (since for each vertex vi ∈ S, |N[vi]∩ S| ≥ 3 > 1 = |N(vi)∩ S|). Moreover,

S = {v4} is neither an n-set nor an a-set. Hence lNA(W1,4)≤ |S|= 4 = 2+b k
2c. This proves that

lNA(W1,k) = 2+ b k
2c.

For k = 5, consider the set S = {v,v1,v3,v4} then S = {v2,v5}. Then S is an n-set (since v ∈ S

and by Remark 1.2) and an a-set (since for every vertex x ∈ S, |N[x]∩S| ≥ 2 > 1≥ |N(x)∩S).

Also S is not an a-set (since v2 has no neighbors in S ) and S is not an n-set(since an edge

v3v4 /∈ E(
⋃

x∈S < N[x] >)). Therefore, S is an NA-set. Hence lNA(W1,k) ≤ |S| = 4 = 2+ b k
2c.

This proves that lNA(W1,k) = 2+ b k
2c.

For k = 6,7, consider the set S = {v,v1,v3,v4}. Then, S is an n-set (since v ∈ S and by

Remark 1.2) and an a-set(since |N[v]∩ S| = 4 ≥ |N(v)∩ S| and for other rim vertex x ∈ S,

|N[x]∩S| ≥ 2≥ |N(x)∩S|). Now S is not an a-set (since v2 has no neighbors in S) and S is not

an n-set(since the edge v3v4 /∈ E(
⋃

x∈S〈N[x]〉)). Therefore, S is an NA-set. Hence lNA(W1,k) ≤

|S|= 4 = 1+ b k
2c. This proves that lNA(W1,k) = 1+ b k

2c.

For k ≥ 8, consider the set S = {v,v1,v3,v5,v6,v8, . . . ,vk−4,vk−2} for k even and

S = {v,v1,v3,v5,v6,v8, . . . ,vk−5,vk−3} for k odd. Then, S is an n-set (since v ∈ S and by Re-

mark 1.2) and an a-set (since |N[v]∩ S| = 1+ b k
2c = |N(v)∩ S| and for other rim vertex x ∈ S,

|N[x]∩S| ≥ 2≥ |N(x)∩S|). Also S is not an a-set (since v2 has no neighbors in S) and S is not

an n-set (since the edge v5v6 /∈ E(
⋃

x∈S〈N[x]〉)). Therefore, S is an NA-set. Hence |S| ≤ 1+b k
2c.

This proves that lNA(W1,k) = 1+ b k
2c.

Hence the theorem. �
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Theorem 3.10. For any integer k ≥ 8, lNA?(W1,k) = 4.

Proof. Let S be an NA?-set. Then, S is an n-set and S is not an n-set. So, v∈ S (else if v∈ S, then

S is an n-set by Remark 1.2). Also both S and S are not a-sets. Now S is an N-set is possible

if 〈S〉 contains a triangle vvivi+1 for i = 1,2, ...,k, where vk+1 = v1 as its subgraph, such that

the edge vivi+1 /∈ E(
⋃

x∈S〈N[x]〉)). Also S is an A?-set, hence along with the vertices v,vi,vi+1 it

must also contain at least one rim vertex say vi+3 which is not adjacent to vi and vi+1 such that

vi+2 is not defendable in S. Also 4 = |N[v]∩S|< |N(v)∩S|= k−3 which indicates S is not an

a-set. Therefore, S contains at least four vertices. This proves that |S| ≥ 4.

To prove the reverse inequality, consider the set S = {v,v1,v2,v4}. Then, S is an n-set (since

v ∈ S and by Remark 1.2) and S is not an n-set (since the edge v1v2 /∈ E(
⋃

x∈S〈N[x]〉)). Also

4 = |N[v]∩S|< |N(v)∩S|= k−1 and hence S is not an a-set. Further, there exists a vertex v3

in S such that |N[v3]∩S|= 1 < 3 = |N(v3)∩S| which implies that S is not an a-set. This proves

that S is an NA?-set. Therefore, lNA?(W1,k)≤ |S|= 4. Hence lNA?(W1,k) = 4. �

Remark 3.11. For k = 3, as W1,3 ∼= K4, every vertex of W1,3 is a full degree vertex and hence

by Remark 1.2 every non-empty set of vertices of W1,3 is an n-set. Therefore, there is no N-set

for W1,3. Hence lNa(W1,k), lNa?(W1,k), lNA(W1,k) and lNA?(W1,k) do not exist.

Remark 3.12. For any integer k, 4≤ k ≤ 7, lNA?(W1,k) does not exist.

Proof. Let S be an NA?-set. Then, S is an n-set and S is not an n-set. So, v ∈ S (else if v ∈ S,

then S is an n-set by Remark 1.2). Also both S and S are not an a-sets. By Lemma 3.5, any p-

element subset of vertices of G is an a-set if p≥ k−1. Hence 1≤ |S| ≤ k−2. Further, if |S|= 1

then |S| = k and if |S| = 2 then |S| = k− 1, this implies that S is an a-set(by Lemma 3.5),a

contradiction for S being an A?-set. Hence |S| ≥ 3. Therefore, 3 ≤ |S| ≤ k− 2. This clearly

proves that lNA?(W1,k) does not exist for k = 4. Now let us consider the following cases.

Case 1: |S|= 3 for k = 5,6,7.

Then the possible case for set S is either S = {v,vi,vi+1} or S = {v,vi,vi+2} for 1≤ i≤ k with

vk+1 = v1 and vk+2 = v2. If S = {v,vi,vi+1} then S contains k− 2 rim vertices of W1,k. Now

for each vertex w ∈ S, |N[w]∩ S| ≥ 2 ≥ |N(w)∩ S| and hence S is an a-set, a contradiction for

S being an A?-set. If S = {v,vi,vi+2} then S contains k−2 rim vertices of W1,k. Now this set S
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is an n-set(since by Theorem 1.11 every edge of 〈V (G)−S〉 belongs to a triangle one of whose

vertices belongs to S), a contradiction for S being an N-set. This proves that there is no NA?-set

S with |S|= 3.

Case 2:|S|= 4 for k = 6,7.

In this case S contains the vertex v and any three rim vertices of W1,k. Now |N[v]∩S|= 4≥

|N(v)∩S| and for any rim vertex w ∈ S, |N[w]∩S| ≥ 2 ≥ |N(w)∩S|, therefore S is an a-set, a

contradiction for S being an A?-set.

Case 3: |S|= 5 for k = 7.

In this case S contains the vertex v and any four rim vertices of W1,k. Now |N[v]∩ S| = 5 >

3 = |N(v)∩S| and for any rim vertex w ∈ S, |N[w]∩S| ≥ 2≥ |N(w)∩S|, therefore S is an a-set,

a contradiction for S being an A?-set.

Therefore, the above cases proves that there is no NA?-set for W1,k for 4 ≤ k ≤ 7. Hence

lNA?(W1,k) does not exist for 4≤ k ≤ 7. �

Theorem 3.13. For any integer k ≥ 3, ln?a(W1,k) = 1+ b k
2c.

Proof. Let S be an n?a-set. Then, by Theorem 3.1, |S| ≥ 1+b k
2c. To prove the reverse inequality,

consider the set S = {v,v1,v3, . . . ,vk−3,vk−1} for k even and S = {v,v1,v3, . . . ,vk−4, vk−2} for

k odd. Then S is an n-set (since v ∈ S and by Remark 1.2) and for each vertex u ∈ S, |N[u]∩

S| ≥ 2 ≥ |N(u)∩ S| and so S is an a-set. We have S = {v2,v4, . . . ,vk−2,vk} for k even and

S = {v2,v4, . . . ,vk−2,vk} for k odd, which shows that S is an n-set (since by Theorem 1.11

every edge of 〈V (G)−S〉 belongs to a triangle one of whose vertices belongs to S). Therefore,

ln?a(W1,k)≤ |S|= 1+ b k
2c. Hence ln?a(W1,k) = 1+ b k

2c. �

Theorem 3.14. For k ≥ 3, ln?A(W1,k) = 1+ b k
2c.

Proof. Let S be an n?A-set. Then, by Theorem 3.1, |S| ≥ 1+ b k
2c. To prove the reverse in-

equality, consider the set S = {v,v1,v3, . . . ,vk−3,vk−1} for k even and S = {v,v1,v3, . . . ,vk−4,

vk−2} for k odd, which is an n?a-set as considered in the proof of Theorem 3.13. Now as

the vertex v2 ∈ S has no neighbors in S, S is not an a-set. Hence S is an n?A-set. Therefore,

ln?A(W1,k)≤ |S|= 1+ b k
2c. Hence ln?A(W1,k) = 1+ b k

2c. �

Theorem 3.15. For any integer k ≥ 4, ln?a?(W1,k) does not exist whereas ln?a?(W1,3) = 2.
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Proof. Let S be an n?a?-set. Then, S and S both are na-sets. By Theorem 3.1, we have

lna(W1,k) = 1+ b k
2c implies |S| = 1+ b k

2c. Thus, when k is even, say k = 2m, m ∈ Z+, |S| =

|V | − |S| = (k+ 1)− (1+ b k
2c) = (2m+ 1)− (1+ b2m

2 c) = m = k
2 < 1+ b k

2c and hence there

is no set S such that S and S both are na-sets. When k is odd, say k = 2m + 1, m ∈ Z+,

|S| = |V | − |S| = (k + 1)− (1+ b k
2c) = (2m+ 2)− (1+ b2m+1

2 c) = m+ 1 = k+1
2 = 1+ b k

2c.

Now we have the following two possibilities for the na-set S.

Case 1: S = {v,v1,v2,v3, . . . ,vb k
2 c
}. Then in this case S is not an n-set(since the edge v1v2 /∈

E(
⋃

x∈S〈N[x]〉)), a contradiction for S being an n?-set.

Case 2: S = {v,v1,v3,v5, . . . ,vk−2}. Then in this case S is not an a-set(since |N[v2]∩S|= 1 <

3 = |N(v2)∩S|), a contradiction for S being an a?-set.

Therefore, from the above cases we conclude that there is no n?a?-set. Hence ln?a?(W1,k) for

k ≥ 4 does not exist.

Further, as W1,3 ∼= K4, the result follows from Theorem 2.8. �

Theorem 3.16. For any integer k ≥ 6, ln?A?(W1,k) = 3.

Proof. Let S be an n?A?-set. Then, S is an nA?-set and hence by Theorem 3.4, we have |S| ≥ 3.

To prove the reverse inequality, let us consider the nA?-set S = {v,vi,vi+2} for 1 ≤ i ≤ k with

vk+1 = v1 and vk+2 = v2 as taken in the proof of Theorem 3.4. Now S is also an n-set(since by

Theorem 1.11 every edge of 〈V (G)−S〉 belongs to a triangle one of whose vertices belongs to

S). Therefore, S is an n?A?-set. Hence ln?A?(W1,k)≤ |S|= 3. This proves ln?A?(W1,k) = 3 �

By Remark 3.6, there is no nA?-set S for W1,k with 3≤ k≤ 5 and hence we conclude with the

remark below:

Remark 3.17. For any integer k, 3≤ k ≤ 5, ln?A?(W1,k) does not exist.

4. NEIGHBORHOOD ALLIANCE SETS OF A STAR GRAPH

Throughout this section, let v be the central vertex and v1,v2, . . . ,vk be the k pendant vertices

adjacent to v of a star Sk.

Theorem 4.1. For any integer k ≥ 1, lna(Sk) = 1+ b k
2c.
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Proof. Let S be an na-set of Sk.

Case 1: v ∈ S. Since S is an a-set, by Remark 1.16, at least bdeg(v)
2 c neighbors of v should be

in S and hence |S| ≥ 1+ bdeg(v)
2 c ≥ 1+ b k

2c.

Case 2: v /∈ S.

As S is an n-set, Sk
∼=
⋃

x∈S〈N[x]〉 implies all the remaining k pendant vertices must be in S.

Hence |S| ≥ k

Therefore, by the above cases, |S| ≥min{1+ b k
2c,k}= 1+ b k

2c. Hence lna(Sk)≥ 1+ b k
2c.

Now to prove the reverse inequality, consider the set S = {v,v1,v2,v3, . . . ,vb k
2c
}. The set S is

an n-set as v ∈ S (since v ∈ S and by Remark 1.2). We have for k even, |N[v]∩S| = 1+ b k
2c >

k
2 = |N(v)∩S| and for k odd, |N[v]∩S| = 1+ b k

2c =
k+1

2 = |N(v)∩S|. Also for every pendant

vertex u ∈ S, |N[u]∩ S| = 2 > 0 = |N(u)∩ S| and hence S is an a-set. Thus, S is an na-set.

Therefore, lna(Sk)≤ |S|= 1+ b k
2c. Hence the theorem. �

Theorem 4.2. For any integer k ≥ 1, lna?(Sk) = 1+ b k
2c.

Proof. Let S be an na?-set. Then, by Theorem 4.1, lna?(Sk)≥ 1+b k
2c. On the other hand, for the

na-set S= {v,v1,v2, . . . ,vb k
2c
} considered in the proof of Theorem 4.1, its complement S consists

of the remaining pendant vertices of Sk. For each vertex x ∈ S, |N[x]∩ S| = 1 = |N(x)∩ S|

implies that S is also an a-set. Hence S is an na?-set. Thus, lna?(Sk)≤ |S|= 1+ b k
2c. Hence the

theorem. �

Theorem 4.3. For any integer k ≥ 1, lnA(Sk) =

 2 for k = 1.

k for k ≥ 2.

Proof. For k = 1, as S1 ∼= K2, the result follows from Theorem 2.4.

For k ≥ 2. Let S be an nA-set. Then, S is an na-set and S is not an a-set.

Claim 1: v /∈ S

For, if v∈ S, then from the proof of Theorem 4.1 we see that |S| ≥ 1+b k
2c and S has remaining

pendant vertices. And for each vertex x ∈ S, |N[x]∩S|= 1 = |N(x)∩S| implies that S is also an

a-set, a contradiction for S being an nA-set. Hence the Claim 1.

Now since v /∈ S and S is an na-set, S contains all k pendant vertices (as considered in the

proof of Theorem 4.1). This indicates that S = {v} and |N[v]∩S|= 1< k = |N(v)∩S| and hence
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S is not an a-set. Therefore, S is an nA-set with |S|= k. This proves that lnA(Sk) = k. Hence the

theorem. �

Theorem 4.4. For any integer k ≥ 1, lnA?(Sk) does not exist.

Proof. For k = 1, as S1 ∼= K2, the result follows from Theorem 2.6.

For k ≥ 2, let S be an nA?-set. Then, S is an n-set and both S and S is not an a-set.

Case 1: v ∈ S.

Then S is an n-set(since v ∈ S and by Remark 1.2). As S is not an a-set and v ∈ S, |S| <

1+ b k
2c(by Theorem 4.1). But then S has only remaining pendant vertices each of which is

defendable(since for each vertex x ∈ S, |N[x]∩ S| = 1 = |N(x)∩ S|) and hence S is an a-set, a

contradiction for S being an A?-set.

Case 2: v /∈ S.

Then, as considered in the proof of Theorem 4.1, S is an na-set (since |S|= k with k pendant

vertices and for every pendant vertex u ∈ S, |N[u]∩ S| = 1 = |N(u)∩ S|), a contradiction for S

being an A?-set.

Therefore, there is no A?-set and hence lnA?(Sk) does not exist. �

Theorem 4.5. For any integer k ≥ 1, ln?a(Sk) = k.

Proof. Let S be an n?a-set. Then, S is an na-set and S is an n-set.

Claim 1: v /∈ S

For, if v ∈ S, then by Theorem 4.1, |S| ≥ 1+ b k
2c. Let S = {v,v1,v2,v3, . . . ,vb k

2c
} then S =

{vb k
2 c+1,vb k

2c+2, . . . ,vk} is not an n-set(since the edge vv1 /∈ E(
⋃

x∈S〈N[x]〉)), a contradiction for

S being an n?a-set. Hence the Claim 1.

Now v ∈ S and by Remark 1.2, S is an n-set. Then the set S containing all the k pendant

vertices of Sk is an na-set (as considered in the proof of Theorem 4.1). Thus, S is an n?a-set

with |S|= k. Hence ln?a(Sk) = k. �

Theorem 4.6. For any integer k ≥ 1, ln?a?(S1) = 1 and ln?a?(Sk) does not exist for k ≥ 2.

Proof. For k = 1, as S1 ∼= K2, the result follows from Theorem 2.8.

For k ≥ 2, let S be an n?a?-set. Then, both S and S are na-sets.
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Case 1: v ∈ S.

Then, from Theorem 4.1, |S|= 1+ b k
2c say S = {v,v1,v2,v3, . . . ,vb k

2 c
}, then

S = {vb k
2c+1,vb k

2c+2, . . . ,vk} is not an n-set(since the edge vv1 /∈ E(
⋃

x∈S〈N[x]〉)), a contradiction

for S being an n?-set.

Case 2: v /∈ S.

Then, from the proof of Theorem 4.1, |S|= k with S = {v1,v2,v3, . . . ,vk}. In this case S is an

na-set but S = {v} is not an a-set (since |N[v]∩S| = 1 < k = |N(v)∩S|), a contradiction for S

being an a?-set.

Thus, there is no set S such that both S and S are na-sets. Hence ln?a?(Sk) does not exist for

k ≥ 2. �

Theorem 4.7. For any integer k ≥ 2, ln?A(Sk) = k and for k = 1, ln?A(Sk) does not exist.

Proof. As S1 ∼= K2, the result follows from Theorem 2.4 for k = 1.

For k ≥ 2, let S be an n?A-set. Then, S is an nA-set and S is an n-set. Now for the nA-set

S containing all k pendant vertices as considered in the proof of Theorem 4.3, S = {v} and it

is an n-set (since v ∈ S and by Remark 1.2). Thus, S is an n?A-set with |S| = k. Hence the

theorem. �

Theorem 4.8. For any integer k ≥ 1, ln?A?(Sk) does not exist.

Proof. As S1 ∼= K2, the result follows from Theorem 2.6 for k = 1.

For k ≥ 2, let S be an n?A?-set. Then, both S and S are n-sets and both are not a-sets. We

have the following cases for S to be an n?-set.

Case 1: v ∈ S.

It is easy to see that S = {v} is an n-set (since v ∈ S and by Remark 1.2) and S contains all

the remaining k pendant vertices(as S is an n?-set). Then, for every vertex x ∈ S, |N[x]∩ S| =

1 = |N(x)∩S| and hence S is an a-set, a contradiction for S being an A?-set.

Case 2: v /∈ S.

Now v ∈ S implies S must contain all the remaining k pendant vertices(as S being an n?-set).

Then, for every vertex x ∈ S, |N[x]∩S|= 1 = |N(x)∩S| and hence S is an a-set, a contradiction

for S being an A?-set.
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Therefore, there is no n?A?-set. Hence ln?A?(Sk) does not exist. �

Theorem 4.9. For any integer k ≥ 1, lNa(Sk) =

 2 for k = 1.

1+ b k
2c for k ≥ 2.

Proof. As S1 ∼= K2, the result follows from Theorem 2.9 for k = 1.

For k ≥ 2, let S be an Na-set. Then, S is an na-set and S is not an n-set. As S is an na-set, by

Theorem 4.1, |S| ≥ 1+ b k
2c.

To prove the reverse inequality, consider the na-set S = {v,v1,v2,v3, . . . ,vb k
2c
} as considered

in the proof of Theorem 4.1. Then, S is not an n-set as the edge vv1 /∈E(
⋃

x∈S〈N[x]〉). Therefore,

S is an Na-set. Thus lNa(Sk)≤ |S|= 1+ b k
2c. Hence the theorem. �

Theorem 4.10. For any integer k ≥ 2, lNa?(Sk) = 1+ b k
2c.

Proof. Let S be an Na?-set. Then, S is an na-set and S is an a-set but not an n-set. As S is an

na-set, by Theorem 4.1, |S| ≥ 1+ b k
2c.

To prove the reverse inequality, consider the Na-set S = {v,v1,v2,v3, . . . ,vb k
2 c
} as considered

in the proof of Theorem 4.9. Then S = {vb k
2 c+1,vb k

2 c+2, . . . ,vk} is an a-set (as for every vertex

x ∈ S, |N[x]∩S|= 1 = |N(x)∩S| ). Therefore, S is an Na?-set. Thus, lNa?(Sk)≤ |S|= 1+ b k
2c.

Hence the theorem. �

Remark 4.11. For k = 1, lNa?(Sk) does not exist(since S1 ∼= K2, the result follows from Theo-

rem 2.9).

Theorem 4.12. For any integer k ≥ 1, lNA(Sk) = k+1.

Proof. Let S be an NA-set. Then, S is an na-set and S is neither an n-set nor an a-set. As S is an

na-set, we consider the two cases as taken in the proof of Theorem 4.1.

Case 1: v ∈ S.

In this case, |S| ≥ 1+ b k
2c and S contains only remaining pendant vertices. That is, S =

{vb k
2 c+1,vb k

2c+2, . . . ,vk} and for every vertex x ∈ S, |N[x]∩S|= 1 = |N(x)∩S| and hence S is an

a-set, a contradiction for S being an A-set.

Case 2: v /∈ S.
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In this case, |S| ≥ k and v ∈ S implies S is an n-set (since v ∈ S and by Remark 1.2), a

contradiction for S being an N-set.

From the above cases we see that it is not possible to have an N-set with v ∈ S. Further,

if S contains any one pendant vertex vi for 1 ≤ i ≤ k then |N[vi]∩ S| = 1 = |N(vi)∩ S| and

hence S is an a-set. This proves that S cannot have any element and hence S must be an empty

set. Therefore, a set S containing all the vertices of Sk is definitely an na-set and S being an

empty set is neither an n-set nor an a-set. Thus, the set S with |S| = k+1 is an NA-set. Hence

lNA(Sk) = k+1. �

Theorem 4.13. For any integer k ≥ 1, lNA?(Sk) does not exist.

Proof. For k = 1, the result follows from Theorem 2.9.

For k≥ 2, let S be an NA?-set. Then, S is an n-set and S is not an n-set. Also both S and S are

not a-sets.

So, v ∈ S (else if v ∈ S, then S is an n-set by Remark 1.2). Also S cannot contain all the k

pendant vertices, else S will be an n-set, a contradiction again to the fact that S is an N-set.

Further, if S contains any one pendant vertex vi with 1 ≤ i ≤ k, then for each vertex vi,

|N[vi]∩ S| = 1 = |N(vi)∩ S| and therefore S is an a-set, a contradiction for S being an A?-set.

This indicates that S must be an empty set which implies S = V (Sk). Hence S is an a-set in

this case, again a contradiction to the fact that S is an A?-set. Thus, there is no NA?-set. Hence

lNA?(Sk) does not exist. �

5. NEIGHBORHOOD ALLIANCE SETS OF A FAN GRAPH

Throughout this section, let v be the central vertex and v1,v2, . . . ,vk be the k vertices which

are adjacent to v of a fan F1,k in order. The vertices v1,v2, . . . ,vk are called rim vertices of F1,k.

Theorem 5.1. For any integer k ≥ 1, lna(F1,k) =

 2 for k = 4.

1+ b k
2c for k 6= 4.

Proof. For k = 1,2, as F1,1 ∼= K2 and F1,2 ∼= K3, the result follows from Theorem 2.2.

For k = 3 and k = 4, the na-sets of minimum cardinality are shown in Figure 1 and Figure 2

respectively.
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 v 

v2 v3 v1 

FIGURE 1. The Fan Graph F1,3.
v4 

 v 

v2 v3 v1 

FIGURE 2. The Fan Graph F1,4.

For k ≥ 5, let S be an na-set. Now we consider the two subcases as below.

Case (i): v ∈ S.

Then, clearly S is an n-set(since v ∈ S and by Remark 1.2). Also since S is an a-set, at least

bdeg(v)
2 c neighbors of v should be in S (by Remark 1.16). Hence |S| ≥ 1+ b k

2c.

Case(ii): v /∈ S.

Define Si = {vi−1,vi,vi+1} and Let Ti = S∩Si, for i = 1,2, . . . ,k−1.

Claim 1: |Ti| ≥ 2 for each i,1≤ i≤ k−1.

By Theorem 1.13, every edge of 〈V (G)− S〉 belongs to a triangle one of whose vertices

belongs to S. Here as v /∈ S, it is possible only if Ti = S∩ Si = {vi,vi+1} or {vi−1,vi}. Hence

Claim 1 holds.

By Claim 1, it follows that for every three consecutive rim vertices of F1,k at least two of them

have to be in S. Hence |S| ≥ b2k
3 c.

Therefore, |S| ≥ min{1+ b k
2c,b

2k
3 c}= 1+ b k

2c. Hence lna(F1,k)≥ 1+ b k
2c.

Now to prove the reverse inequality, consider the set S = {v,v1,v2,v3, . . . ,vb k
2c
} then clearly

S is an n-set(since v ∈ S and by Remark 1.2). For each vertex vi ∈ S, |N[vi]∩ S| ≥ 3 > 1 ≥

|N(vi)∩S| for i = 1+ b k
2c, . . . ,k and for |N[v]∩S| = 1+ b k

2c ≥ |N(v)∩S|, hence S is an a-set.

This proves that |S| ≤ 1+
⌊ k

2

⌋
.

Hence lna(F1,k) = 1+ b k
2c. �
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Theorem 5.2. For any integer k ≥ 1 and k 6= 2, lna?(F1,k) =

 2 for k = 4.

1+ b k
2c for k 6= 4.

Proof. Let S be an na?-set. Then, S is an na-set and S is also an a-set.

If k ≤ 4, it is easy to observe lna?(F1,4) = 2. For k > 4. Now as S is an na-set, by Theo-

rem 5.1, |S| ≥ 1+ b k
2c. Consider the set na-set S = {v,v1,v2, . . . ,vb k

2c
} as taken in the proof of

Theorem 5.1, then for every vertex w ∈ S, |N[w]∩ S| ≥ 2 ≥ 1 ≥ |N(w)∩ S| and hence S is an

a-set. Therefore, S is an na?-set. This proves that |S| ≤ 1+
⌊ k

2

⌋
. Thus, lna?(F1,k) = 1+b k

2c. �

Remark 5.3. As F1,2 ∼= K3, lna?(F1,2) does not exist (by Theorem 2.3).

Theorem 5.4. For any integer k ≥ 1, lnA(F1,k) =

 2 for k = 1,2.

1+ b k
2c for k ≥ 3.

Proof. As F1,1 ∼= K2 and F1,2 ∼= K3, the result follows from Theorem 2.4 for k = 1,2.

For k ≥ 3, let S be an nA-set. Then, S is an na-set and hence by Theorem 5.1, |S| ≥ 1+ b k
2c.

Now consider the set S = {v}∪{v2,v3, . . . ,v1+b k
2c
}. Then S is an n-set (since v ∈ S and by

Remark 1.2). Also |N[v]∩S|= 1+b k
2c ≥ |N(v)∩S| and for other vertex w∈ S, |N[w]∩S| ≥ 3 >

1≥ |N(w)∩S| and therefore every vertex in S is defendable and hence S is an na-set. Also S is

not an a-set as for the vertex v1 ∈ S, |N[v1]∩S|= 1 < 2 = |N(v1)∩S| and hence not defendable

in S. Thus, S is an nA-set. Therefore, |S| ≤ 1+ b k
2c. Hence lnA(F1,k) = 1+ b k

2c. �

Theorem 5.5. For any integer k ≥ 4, lnA?(F1,k) = 2.

Proof. Let S be an nA?-set. If possible, let |S| = 1, then S = {v} (since S is an n-set and by

Remark 1.2). But then the remaining k vertices in S are defendable in S (since |N[vi]∩S| ≥ 2 >

1 = |N(vi)∩ S| for i = 1,2, . . .k) and hence forms an a-set, a contradiction to the fact that S is

an A?-set. Therefore, lnA?(F1,k)≥ 2.

Now to prove the reverse inequality, consider the set S = {v,v2}. Then S is an n-set (since

v ∈ S and by Remark 1.2). Further, for the vertex v ∈ S, |N[v]∩S|= 2 < k−1 = |N(v)∩S| and

for the vertex v1 ∈ S, |N[v1]∩S|= 1 < 2 = |N(v1)∩S| which proves that the sets S and S are not

a-sets respectively. Therefore, S is an nA?-set. Hence |S| ≤ 2. This proves lnA?(F1,k) = 2. �

Remark 5.6. A 2-element set S containing any two adjacent vertices of F1,3 is always an a-set.
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Remark 5.7. For any integer 1≤ k ≤ 3, lnA?(F1,k) does not exist.

Theorem 5.8. For any integer k ≥ 1, lNa(F1,k) =


k+1 for k = 1,2.

k for k = 3.

1+ b k
2c for k ≥ 4.

Proof. As F1,1 ∼= K2 and F1,2 ∼= K3, the result follows from Theorem 2.9 for k = 1,2. and for

k = 3 one can easily observe that lNa(F1,3) = 3.

Let S be an Na-set. Then, S is an na-set and S is not an n-set. For k ≥ 4, as S is an na-set, by

Theorem 5.1, |S| ≥ 1+ b k
2c.

Now consider the na-set S = {v,v1,v2,v3, . . . ,vb k
2c
} as taken in the proof of the Theorem 5.1.

Then the set S is not an n-set (since the edge vv1 /∈ E(
⋃

x∈S〈N[x]〉)). This proves that S is an

Na-set and thus |S| ≤ 1+
⌊ k

2

⌋
. Hence lna(F1,k) = 1+ b k

2c. �

Theorem 5.9. For any integer k ≥ 4, lNa?(F1,k) = 1+ b k
2c.

Proof. Let S be an Na?-set. Then, S is an Na-set and S is also an a-set. Since S is an Na-set, by

Theorem 5.8, |S| ≥ 1+ b k
2c.

Now consider the Na-set S = {v,v1,v2,v3, . . . ,vb k
2 c
} as considered in the proof of Theo-

rem 5.8. Then S = {v1+b k
2c
, . . . ,vk} and for each vertex vi ∈ S, |N[vi]∩S| ≥ 2≥ 2≥ |N(vi)∩S|

for i = 1+ b k
2c, . . . ,k, which proves that S is also an a-set. Hence S is an Na?-set. This proves

that |S| ≤ 1+
⌊ k

2

⌋
. Hence lNa?(F1,k) = 1+ b k

2c. �

Remark 5.10. For any integer 1≤ k ≤ 3, lNa?(F1,k) does not exist.

Proof. For k = 1,2, since F1,1 ∼= K2 and F1,2 ∼= K3, the result follows from Theorem 2.9.

For k = 3, the Na-set S as considered in the proof of Theorem 5.8 are either S = {v,v2,v3}

or S = {v,v2,v1}. And S = {v1} or S = {v3} respectively. In both the cases the S is not an

a-set(since |N[v j]∩S| = 1 < 2 = |N(v j)∩S| for j = 1,3 ). Thus, there is no Na?-set S in F1,3.

Hence lNa?(F1,3) does not exist. �

Theorem 5.11. For any integer k ≥ 1 , lNA(F1,k) =


k+1 for k = 1,2.

k for k = 3.

1+ b k
2c for k ≥ 4.
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Proof. If k ≤ 3 the result is trivial. Letk ≥ 4 and S be an NA-set. Since S is an na-set, by

Theorem 5.1, |S| ≥ 1 + b k
2c. Now to prove the reverse inequality, consider the nA-set S =

{v}∪{v2,v3, . . . ,v1+b k
2 c
} as considered in the proof of Theorem 5.4. Further, S is not an n-set

since the edge v2v3 /∈ E(
⋃

x∈S〈N[x]〉). Hence S is an NA-set. This proves that |S| ≤ 1+
⌊ k

2

⌋
.

Hence lNA(F1,k) = 1+ b k
2c. �

Theorem 5.12. For any integer k ≥ 6, lNA?(F1,k) = 3.

Proof. Let S be an NA?-set. Then, S is an n-set and S is not an n-set. Then v ∈ S , for, if v ∈ S

then S is an n-set(by Remark 1.2), a contradiction for S being an N-set.

Moreover, as S is not an n-set, there must be two adjacent vertices, say vi,vi+1 for 1≤ i≤ k−1

of F1,k in S such that the edge vivi+1 is not in E(
⋃

x∈S〈N[x]〉). Hence S has at least three elements.

This proves that |S| ≥ 3.

Now to prove the reverse inequality, consider the set S = {v,v2,v3}. Then S is an n-set (since

v ∈ S and by Remark 1.2). And S is not an n-set since edge v2v3 /∈ E(
⋃

x∈S〈N[x]〉). The vertex

v has more attackers than defenders in S (as |N[v]∩S|= 3 < k−2 = |N(v)∩S|) and hence not

defendable in S. Thus S is not an a-set. Further, S is not an a-set (as |N[v1]∩ S| = 1 < 2 =

|N(v1)∩S|). Thus, S is an NA?-set. This proves that |S| ≤ 3. Hence lNA?(F1,k) = 3. �

Remark 5.13. For any integer 1≤ k ≤ 5, lNA?(F1,k) does not exist.

Theorem 5.14. For any integer k ≥ 1, ln?a(F1,k) =

 2 for k = 4.

1+ b k
2c for k 6= 4.

Proof. For k = 1,2, the result follows from Theorem 2.7 because F1,1 ∼= K2 and F1,2 ∼= K3. Let

S be an n?a-set. Then, S is an na-set and S is also an n-set.

Case 1: k = 3,4.

For the na-set S = {v,v1} in F1,3 and S = {v2,v3} in F1,4 as considered in the proof of Theo-

rem 5.1, we have S = {v2,v3} in F1,3 and S = {v,v1,v4} in F1,4 respectively. From the Figure 1

and Figure 2 we see that the S = {v2,v3} in F1,3 and S = {v,v1,v4} in F1,4 are n-sets. Hence

S = {v,v1} in F1,3 and S = {v2,v3} in F1,4 is an n?a-set of the graphs F1,3 and F1,4 respectively.

Hence the result holds.

Case 2: k ≥ 5.
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As S is an na-set, by Theorem 5.1, |S| ≥ 1 + b k
2c. Now to prove the reverse inequality,

consider the set S = {v}∪{v2,v4,v6, . . . ,v2b k
2 c
}. Then clearly S is an n-set(since v ∈ S and by

Remark 1.2). And by Theorem 1.13, S is also an n-set. Hence S is an n?-set. Further, every

vertex in S is defendable (since |N[v]∩ S| = 1+ b k
2c ≥ |N(v)∩ S| and for every vertex w in S,

|N[w]∩S|= 2 = |N(w)∩S|). Hence S is an n?a-set. This proves that |S| ≤ 1+ b k
2c.

Hence ln?a(F1,k) = 1+ b k
2c. �

Theorem 5.15. For an integer k, ln?a?(F1,k) =

 1 for k = 1.

2 for k = 3,4.

Proof. For k = 1, as F1,1 ∼= K2, by Theorem 2.8, it follows that ln?a?(F1,1) = 1.

For k = 3,4, let S be an n?a?-set. Then, S is an n?a-set and hence by Theorem 5.14, |S| ≥ 2.

Now to prove the reverse inequality, consider the n?a-set S = {v,v1} in F1,3 and S = {v2,v3}

in F1,4 respectively as taken in the proof of the Theorem 5.14. Then S = {v2,v3} in F1,3 is an

a-set (since |N[v j]∩ S| = 2 ≥ |N[v j]∩ S| for j = 2,3). And S = {v,v1,v4} in F1,4 is an a-set

(since |N[v]∩ S| = 3 > 2 = |N(v)∩ S| and |N[v j]∩ S| = 2 > 1 = |N(v)∩ S| for j = 1,4). Thus

S is an an n?a?-set of the graphs F1,3 and F1,4 respectively. Therefore, |S| ≤ 2. Hence the

ln?a?(F1,k) = 2. �

Remark 5.16. For k = 2 and k ≥ 5, ln?a?(F1,k) does not exist.

Theorem 5.17. For any integer k ≥ 2, ln?A(F1,k) =



2 for k = 2,3.

3 for k = 4.

d2k
3 e for 5≤ k ≤ 7.

b2k
3 c for k ≥ 8.

Proof. For k≤ 4, the result is trivial. Let k≥ 5 and S be an n?A-set. Then, S is an na-set and S is

an n-set but not an a-set. As S is an na-set, we consider the cases below for na-set as considered

in the proof of Theorem 5.1.

Case(i): v ∈ S.

Here in this case, we have an na-set S = {v,v1,v2,v3, . . . ,vb k
2c
} such that |S|= 1+ b k

2c. Then

S is not an n-set (since the edge vv1 /∈ E(
⋃

x∈S〈N[x]〉)),a contradiction for S being an n?-set.

Hence this case is not possible.
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Case(ii):v /∈ S.

Here in this case, we have an na-set S such that |S| ≥ b2k
3 c (as taken in the proof of Theo-

rem 5.1). Since v ∈ S, by Remark 1.2, S is an n-set. Thus, we have an n?-set in this case.

Now in the n?-set as considered above, for the vertex v ∈ S, |N[v]∩ S| = (k+ 1)−b2k
3 c <

b2k
3 c= |N(v)∩S| except for k = 5 and k = 7. Therefore, |S| ≥ d2k

3 e for k = 5 and k = 7 (or else

v and the other rim vertices in S are defendable in S, a contradiction for S being an A-set). Since

for k = 6,b2k
3 c= d

2k
3 e, we have |S| ≥ d2k

3 e for 5≤ k ≤ 7 and |S| ≥ b2k
3 c for k ≥ 8.

We now prove the reverse inequality in the following cases.

For k = 5, consider the set S = {v2,v3,v4,v5} then S = {v,v1}. Clearly, S is an n?a-set and

S is not an a-set(since v ∈ S, |N[v]∩S|= 2 < 4 = |N(v)∩S|. Thus, S is an n?A-set. Therefore,

|S| ≤ 4 = d2k
3 e. Hence the result.

For k = 6, consider the set S = {v2,v3,v5,v6} then S = {v,v1,v4}. Clearly, S is an n?a-set and

S is not an a-set(since v ∈ S, |N[v]∩S|= 3 < 4 = |N(v)∩S|. Thus, S is an n?A-set. Therefore,

|S| ≤ 4 = d2k
3 e. Hence the result.

For k = 7, consider the set S = {v2,v3,v5,v6,v7} then S = {v,v1,v4}. Clearly, S is an n?a-

set and S is not an a-set(since v ∈ S, |N[v]∩ S| = 3 < 5 = |N(v)∩ S|. Thus, S is an n?A-set.

Therefore, |S| ≤ 5 = d2k
3 e. Hence the result.

For k ≥ 8, consider the set S = {v2,v3,v5,v6, . . . ,vk−3,vk−1,vk} for k ≡ 0(mod3),

S= {v2,v3,v5,v6, . . . ,vk−4,vk−2,vk−1} for k≡ 1(mod3) and S= {v2,v3,v5,v6, . . . ,vk−3,vk−2,vk−1}

for k ≡ 2(mod3). Then S is an na-set and since v ∈ S, S is an n-set(by Remark 1.2). Further, S

is not an a-set(since v ∈ S, |N[v]∩S|= (k+1)−b2k
3 c< b

2k
3 c= |N(v)∩S|). Therefore, S is an

n?A-set. Thus, |S| ≤ b2k
3 c.

Hence the theorem. �

Remark 5.18. For k = 1, ln?A(F1,1) does not exist, which follows from Theorem 2.5 as F1,1∼=K2.

Theorem 5.19. For any integer k ≥ 4, ln?A?(F1,k) = 2.

Proof. Let S be an n?A?-set. Then, S is an nA?-set. Thus, by Theorem 5.5, |S| ≥ 2. Now

consider the set S = {v,v2}. Then as v ∈ S, S is an n-set (by Remark 1.2). Also the remaining

k−1 rim vertices in S forms an n-set(since
⋃

x∈S < N[x]>∼= F1,k). Further, for the vertex v ∈ S,
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|N[v]∩S|= 2 < k−1 = |N(v)∩S| and for the vertex v1 ∈ S, |N[v1]∩S|= 1 < 2 = |N(v1)∩S|

which proves that the sets S and S are not a-sets respectively. Therefore, S is an n?A?-set. Hence

|S| ≤ 2. Hence ln?A?(F1,k) = 2. �

Remark 5.20. For any integer 1≤ k ≤ 3, ln?A?(F1,k) does not exist.

Proof. For k = 1,2, as F1,1 ∼= K2 and F1,2 ∼= K3, the result follows from Theorem 2.6.

For k = 3, let S be an n?A?-set. Then, S is an nA?-set. Now the result follows from Remark 5.7

(as there is no nA?-set in F1,3). �
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