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Abstract: In this paper, problem of singularly perturbed differential-difference equation having boundary layers at 

both ends is solved and analyzed numerically by fitted method. To do this, original problem is transformed into an 

asymptotically equivalent singularly perturbed differential equation by Taylor’s series expansion. By introducing 

deviating argument concept, SPDE is replaced by first order differential equation. Resulting equation having 

deviating argument is solved with proper choice of fitting factor and interpolation. To demonstrate the applicability 

of this numerical method, three test examples are solved and numerical results are compared with the available/exact 

results. 
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1. INTRODUCTION 

A singularly perturbed delay differential equation is an ordinary differential equation in which 

the highest derivative is multiplied by a small parameter and containing delay term.  In recent 

years, there has been a growing interest in the numerical treatment of such differential equations.  

This is due to the versatility of such type of differential equations in the mathematical modeling 
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of processes in various application fields, for e.g., the first exit time problem in the modeling of 

the activation of neuronal variability, in the study of bistable devices, and variational problems in 

control theory where they provide the best and in many cases the only realistic simulation of the 

observed.  Stein [12] gave a differential-difference equation model incorporating stochastic 

effects due to neuron excitation.  Lange and Miura [4-5] gave an asymptotic approach for a class 

of boundary-value problems for linear second-order differential-difference equations. 

Kadalbajoo and Sharma [9-10], presented a numerical approaches to solve singularly perturbed 

differential-difference equation, which contains negative shift in the either in the derivative term 

or the function but not in the derivative term. Asymptotic-numerical method for singularly 

perturbed differential difference equations of mixed-type is discussed by Salama and Al-Amery 

[1]. Erdogan [6], has presented an Exponentially fitted method for singularly perturbed delay 

differential equations. Venkat and Palli [15] presented a numerical approach for solving 

singularly perturbed convection delay problems via exponentially fitted spline method. Rao and 

Chakrravarthy [16-17] have described a finite difference method for singularly perturbed 

differential-difference equations arising from a model of neuronal variability.  Reddy and 

Chakravarthy [20] presented an initial-value approach for solving singularly perturbed two-point 

boundary value problems. Reddy et al [19] described a numerical integration method for 

singularly perturbed delay differential equations.  Reddy and Awoke [18] presented a method for 

solving singularly perturbed differential difference equations via fitted method, In this paper, 

problem of singularly perturbed differential-difference equation having boundary layers at both 

ends is solved and analyzed numerically by fitted method. To do this, original problem is 

transformed into an asymptotically equivalent singularly perturbed differential equation by 

Taylor’s series expansion. By introducing deviating argument concept, SPDE is replaced by first 

order differential equation. Resulting equation having deviating argument is solved with proper 

choice of fitting factor and interpolation. To demonstrate the applicability of this numerical 

method, three test examples are solved and numerical results are compared with the 

available/exact results. For detailed theory is  available  in books [2,7,11,13,14]. 
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2. DESCRIPTION OF THE FITTED METHOD 

Consider a class of differential-difference equation with small shifts of mixed type 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) + 𝑏(𝑥)𝑦(𝑥 + 𝜂) = 𝑓(𝑥),     0 ≤ 𝑥 ≤ 1   (1) 

under the boundary conditions 

𝑦(𝑥) = 𝛼(𝑥),    −𝛿 ≤ 𝑥 ≤ 0                                                       (2) 

   𝑦(𝑥) = 𝛽(𝑥),1 ≤ 𝑥 ≤ 1 + 𝜂              (3) 

where 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 < 𝛿 = 𝑂(𝜀)is the small delay parameter,0 <

𝜂 = 𝑂(𝜀) is the small advanced parameter, 𝑎(𝑥),𝑏(𝑥), 𝑐(𝑥), 𝑓(𝑥), 𝛼(𝑥)and 𝛽(𝑥)are sufficiently 

differentiable in (0, 1).If𝑎(𝑥) + 𝑏(𝑥) + 𝑐(𝑥) ≤ 0on the interval [0, 1], then the solution of (1) 

exhibits boundary layers at both ends of the interval [0, 1], whereas it exhibits oscillatory 

behaviour 𝑎(𝑥) + 𝑏(𝑥) + 𝑐(𝑥) > 0.  

Using Taylor series expansion, in the neighbourhood of 𝑥. 

 

𝑦(𝑥 − 𝛿) ≈ 𝑦(𝑥) − 𝛿𝑦′(𝑥) +
𝛿2

2
𝑦′′(𝑥)                                                                                   (4) 

𝑦(𝑥 + 𝜂) ≈ 𝑦(𝑥) + 𝜂𝑦′(𝑥) +
𝛿2

2
𝑦′′(𝑥)           (5) 

From Equations (4), (5) and (1), we obtain singularly perturbed differential equation 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥)                                                                             (6) 

with the boundary conditions  

𝑦(0) = 𝛼(0) = 𝜑0                                                                                                                   (7) 

𝑦(1) = 𝛽(1) = 𝛾1                                                                                                                    (8) 

where  

𝐴(𝑥) = 𝑏(𝑥)𝜂 − 𝑎(𝑥)𝛿,   

𝐵(𝑥) = 𝑎(𝑥) + 𝑏(𝑥) + 𝑐(𝑥), 

𝜀′ = 𝜀 + 𝑎(𝑥)
𝛿2

2
+ 𝑏(𝑥)

𝜂2

2
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,𝜑0 and 𝛾1 are constants. Since 0 < 𝛿 ≪ 1 and 0 < 𝜂 ≪ 1, the transformation from Eqn. (1) to 

Eqn. (6) is admitted. For more details on the validity of this transformation one can refer 

El’sgolt’s and Norkin [8]. 

Since problem exhibits two boundary layers across the interval, we divide the interval  [0, 1] into 

two sub intervals [0,
1

2
] and [

1

2
, 1]. Clearly in the interval [0,

1

2
] the boundary layer will be at the 

left end i.e. at 𝑥 = 0, and in the interval [
1

2
, 1] the boundary layer will be at right end i.e. at 𝑥 =

1. 

2.1 Problem with left end boundary layer in [𝟎,
𝟏

𝟐
] 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of the 

point 𝑥, we have 

𝑦(𝑥 − √𝜀′) ≈ 𝑦(𝑥) − √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥) (9) 

From Equations (9) and (6), we get 

 𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 − √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                  (10) 

where  

𝑝(𝑥) =
−2

2√𝜀′+𝐴(𝑥)
                                                        (11)  

𝑞(𝑥) =
2−𝐵(𝑥)

2√𝜀′+𝐴(𝑥)
                      (12) 

 𝑟(𝑥) =
𝑓(𝑥)

2√𝜀′+𝐴(𝑥)
                                                                                                                   (13) 

The transition from equation (6) to (10) is valid, because of the condition that √𝜀′ is small. For 

more details on the validity of the transition, one can refer El’sgolt’s and Norkin [8].      

Now, we divide the interval [0, 1] into 𝑛 equal parts with constant mesh length ℎ.  

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛.   

We choose 𝑁 such that 𝑥𝑁 =
1

2
. 

Equation (10) can be written as 

 𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)                                                                                (14) 
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By taking an integrating factor 𝑒−𝑞𝑥 for equation (14) and producing (as in McCartin [3]) 

𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)]                                                                       (15) 

On integrating equation (15) from 𝑥𝑖 to 𝑥𝑖+1, we get  

𝑒−𝑞𝑥𝑖+1𝑦𝑖+1 − 𝑒−𝑞𝑥𝑖𝑦𝑖 = ∫ 𝑒−𝑞𝑥𝑥𝑖+1

𝑥𝑖
𝑝𝑦(𝑥 − √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥𝑥𝑖+1

𝑥𝑖
𝑟(𝑥)𝑑𝑥                        (16) 

Using the Hermite interpolation on [𝑥𝑖𝑥𝑖+1] for 𝑦(𝑥 − √𝜀′) and 𝑟(𝑥) into the above equation, we 

get 

𝑦𝑖+1 = 𝑒𝑞ℎ𝑦𝑖 + 𝑝 ∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

{ℎ𝑖(𝑥 − √𝜀′) ∗ 𝑦(𝑥𝑖 − √𝜀′) + ℎ𝑖+1(𝑥 − √𝜀′) ∗ 𝑦(𝑥𝑖+1 − √𝜀′)

+ ℎ𝑖(𝑥 − √𝜀′) ∗ 𝑦′(𝑥𝑖 − √𝜀′) + ℎ𝑖+1(𝑥 − √𝜀′) ∗ 𝑦′(𝑥𝑖+1 − √𝜀′)}𝑑𝑥

+ ∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

{ℎ𝑖(𝑥) ∗ 𝑟(𝑥𝑖) + ℎ𝑖+1(𝑥) ∗ 𝑟(𝑥𝑖+1) + ℎ𝑖(𝑥) ∗ 𝑟′(𝑥𝑖) + ℎ𝑖+1(𝑥)

∗ 𝑟′(𝑥𝑖+1)}𝑑𝑥                                                                                                          (17) 

where ℎ𝑖, ℎ𝑖+1, ℎ𝑖 and ℎ𝑖+1 are given by Hermite interpolation 

ℎ𝑖 = [(−2)𝑥3 + (3𝑥𝑖 + 3𝑥𝑖+1)𝑥2 + (−6𝑥𝑖𝑥𝑖+1)𝑥 + 3𝑥𝑖𝑥𝑖+1
2 − 𝑥𝑖+1

3 ]/(−ℎ3) 

ℎ𝑖+1 = [(−2)𝑥3 + (3𝑥𝑖 + 3𝑥𝑖+1)𝑥2 + (−6𝑥𝑖𝑥𝑖+1)𝑥 + 3𝑥𝑖+1𝑥𝑖
2 − 𝑥𝑖

3]/(ℎ3) 

ℎ𝑖 = [𝑥3 + (−𝑥𝑖 − 2𝑥𝑖+1)𝑥2 + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1
2 )𝑥 − 𝑥𝑖𝑥𝑖+1

2 ]/(ℎ2) 

ℎ𝑖+1 = [𝑥3 + (−2𝑥𝑖 − 𝑥𝑖+1)𝑥2 + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖
2)𝑥 − 𝑥𝑖+1𝑥𝑖

2]/(ℎ2) 

To solve equation (17), we first solve integrals 

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)𝑥𝑖+1

𝑥𝑖
ℎ𝑖𝑑𝑥 =

1

−ℎ3
[(3𝑥𝑖 + 3𝑥𝑖+1) {𝑥𝑖+1

2 (−
1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2
) + 2 (−

1

𝑞3
) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2
) − 2 (

𝑒𝑞ℎ

−𝑞3
)} − 6𝑥𝑖𝑥𝑖+1 {𝑥𝑖+1 (−

1

𝑞
) − (

1

𝑞2
) −

                                             𝑥𝑖 (
𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2 )} − 2 {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2) + 6𝑥𝑖+1 (−
1

𝑞3) −

                                              6 (
1

𝑞4) − 𝑥𝑖
3 (

𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2 ) − 6𝑥𝑖 (
𝑒𝑞ℎ

−𝑞3) + 6 (
𝑒𝑞ℎ

𝑞4 )} +

                                                (3𝑥𝑖𝑥𝑖+1
2 −  𝑥𝑖+1

3 ) {−
1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑋(𝑖)                                     (18)                                                                                                          
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∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

ℎ𝑖+1𝑑𝑥

=
1

ℎ3
[(3𝑥𝑖 + 3𝑥𝑖+1) {𝑥𝑖+1

2 (−
1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2
) + 2 (−

1

𝑞3
) − 𝑥𝑖

2 (
𝑒𝑞ℎ

−𝑞
)

+ 2𝑥𝑖 (
𝑒𝑞ℎ

𝑞2
) − 2 (

𝑒𝑞ℎ

−𝑞3
)} − 6𝑥𝑖𝑥𝑖+1 {𝑥𝑖+1 (−

1

𝑞
) − (

1

𝑞2
) −  𝑥𝑖 (

𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2
)}

− 2 {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2
) + 6𝑥𝑖+1 (−

1

𝑞3
) −  6 (

1

𝑞4
) − 𝑥𝑖

3 (
𝑒𝑞ℎ

−𝑞
)

+ 3𝑥𝑖
2 (

𝑒𝑞ℎ

𝑞2
) − 6𝑥𝑖 (

𝑒𝑞ℎ

−𝑞3
) + 6 (

𝑒𝑞ℎ

𝑞4
)} + (3𝑥𝑖+1𝑥𝑖

2 − 𝑥𝑖
3) {−

1

𝑞
+

𝑒𝑞ℎ

𝑞
}] 

                              = 𝑌(𝑖)                                                                                                      (19)                                                                                          

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)ℎ𝑖
𝑥𝑖+1

𝑥𝑖
𝑑𝑥 =

1

ℎ2 [(−𝑥𝑖 − 2𝑥𝑖+1) {𝑥𝑖+1
2 (−

1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2) + 2 (−
1

𝑞3) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2 ) − 2 (
𝑒𝑞ℎ

−𝑞3)} + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1
2 ) {𝑥𝑖+1 (−

1

𝑞
) −

                                           (
1

𝑞2) −  𝑥𝑖 (
𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2 )} + {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2) +

                                            6𝑥𝑖+1 (−
1

𝑞3) − 6 (
1

𝑞4) − 𝑥𝑖
3 (

𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2 ) − 6𝑥𝑖 (
𝑒𝑞ℎ

−𝑞3) +

                                           6 (
𝑒𝑞ℎ

𝑞4 )} − 𝑥𝑖𝑥𝑖+1
2 {−

1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑍(𝑖)                                    (20) 

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)ℎ𝑖+1
𝑥𝑖+1

𝑥𝑖
𝑑𝑥 =

1

ℎ2 [(−𝑥𝑖+1 − 2𝑥𝑖) {𝑥𝑖+1
2 (−

1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2) + 2 (−
1

𝑞3) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2
) − 2 (

𝑒𝑞ℎ

−𝑞3
)} + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖

2) {𝑥𝑖+1 (−
1

𝑞
) −

                                           (
1

𝑞2) −  𝑥𝑖 (
𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2 )} + {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2) +

                                            6𝑥𝑖+1 (−
1

𝑞3
) − 6 (

1

𝑞4
) − 𝑥𝑖

3 (
𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2
) − 6𝑥𝑖 (

𝑒𝑞ℎ

−𝑞3
) +

                                           6 (
𝑒𝑞ℎ

𝑞4
)} − 𝑥𝑖+1𝑥𝑖

2 {−
1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑊(𝑖)                                    (21) 

After Substituting equations (18), (19), (20) and (21) in equation (17), we obtain 

𝑦𝑖+1 = 𝑒𝑞ℎ𝑦𝑖 + {𝑝𝑦(𝑥𝑖 − √𝜀′) +  𝑟(𝑥𝑖)}𝑋(𝑖) + {𝑝𝑦(𝑥𝑖+1 − √𝜀′) +  𝑟(𝑥𝑖+1)}𝑌(𝑖) +

{𝑝𝑦′(𝑥𝑖 − √𝜀′) + 𝑟′(𝑥𝑖)}𝑍(𝑖) + {𝑝𝑦′(𝑥𝑖+1 − √𝜀′) + 𝑟′(𝑥𝑖+1)}𝑊(𝑖)                                 (22) 
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From finite difference approximation, we have 

𝑦(𝑥𝑖+1 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖+1 +

√𝜀′

ℎ
𝑦𝑖 

𝑦(𝑥𝑖 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖 +

√𝜀′

ℎ
𝑦𝑖−1 

𝑦′(𝑥𝑖 − √𝜀′) ≈ 𝑦𝑖
′ − √𝜀′𝑦𝑖

′′ ≈ (𝑦𝑖 − 𝑦𝑖−1)/ℎ 

𝑦′(𝑥𝑖+1 − √𝜀′) ≈ 𝑦𝑖+1
′ − √𝜀′𝑦𝑖+1

′′ ≈ (𝑦𝑖+1 − 𝑦𝑖)/ℎ 

Therefore equation (22) becomes 

𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖,     𝑖 = 1,2, … , 𝑁 − 1                                                                  (23) 

where, 

𝐸𝑖 = −
𝑝√𝜀′

ℎ
𝑋(𝑖) +

𝑝

ℎ
𝑍(𝑖) 

𝐹𝑖 = 𝑒𝑞ℎ + 𝑝 (1 −
√𝜀′

ℎ
) 𝑋(𝑖) +

𝑝√𝜀′

ℎ
𝑌(𝑖) +

𝑝

ℎ
𝑍(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐺𝑖 = 1 − 𝑃 (1 −
√𝜀′

ℎ
) 𝑌(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐻𝑖 = 𝑟𝑖𝑋(𝑖) + 𝑟𝑖+1𝑌(𝑖) +  𝑟′
𝑖 𝑍(𝑖) + 𝑟′

𝑖+1 𝑊(𝑖) 

2.2 Problem with right end boundary layer in [
𝟏

𝟐
, 1] 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of the 

point 𝑥, we have 

 𝑦(𝑥 + √𝜀′) ≈ 𝑦(𝑥) + √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)       (24) 

From Equations (24) and (6), we get 

 𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 + √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                  (25) 

where  

 𝑝(𝑥) =
−2

−2√𝜀′+𝐴(𝑥)
                     (26) 

𝑞(𝑥) =
2−𝐵(𝑥)

−2√𝜀′+𝐴(𝑥)
                      (27) 
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𝑟(𝑥) =
𝑓(𝑥)

−2√𝜀′+𝐴(𝑥)
                      (28) 

Equation (25) can be written as 

 𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)                   (29) 

By taking an integrating factor 𝑒−𝑞𝑥 for equation (29) and producing (as in McCartin [3]) 

𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)]                                                                       (30) 

On integrating equation (30) from 𝑥𝑖−1 to 𝑥𝑖, we get  

𝑒−𝑞𝑥𝑖𝑦𝑖 − 𝑒−𝑞𝑥𝑖−1𝑦𝑖−1 = ∫ 𝑒−𝑞𝑥𝑥𝑖

𝑥𝑖−1
𝑝𝑦(𝑥 + √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥𝑥𝑖

𝑥𝑖−1
𝑟(𝑥)𝑑𝑥                            (31) 

Using the Hermite interpolation on [𝑥𝑖−1𝑥𝑖] for 𝑦(𝑥 + √𝜀′) and 𝑟(𝑥) into the above equation, we 

get 

𝑦𝑖 = 𝑒𝑞ℎ𝑦𝑖−1 + 𝑝 ∫ 𝑒𝑞(𝑥𝑖−𝑥)𝑥𝑖

𝑥𝑖−1
{ℎ𝑖−1(𝑥 + √𝜀′) ∗ 𝑦(𝑥𝑖−1 + √𝜀′) + ℎ𝑖(𝑥 + √𝜀′) ∗ 𝑦(𝑥𝑖 + √𝜀′) +

ℎ𝑖−1(𝑥 + √𝜀′) ∗ 𝑦′(𝑥𝑖−1 + √𝜀′) + ℎ𝑖(𝑥 + √𝜀′) ∗ 𝑦′(𝑥𝑖 + √𝜀′)}𝑑𝑥 + ∫ 𝑒𝑞(𝑥𝑖−𝑥)𝑥𝑖

𝑥𝑖−1
{ℎ𝑖−1(𝑥) ∗

𝑟(𝑥𝑖−1) + ℎ𝑖(𝑥) ∗ 𝑟(𝑥𝑖) + ℎ𝑖−1(𝑥) ∗ 𝑟′(𝑥𝑖−1) + ℎ𝑖(𝑥) ∗

𝑟′(𝑥𝑖)}𝑑𝑥                                                                                                                                           (32) 

where ℎ𝑖−1, ℎ𝑖, ℎ𝑖−1 and ℎ𝑖 are given by Hermite interpolation as in case of [0,
1

2
]. In the similar 

way, we get 

∫ 𝑒𝑞(𝑥𝑖−𝑥)𝑥𝑖

𝑥𝑖−1
ℎ𝑖−1𝑑𝑥 = 𝑋(𝑖)                                                                                                 (33) 

∫ 𝑒𝑞(𝑥𝑖−𝑥)𝑥𝑖

𝑥𝑖−1
ℎ𝑖𝑑𝑥 = 𝑌(𝑖)                                                                                                     (34) 

∫ 𝑒𝑞(𝑥𝑖−𝑥)𝑥𝑖

𝑥𝑖−1
ℎ𝑖−1𝑑𝑥 = 𝑍(𝑖)                                                                                                                      (35) 

∫ 𝑒𝑞(𝑥𝑖−𝑥)𝑥𝑖

𝑥𝑖−1
ℎ𝑖𝑑𝑥 = 𝑊(𝑖)                                                                                                    (36) 

After Substituting equations (33), (34), (35) and (36) in equation (32) and using finite difference 

approximation, we obtain 

𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖,     𝑖 = 𝑁 + 1, 𝑁 + 2, … , 𝑛 − 1               (37) 

where, 



864 

RAGHVENDRA PRATAP SINGH, Y. N. REDDY 

  𝐸𝑖 = −𝑒𝑞ℎ − 𝑝 (1 −
√𝜀′

ℎ
) 𝑋(𝑖) +

𝑝

ℎ
𝑍(𝑖) 

 𝐹𝑖 = −1 + 𝑝 (1 −
√𝜀′

ℎ
) 𝑌(𝑖) +

𝑝√𝜀′

ℎ
𝑋(𝑖) +

𝑝

ℎ
𝑍(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐺𝑖 = −
𝑝√𝜀′

ℎ
𝑌(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐻𝑖 = 𝑟𝑖−1𝑋(𝑖) + 𝑟𝑖𝑌(𝑖) +  𝑟′
𝑖−1 𝑍(𝑖) + 𝑟′

𝑖  𝑊(𝑖) 

We have a system of 𝑛 − 2 equations from both left and right end boundary layer problem with 

𝑛 + 1 unknowns. From the given boundary conditions, Eqn. (7) and Eqn. (8), we get two 

equations i.e. 

𝑦(0) = 𝛼(0) = 𝜑0 

𝑦(1) = 𝛽(1) = 𝛾1 

We need one more equation to solve for the unknowns (𝑦0, 𝑦1, … , 𝑦𝑛). For this, we consider the 

Eqn. (6) at 𝜀 = 0 and the point 𝑥 = 𝑥𝑁, we get  

𝐴(𝑥𝑁)𝑦′(𝑥𝑁) + 𝐵(𝑥𝑁)𝑦(𝑥𝑁) = 𝑓(𝑥𝑁) 

Using second order central finite difference formula, we get  

𝐴𝑁

2ℎ
𝑦𝑁−1 − 𝐵𝑁𝑦𝑁 + (−

𝐴𝑁

2ℎ
) 𝑦𝑁+1 = −𝑓𝑁                                                                               (38) 

With this equation (38), we now have 𝑛 + 1 equations to solve for the unknowns (𝑦0, 𝑦1, … , 𝑦𝑛). 

Using invariant imbedding algorithm also knowns as Thomas algorithm, we get the solution. 

 

3. NUMERICAL EXPERIMENTS 

In this section to demonstrate the applicability of the method , we tested it on three standard 

model examples and solutions obtained from this scheme are compared with the available/exact 

solutions. 

The exact solution of the differential -difference equation 

 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) + 𝑏(𝑥)𝑦(𝑥 + 𝜂) = 𝑓(𝑥),     0 < 𝑥 < 1 
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with the boundary conditions 𝑦(𝑥) = 𝛼(𝑥),    −𝛿 ≤ 𝑥 ≤ 0and  𝑦(𝑥) = 𝛽(𝑥),1 ≤ 𝑥 ≤ 1 + 𝜂 

with constant coefficients (i.e. 𝑎(𝑥) = 𝑎, 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐, 𝑓(𝑥) = 𝑓, 𝛼(𝑥) = 𝛼, 𝛽(𝑥) =

𝛽 are constants)is given by 

𝑦(𝑥) =
[{(1−𝑎−𝑏−𝑐) exp(𝑚2)−1} exp(𝑚1𝑥)−{(1−𝑎−𝑏−𝑐) exp(𝑚1)−1} exp(𝑚2𝑥)]

[(𝑎+𝑏+𝑐)(exp(𝑚1)−exp(𝑚2))]
+

1

(𝑎+𝑏+𝑐)
          (39) 

where               

𝑚1 =
[(𝑎𝛿 − 𝑏𝜂) + √(𝑏𝜂 − 𝑎𝛿)2 − 4𝜀(𝑎 + 𝑏 + 𝑐)]

2𝜀
 

𝑚2 =
[(𝑎𝛿 − 𝑏𝜂) − √(𝑏𝜂 − 𝑎𝛿)2 − 4𝜀(𝑎 + 𝑏 + 𝑐)]

2𝜀
 

Example 1. 

Consider the differential-difference equation having dual boundary layer  

𝜀𝑦′′(𝑥) − 2𝑦(𝑥 − 𝛿) − 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 1,     0 < 𝑥 < 1 

with the boundary conditions𝑦(0) = 1   and   𝑦(1) = 0.  

The exact solution is given by Eqn. (39). Results are shown in Table-1 & 2 and the layer 

behaviour in fig.1 & 2 for different values of parameters. 

Example 2. 

Consider the differential-difference equation having dual boundary layer  

𝜀𝑦′′(𝑥) + 0.25𝑦(𝑥 − 𝛿) − 𝑦(𝑥) + 0.25𝑦(𝑥 + 𝜂) = 1,     0 < 𝑥 < 1 

with the boundary conditions  𝑦(0) = 1   and   𝑦(1) = 0.  

The exact solution is given by Eqn. (39). Results are shown in Table-3 & 4 and the layer 

behaviour in fig.3 & 4 for different values of parameters. 

Example 3. 

Consider the differential-difference equation having dual boundary layer  

𝜀𝑦′′(𝑥) − 𝑦(𝑥 − 𝛿) − 𝑦(𝑥) − 3𝑦(𝑥 + 𝜂) = 1,     0 < 𝑥 < 1 

with the boundary conditions𝑦(0) = 1   and   𝑦(1) = 0.  

The exact solution is given by Eqn. (39). Results are shown in Table-5 & 6 and the layer 

behaviour in fig.5 & 6 for different values of Parameters. 
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3. DISCUSSION AND CONCLUSIONS 

A fitted numerical scheme is presented for solving singularly perturbed differential-difference 

equations having layers at both ends. In this scheme deviating argument and Hermite 

interpolation concepts are used. This scheme is implemented on three standard examples for 

those numerical solutions are found to be in agreement with available or exact solution. 

Numerical, exact results and layer behaviour are presented in their respective figures and tables 

for different values of the parameters. This scheme is very simple and easy to implement on the 

class of singularly perturbed differential-difference equations having layers at both ends. 

 

Fig-1  Example 1: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 and 𝜂 = 0.003 
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Table-1. 

Example 1: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 and 𝜂 = 0.003 

𝑥 Numerical Solution  Exact Solution Solution by[9] 

0.00 1 1 1 

0.02 -0.17794562 -0.19426292 -0.17901486 

0.04 -0.19959467 -0.19997257 -0.19963302 

0.06 -0.19999255 -0.19999986 -0.19999358 

0.08 -0.19999986 -0.19999999 -0.19999988 

0.1 -0.19999999 -0.19999999 -0.19999999 

0.2 -0.20000000 -0.20000000 -0.20000000 

0.3 -0.20000000 -0.20000000 -0.20000000 

0.4 -0.20000000 -0.20000000 -0.20000000 

0.5 -0.20000000 -0.20000000 -0.20000000 

0.6 -0.20000000 -0.20000000 -0.20000000 

0.7 -0.20000000 -0.20000000 -0.20000000 

0.8 -0.19999999 -0.20000000 -0.19999999 

0.9 -0.19999998 -0.19999999 -0.19999988 

1.0 0 0 0 

 

Fig2      Example 1: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.005 and 𝜂 = 0.007          
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Table-2. 

Example 1: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.005 and 𝜂 = 0.007          

𝑥 Numerical Solution  Exact Solution Solution by [9] 

0.00 1 1 1 

0.02 -0.17438754 -0.17991269 -0.17166570 

0.04 -0.19945333 -0.19966375 -0.19933097 

0.06 -0.19998833 -0.19999437 -0.19998420 

0.08 -0.19999975 -0.19999990 -0.19999962 

0.1 -0.19999999 -0.19999999 -0.19999999 

0.2 -0.20000000 -0.20000000 -0.20000000 

0.3 -0.20000000 -0.20000000 -0.20000000 

0.4 -0.20000000 -0.20000000 -0.20000000 

0.5 -0.20000000 -0.20000000 -0.20000000 

0.6 -0.20000000 -0.20000000 -0.20000000 

0.7 -0.20000000 -0.20000000 -0.20000000 

0.8 -0.20000000 -0.20000000 -0.20000000 

0.9 -0.19999999 -0.19999999 -0.19999999 

1.0 0 0 0 

 

Fig-3   Example 2: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 and 𝜂 = 0.003 
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Table-3. 

Example 2: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 and 𝜂 = 0.003 

𝑥 Numerical Solution  Exact Solution Solution by [9] 

0.00 1 1 1 

0.02 -1.04099515 -1.19678463 -1.19863931 

0.04 -1.69343656 -1.78494835 -1.78594035 

0.06 -1.90200139 -1.94242240 -1.94282033 

0.08 -1.96867295 -1.98458426 -1.98472615 

0.1 -1.98998573 -1.99587261 -1.99592004 

0.2 -1.99996657 -1.99999432 -1.99999445 

0.3 -1.99999988 -1.99999999 -1.99999999 

0.4 -1.99999999 -1.99999999 -1.99999999 

0.5 -1.99999999 -1.99999999 -1.99999999 

0.6 -1.99999999 -1.99999999 -1.99999999 

0.7 -1.99999998 -1.99999999 -1.99999999 

0.8 -1.99999376 -1.99999948 -1.99999955 

0.9 -1.99646871 -1.99898774 -1.99905160 

1.0 0 0 0 

 

Fig-4  Example 2: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.005 and 𝜂 = 0.007 
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Table-4. 

Example 2: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.005 and 𝜂 = 0.007 

𝑥 Numerical Solution  Exact Solution Solution by [9] 

0.00 1 1 1 

0.02 -1.12308773 -1.30683338 -1.27464990 

0.04 -1.74367496 -1.83984001 -1.82462241 

0.06 -1.92507514 -1.96299414 -1.95759661 

0.08 -1.97809915 -1.99144959 -1.98974756 

0.1 -1.99359829 -1.99802438 -1.99752113 

0.2 -1.99998633 -1.99999869 -1.99999795 

0.3 -1.99999997 -1.99999999 -1.99999999 

0.4 -1.99999999 -1.99999999 -1.99999999 

0.5 -1.99999999 -1.99999999 -1.99999999 

0.6 -1.99999999 -1.99999999 -1.99999999 

0.7 -1.99999994 -1.99999999 -1.99999999 

0.8 -1.99998286 -1.99999764 -1.99999637 

0.9 -1.99414563 -1.99782850 -1.99730812 

1.0 0 0 0 

 

Fig-5   Example 3:ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 𝑎𝑛𝑑 𝜂 = 0.003 

 



871 

SOLUTION OF SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATION 

Table-5. 

Example 3:ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 𝑎𝑛𝑑 𝜂 = 0.003 

𝑥 Numerical Solution  Exact Solution Solution by [9] 

0.00 1 1 1 

0.02 -0.15638578 -0.18333232 -0.17310964 

0.04 -0.19841483 -0.19976849 -0.19939742 

0.06 -0.19994238 -0.19999678 -0.19998649 

0.08 -0.19999790 -0.19999995 -0.19999969 

0.1 -0.19999992 -0.19999999 -0.19999999 

0.2 -0.19999999 -0.20000000 -0.20000000 

0.3 -0.20000000 -0.20000000 -0.20000000 

0.4 -0.20000000 -0.20000000 -0.20000000 

0.5 -0.20000000 -0.20000000 -0.20000000 

0.6 -0.20000000 -0.20000000 -0.20000000 

0.7 -0.20000000 -0.20000000 -0.20000000 

0.8 -0.20000000 -0.20000000 -0.20000000 

0.9 -0.19999999 -0.19999999 -0.19999999 

1.0 0 0 0 

 

Fig 6   Example 3: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 𝑎𝑛𝑑 𝜂 = 0.005 
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Table-6. 

Example 3: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.007 𝑎𝑛𝑑 𝜂 = 0.005 

𝑥 Numerical Solution  Exact Solution Solution by [9] 

0.00 1 1 1 

0.02 -0.16030035 -0.16030035 -0.16845338 

0.04 -0.19868661 -0.19868661 -0.19917067 

0.06 -0.19995654 -0.19995654 -0.19997819 

0.08 -0.19999856 -0.19999856 -0.19999942 

0.1 -0.19999995 -0.19999995 -0.19999998 

0.2 -0.19999999 -0.19999999 -0.20000000 

0.3 -0.20000000 -0.20000000 -0.20000000 

0.4 -0.20000000 -0.20000000 -0.20000000 

0.5 -0.20000000 -0.20000000 -0.20000000 

0.6 -0.20000000 -0.20000000 -0.20000000 

0.7 -0.20000000 -0.20000000 -0.20000000 

0.8 -0.20000000 -0.20000000 -0.20000000 

0.9 -0.19999999 -0.19999999 -0.20000000 

1.0 0 0 0 
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