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Abstract. In this paper, we introduce the generalized quadrilateral graph Q(n)(G), which can be got by replacing

each edge of the given graph G with a complete bipartite graph Kn,n. We characterize all the spectrum of the graph

Q(n)(G) in terms of the given graph. Then we derive the formula for the multiplicative degree-Kirchhoff index, the

Kemeny’s constant and the number of spanning trees of Q(n)(G). Finally, we can obtain more about the iterative

graph Q(n)
r (G).
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1. INTRODUCTION

1.1. Notions and definitions. Throughout all the paper, we consider a simple and connected

graph G=(V (G),E(G)) with N0 vertices and denote the vertex set of G by V (G)= {1,2, · · · ,N0}.

For any two adjacent vertices s and t, we denote it by s∼ t. Denote the degree of a vertex s by

ds in G.
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Let AG be the adjacency matrix of G, where the (s, t)-entry equals to 1 if s∼ t and 0 otherwise.

Let ds be the degree of the vertex s and DG = diag(d1,d2, · · · ,dN0) be the diagonal matrix of G.

We call LG = DG−AG the Laplacian matrix.

Definition 1. Given a matrix M, let M(s, t) denote the (s, t)-entry of M. For the eigenvalue λ of

the matrix M, denote by mM(λ ) the multiplicity of λ in M.

For the N0 eigenvalues of LG, we label them by λ1 ≤ λ2 ≤ ·· · ≤ λN0 .

Definition 2. Define the normalized Laplacian spectrum on LG as σ = {λ1,λ2, . . . ,λN0}.

Definition 3. The probability of jumping from the current vertex s to another vertex t is pst ,

pst =


1
ds
, i f s∼ t,

0, otherwise.

We call PG = (pst)N0×N0 = D−1
G AG the transition probability matrix.

Definition 4. The normalized Laplacian matrix can be expressed by

LG = I−D
1
2
GPGD

− 1
2

G ,

where I is an N0×N0 identity marix. According to the definition of LG, we have that:

LG(s, t) = δst−
AG(s, t)√

dsdt
.

Where δst is the Kronecker delta.

We often use the normalized Laplacian to characterize parameters of graphs, see [4].

Definition 5. [3] The multiplicative degree-Kirchhoff index of G is expressed by K f ∗(G) =

∑
s<t

dsdtrst .

Definition 6. For a stationary distribution of unbiased random walks on G, let the transition

from an initial vertex s to a target vertex t be selected randomly, we define the expected number

of steps we need by Ke(G), called the Kemeny’s constant.

Definition 7. Define the number of spanning trees of G by τ(G).



1110 QI MA, HUAPING WANG

1.2. Backgrounds. Many graph invariants, including K f ∗(G) and Ke(G), τ(G), can be cal-

culated according to the spectrum of the graph. In recent years, some researchers focused on

expanding a given graph by replacing each edge with another graph and characterize its spec-

trum in terms of the given graph.

Wang et al. [7] generalized the result of [8] by replacing each edge with k triangles, i.e., they

added k edge-disjoint paths of length two between each two adjacent two vertices.

Huang and Li [6] further added k paths of length three between each two adjacent vertices

to get the so-called k-quadrilateral graph Qk(G). Luckily, the normalized Laplacian spectra

of these resulting graphs can be characterized completely in terms of the given graph G. As

applications, one can calculate K f ∗(G), Ke(G) and τ(G) of these graphs again in terms of the

host graph G.

2. PRELIMINARIES

Let n ≥ 2. For each edge e = st, add 2n− 2 vertices to form a complete bipartite graph,

where s and t belong to part X and part Y respectively, and name the vertices in X with pe
m(m =

1,2, · · · ,n− 1), the vertices in Y with qe
y(y = 1,2, · · · ,n− 1). We denote by Q(n)(G) the new

graph. The Figure 1 gives an example of the Q(n)(G) for G = K3 and n = 3.

FIGURE 1. The graph G = K3 and Q(n)(G) for n = 3.

Let E1 = |E(Q(n)(G)| and N1 = |V (Q(n)(G)|. Obviously,

E1 = n2E0, N1 = N0 +(2n−2)E0.

Lemma 2.1. [4] For the graph G with σ = {0 = λ1 < λ2 ≤ ·· · ≤ λN0}. We have

(i) N0
N0−1 ≤ λN0 ≤ 2. Besides, λN0 = 2 if and only if G is a bipartite graph;

(ii) For any eigenvalue λs of LG, 2−λs is also an eigenvalue of LG and mLG(λs) =mLG(2−

λs) otherwise.
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Lemma 2.2. [5] For the given connected graph G, the rank of the incidence matrix B is

r(B) =


N0−1, G is bipartite,

N0, otherwise.

Lemma 2.3. [1] For the simple connected graph G, r(LG) = N0−1.

Lemma 2.4. For the given graph G with σ = {0 = λ1 < λ2 ≤ ·· · ≤ λN0}, we have

(i)[3] K f ∗(G) = 2E0
N0
∑

s=2

1
λs
.

(ii)[2] Ke(G) =
N0
∑

s=2

1
λs
.

(iii)[4] τ(G) = 1
2E0

N0
∏

s=1
ds ·

N0
∏

k=2
λk.

(iv) K f ∗(G) = 2E0Ke(G).

3. THE NORMALIZED LAPLACIAN SPECTRUM OF Q(n)(G)

For Q(n)(G), denote the normalized Laplacian by LQ. Let d
′
s be the degree of the vertex

s ∈ V (Q(n)(G)). Denote the adjacency matrix by AQ and the degree matrix DQ. Let NG =

D
− 1

2
G AGD

− 1
2

G and NQ = D
− 1

2
Q AQD

− 1
2

Q .

At first, we consider the eigenvalue and its eigenvector in the graph Q(n)(G). Take a eigen-

vector v = (v1,v2, . . .vN1)
T for the eigenvalue λ of LQ, so we have,

(1) LQv = (I−NQ)v = λv.

For u ∈V (Q(n)(G)), from the Eqn. (1), we have

(2) (1−λ )vu =
N1

∑
k=1

NQ(u,k)vk =
N1

∑
k=1

AQ(u,k)√
d ′ud ′k

vk.

For simplicity, let VO =V (G). And for s ∈VO, let Ns = NG(s). Let e = st ∈ E(G). By Eqn. (2),

we have that

(3)

(1−λ )vs = ∑
t∈Ns

vt√
d ′sd

′
t

+ ∑
e∈E(G) is incident with s

n−1

∑
l=1

vqe
l√

d ′sd
′
qe

l

= ∑
t∈Ns

vt

n
√

dsdt
+ ∑

e∈E(G) is incident with s

n−1

∑
l=1

vqe
l

n
√

ds
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(4)

(1−λ )vt = ∑
s∈Nt

vs√
d ′td

′
s

+ ∑
e∈E(G) is incident with t

n−1

∑
l=1

vpe
l√

d ′td
′
pe

l

= ∑
s∈Nt

vs

n
√

dtds
+ ∑

e∈E(G) is incident with t

n−1

∑
l=1

vpe
l

n
√

ds

Similarly, for any t ∈ Ns, we have

(5)

(1−λ )vpe
1
=

vt√
d ′t d

′
pe

1

+
vqe

1√
d ′pe

1
d ′qe

1

+
vqe

2√
d ′pe

1
d ′qe

2

+ · · ·+
vqe

n−1√
d ′pe

1
d ′qe

n−1

=
vt

n
√

dt
+

vqe
1
+ vqe

2
+ · · ·+ vqe

n−1

n

and

(6)

(1−λ )vpe
2
=

vt√
d ′t d

′
pe

2

+
vqe

1√
d ′pe

2
d ′qe

1

+
vqe

2√
d ′pe

2
d ′qe

2

+ · · ·+
vqe

n−1√
d ′pe

2
d ′qe

n−1

=
vt

n
√

dt
+

vqe
1
+ vqe

2
+ · · ·+ vqe

n−1

n
.

And for any s ∈ Nt , we have

(7)

(1−λ )vqe
1
=

vs√
d ′sd

′
qe

1

+
vpe

1√
d ′qe

1
d ′pe

1

+
vpe

2√
d ′qe

1
d ′pe

2

+ · · ·+
vpe

n−1√
d ′qe

1
d ′pe

n−1

=
vs

n
√

ds
+

vpe
1
+ vpe

2
+ · · ·+ vpe

n−1

n

and

(8)

(1−λ )vqe
2
=

vs√
d ′sd

′
qe

2

+
vpe

1√
d ′qe

2
d ′pe

1

+
vpe

2√
d ′qe

2
d ′pe

2

+ · · ·+
vpe

n−1√
d ′qe

2
d ′pe

n−1

=
vs

n
√

ds
+

vpe
1
+ vpe

2
+ · · ·+ vpe

n−1

n
.

Lemma 3.1. Let λ 6= 1
n , 1 and 2n−1

n . If λ is an eigenvalue of LQ, then λ (2n−nλ−1)
1−λ

is also an

eigenvalue of LG with mLG(
λ (2n−nλ−1)

1−λ
) = mLQ(λ ).

Proof: Take an eigenvector v = (v1,v2, · · · ,vN1)
T for the the eigenvalue λ of LQ. Let e = st ∈

E(G). Since λ 6= 1, from Eqns. (5) and (6), we have vpe
1
= vpe

2
. By Eqns. (7) and (8), we can

get vqe
1
= vqe

2
. Easily, we have

vpe
1
= vpe

2
= · · ·= vpe

n−1
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and

vqe
1
= vqe

2
= · · ·= vqe

n−1
.

For convenience, let vpe
1
= xp,vqe

1
= xq. According to (3)(4)(5) and (7) , we have

(9) (1−λ )vs = ∑
t∈Ns

vt

n
√

dsdt
+(n−1) ∑

e∈E(G) is incident with s

xq

n
√

ds
,

(1−λ )vt = ∑
s∈Nt

vs

n
√

dtds
+(n−1) ∑

e∈E(G) is incident with t

xp

n
√

dt
,

(10) (1−λ )xp =
vt

n
√

dt
+

n−1
n

xq

and

(11) (1−λ )xq =
vs

n
√

ds
+

n−1
n

xp.

Combining Eqns. (10) and (11) , we have

(12) (2n−nλ −1)(1−nλ )xp =
n(1−λ )√

dt
vt +

(n−1)√
ds

vs.

Similarly, we can have

(13) (2n−nλ −1)(1−nλ )xq =
n(1−λ )√

ds
vs +

(n−1)√
dt

vt .

Combining Eqns. (9) and (13), for λ 6= 1
n , 1 and 2n−1

n , it follows

n(1−λ )vs =
n−1

(2n−nλ −1)(1−nλ ) ∑
t∈Ns

(
n(1−λ )

ds
vs +

n−1√
dsdt

vt)+ ∑
t∈Ns

vt√
dsdt

=
n(n−1)(1−λ )

(2n−nλ −1)(1−nλ )
vs + ∑

t∈Ns

(
(n−1)2

(2n−nλ −1)(1−nλ )
+1)

vt√
dsdt

Therefore, the equation

(14)
nλ 2−2nλ +1

1−λ
vs = ∑

t∈Ns

vt√
dsdt

holds for λ 6= 1
n , 1 and 2n−1

n .

From Eqn. (14), it is obvious that nλ 2−2nλ+1
1−λ

is the eigenvalue of NG when λ 6= 1
n , 1 and

2n−1
n . So for any eigenvalue λ (λ 6= 1

n , 1 and 2n−1
n ) and a corresponding eigenvector v of LQ,

λ (2n−nλ−1)
1−λ

and (vs)
T
s∈VO

are an eigenvalue and a corresponding eigenvector of LG, respectively.

This implies that mLG(
λ (2n−nλ−1)

1−λ
)≥ mLQ(λ ).
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On the other hand, for any eigenvalue λ (2n−nλ−1)
1−λ

(6= 0,2) and a corresponding eigenvector

(vs)
T
s∈VO

of LG, λ is a eigenvalue of LQ and the vector determined by (vs)
T
s∈VO

and Eqn. (12)

and Eqn. (13) together is a corresponding eigenvector. Hence mLG(
λ (2n−nλ−1)

1−λ
)≤mLQ(λ ). So

we have that mLG(
λ (2n−nλ−1)

1−λ
) = mLQ(λ ). �

Theorem 3.2. For the given simple connected graph G, we have the followings

(i) mLQ(0) = 1. And mLQ(2) = 1 if G is bipartite;

(ii) For λ 6= 0 and 2, both λ+2n−1+
√

λ 2−2λ+4n2−4n+1
2n and λ+2n−1−

√
λ 2−2λ+4n2−4n+1

2n are the

eigenvalues of LQ with

mLQ(
λ+2n−1+

√
λ 2−2λ+4n2−4n+1

2n ) = mLQ(
λ+2n−1−

√
λ 2−2λ+4n2−4n+1

2n ) = mLG(λ );

(iii) If G is non-bipartite, mLQ(
1
n) = E0−N0;

(iv) If G is bipartite, mLQ(
1
n) = E0−N0 +1;

(v) mLQ(
2n−1

n ) = E0−N0 +1;

(vi) mLQ(1) = (2n−4)E0 +N0.

Proof: (i) It is obvious from Lemma 2.1.

(ii) Assume x is the eigenvalue of LQ and x 6= 1
n , 1 and 2n−1

n . By Lemma 3.1, we have that

λ = x(2n−nx−1)
1−x , for λ 6= 0 and 2. Thus x = λ+2n−1±

√
λ 2−2λ+4n2−4n+1

2n .

Since each of the eigenvalues λ ( λ 6= 1
n , 1 and 2n−1

n ) and its multiplicity in Q(n)(G) have

been determined in the statement above, here we only need to consider the eigenvalues λ ∈

{1
n ,1,

2n−1
n }.

Let v = (v1,v2, · · · ,vN1)
T be the eigenvector corresponding to the eigenvalue λ of LQ. Let

e ∈ E(G) with end vertices s and t. For n ≥ 2, substituting λ = 1
n into Eqns. (5) and (6), we

have vpe
1
= vpe

2
. By Eqns. (7) and (8), we can get vqe

1
= vqe

2
. Easily, we have

vpe
1
= vpe

2
= · · ·= vpe

n−1

and

vqe
1
= vqe

2
= · · ·= vqe

n−1
.
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For convenience, let vpe
1
= xp,vqe

1
= xq. When λ = 1

n , according to (3)(4)(5) and (7), we have

(15) (n−1)vs = ∑
t∈Ns

vt√
dsdt

+(n−1) ∑
e∈E(G) is incident with s

xq√
ds
,

(n−1)vt = ∑
s∈Nt

vs√
dtds

+(n−1) ∑
e∈E(G) is incident with t

xp√
dt
,

(16) (n−1)xp =
vt√
dt

+(n−1)xq

and

(17) (n−1)xq =
vs√
ds

+(n−1)xp.

Combining Eqns. (16) and (17), we get

(18)
vs√
ds

=− vt√
dt
, s ∈VO, t ∈ Ns.

(iii) Let G be non-bipartite. Take an odd cycle C of length h with vertices s1,s2, ...,sh in turn.

By Eqn. (18), we have

vi1√
ds1

=− vs2√
ds2

= · · ·=
vih√
dsh

=− vs1√
ds1

,

which implies that vsk = 0 for any sk, and hence we have

(19) vs = 0 for all s ∈VO.

Together with Eqns. (15) and (16), we have that

(20) ∑
e∈E(G) is incident with s

xq = 0, for all s ∈VO

and

(21) xp = xq, for all e ∈ E(G).

Therefore, the eigenvectors v = (v1,v2, ...,vN1)
T corresponding to λ = 1

n can be determined

by Eqns. (19)(20)(21). According to the construction of Q(n)(G), let x = (xq)
T be the E0

dimensional vector. From Eqns. (19)(20)(21), we have Bx = 0. According to Lemma 2.2, the

basic solution system contains E0−N0 linearly independent elements, so we have mLQ(
1
n) =

E0−N0.
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(iv) Let G be bipartite. Combining Eqn. (18) and Eqn. (15), we have

(22)
n

n−1

√
dsvs = ∑

e∈E(G) is incident with s

xq, s ∈VO.

Let nv1
(n−1)

√
d1

= w1. Denote by X and Y the partite sets of the graph G and without loss of

generality, let 1 ∈ X . Then from Eqn. (18), we have that nvs
(n−1)

√
ds
= w1 if s ∈ X , and nvs

(n−1)
√

ds
=

−w1 if s ∈ Y . According to Eqn. (22), we have that

(23)

∑
e∈E(G) is incident with s

xq−dsw1 = 0, if s ∈ X ,

∑
e∈E(G) is incident with s

xq +dsw1 = 0, if s ∈ Y.

Therefore, the eigenvectors v = (v1,v2, . . . ,vN1)
T corresponding to λ = 1

n can be determined

by Eqns. (10)(18) and (23). According to the definition of Q(n)(G), let x = (xq)
T be the E0

dimensional vector.

For convenience, assume that the first |X | rows in the incident matrix B of G correspond to

the vertices in X . Hence the matrix B can be written as B =
(BX

BY

)
. Let DX and DY denote the

volume vectors which consist of degree sequences of vertices of X and Y , respectively. We

denote matrix C by

C =

 BX −DX

BY DY

 .

Hence Eqns. (10)(18) and (23) are obviously equivalent to C
( x

w1

)
= 0.

By Lemma 2.2, the rank of B is N0−1 when G is bipartite. We denote the volume vectors of

C by e1,e2, · · · ,eE0,e0 from left to right. Assume that e0 is linearly related to the e1,e2, · · · ,eE0 ,

it means that, there exist constants c1,c2, · · · ,cE0 making the followed formula true,

(24) e0 = c1e1 + c2e2 + · · ·+ cE0eE0.

For every volume of C, there are two entries 1 in BX and BY , respectively. From Eqn. (24),

we have c1 + c2 + · · ·+ cE0 =
|X |
∑

i=1
−ds and c1 + c2 + · · ·+ cE0 =

N0
∑

i=|X |+1
ds. This implies that

|X |
∑

i=1
(−ds) =

N0
∑

i=|X |+1
ds. However, ds > 0 for each s = 1,2, · · · ,N0. Hence it is obvious that
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|X |
∑

i=1
−ds =

N0
∑

i=|X |+1
ds is impossible. Thus we get a contradiction. So e0 and e1,e2, · · · ,eE0 are

linearly independent, i.e., the rank of matrix C is r(C) = r(B)+1 = N0.

Therefore, the basic solution space for C
( x

w1

)
= 0 contains E0−N0 +1 linearly independent

elements when G is bipartite, i.e., mLQ(
1
n) = E0−N0 +1.

(v) For n≥ 2, substituting λ = 2n−1
n into Eqns. (5) and (6), we have vpe

1
= vpe

2
. By Eqns. (7)

and (8), we can get vqe
1
= vqe

2
. Easily, we have

vpe
1
= vpe

2
= · · ·= vpe

n−1

and

vqe
1
= vqe

2
= · · ·= vqe

n−1
.

For convenience, let vpe
1
= xp,vqe

1
= xq. When λ = 2n−1

n , according to (3)(4)(5) and (7), we have

(25) (1−n)vs = ∑
t∈Ns

vt√
dsdt

+(n−1) ∑
e∈E(G) is incident with s

xq√
ds
,

(1−n)vt = ∑
s∈Nt

vs√
dtds

+(n−1) ∑
e∈E(G) is incident with t

xp√
dt
,

(26) (1−n)xp =
vt√
dt

+(n−1)xq

and

(27) (1−n)xq =
vs√
ds

+(n−1)xp.

Combining Eqns. (26) and (27), we get

(28)
vs√
ds

=
vt√
dt
,s ∈VO, t ∈ Ns.

Let vs√
ds
= w2. Substituting Eqn. (28) into Eqns. (25) and (26), we have

(29) ∑
e∈E(G) is incident with s

xq =
n

1−n
w2ds, s ∈VO.

and

(30) xp + xq =
w2

1−n
, for all e ∈ E(G).
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According to Eqn. (30), we have

(31) ∑
s∈VO

∑
t∈Ns

xq = (n−1) ∑
e∈E(G)

(xp + xq) =−w2E0.

On the other hand, using Eqn. (29), we also have

(32) ∑
s∈VO

∑
t∈Ns

xq =
n

1−n
w2 ∑

s∈VO

ds =
2nw2E0

1−n

Thus, we have w2 = 0, which means that vs = 0 for any s∈VO. So, v= (v1,v2, · · · ,vN1)
T respect

to λ = 2n−1
n can be completely obtained by equations below

(33) vs = 0, s ∈VO,

(34) ∑
e∈E(G) is incident with s

xq = 0

and

(35) xp + xq = 0.

We can describe the adjacency matrix of Q(n)(G) as

AQ =



AG

n−1︷ ︸︸ ︷
B1 · · ·B1

n−1︷ ︸︸ ︷
B2 · · ·B2

BT
1 0 · · ·0 IE0 · · · IE0
...

...
...

BT
1 0 · · ·0 IE0 · · · IE0

BT
2 0 · · ·0 IE0 · · · IE0
...

...
...

BT
2 0 · · ·0 IE0 · · · IE0



,

where IE0 is an E0×E0 identity matrix. It is routine to check that B1 +B2 = B, B1BT
2 +B2BT

1 =

AG and B1BT
1 +B2BT

2 = DG.

From Eqns. (33)(34) and (35) ,we have (B1−B2)x = 0. Combining Lemma (2.3), we have

r(B1−B2) = r[(B1−B2)(B1−B2)
T ] = r[(B1BT

1 +B2BT
2 )− (B1BT

2 +B2BT
1 )] = r(DG−AG) =

r(LG) = N0−1. So the basic solution space contains E0−N0+1 linearly independent elements,

i.e., mLQ(
2n−1

n ) = E0−N0 +1.



GENERALIZED QUADRILATERAL GRAPHS 1119

(vi) For n≥ 2 and λ = 1 ,from Eqns. (5) and (7), it is clear that

vqe
1
+ vqe

2
+ · · ·+ vqe

n−1
+

vt√
dt

= 0

and

vpe
1
+ vpe

2
+ · · ·+ vpe

n−1
+

vs√
ds

= 0.

For convenience, for each edge ei ∈ E(G), i = 1,2, . . . ,E0, denote by si and ti the end vertices

of ei. So, we have the following linear equation system

(36)



vqe1
1

+vqe1
2

+vqe1
3

+ · · · +vqe1
n−1

+
ve1

t1√
de1

t1

= 0,

vqe2
1

+vqe2
2

+vqe2
3

+ · · · +vqe2
n−1

+
ve2

t2√
de2

t2

= 0,

...

v
q

eE0
1

+v
q

eE0
2

+v
q

eE0
3

+ · · · +v
q

eE0
n−1

+
v

eE0
tE0√
d

eE0
tE0

= 0.

vpe1
1

+vpe1
2

+vpe1
3

+ · · · +vpe1
n−1

+
ve1

s1√
de1

s1

= 0,

vpe2
1

+vpe2
2

+vpe2
3

+ · · · +vpe2
n−1

+
ve2

s2√
de2

s2

= 0,

...

v
p

eE0
1

+v
p

eE0
2

+v
p

eE0
3

+ · · · +v
p

eE0
n−1

+
v

eE0
sE0√
d

eE0
sE0

= 0.

The corresponding coefficient matrix contains the following 2E0× (2n−2)E0 submatrix

1 · · · 1︸ ︷︷ ︸
n−1

0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1︸ ︷︷ ︸
n−1

· · · 0 · · · 0

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1︸ ︷︷ ︸
n−1


.
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Clearly, the submatrix above is of rank 2E0. Hence the basic solution space for (36) cantains

(2n−4)E0 +N0 linearly independent elements. Therefore, mLQ(1) = (2n−4)E0 +N0.

This completes the proof of the theorem. �

4. SOME APPLICATIONS

Let Q(n)
0 (G) = G and Q(n)

r (G) = Q(n)(Q(n)
r−1(G)) for r ≥ 1. Denote the number of edges of

Q(n)
r (G)(r≥ 0) by Er, and denote the number of vertices by Nr. By the construction of Q(n)

r (G),

we have

Er = n2Er−1, Nr = Nr−1 +(2n−2)Er−1.

Hence

(37) Er = n2rE0, Nr = N0 +
2(n2r−1)E0

n+1
.

For convenience, for Q(n)
r (G) and r≥ 0, we use Lr and σr to denote the normalized Laplacian

and its spectrum, respectively. From Theorem 3.2, we have the theorem next.

Theorem 4.1. For r ≥ 2,n≥ 2,

(i) if G is non-bipartite,

σr = {
x+2n−1±

√
x2−2x+4n2−4n+1

2n
|x ∈ σr−1\{0}}∪{0,1,

1
n
,
2n−1

n
},

where

mLr(
x+2n−1±

√
x2−2x+4n2−4n+1

2n ) = mLr−1(x) for x ∈ σr−1\{0},

mLr(0) = 1,

mLr(1) = (2n−4)Er−1 +Nr−1,

mLr(
1
n) = Er−1−Nr−1

and mLr(
2n−1

n ) = Er−1−Nr−1 +1.

(ii) if G is bipartite,

σr = {
x+2n−1±

√
x2−2x+4n2−4n+1

2n
|x ∈ σr−1\{0,2}}∪{0,1,2,

1
n
,
2n−1

n
},

where

mLr(
x+2n−1±

√
x2−2x+4n2−4n+1

2n ) = mLr−1(x) for x ∈ σr−1\{0,2},
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mLr(0) = 1,

mLr(1) = (2n−4)Er−1 +Nr−1,

mLr(2) = 1, mLr(
1
n) = Er−1−Nr−1 +1

and mLr(
2n−1

n ) = Er−1−Nr−1 +1.

Theorem 4.2. For r ≥ 1 and n≥ 2,

(38)

K f ∗(Q(n)
r (G)) = (2n−1)rn2rK f ∗(G)+

4n2r(n(3n−1)n2r− (n−1)2− (2n2 +n−1)(2n−1)r)

(n−1)(n+1)(2n−1)
E0

2

− 2(n−1)n2r((2n−1)r−1)
2n−1

E0N0−
n2r((2n−1)r−1)

2n−1
E0.

Proof: Since 0 = λ1 < λ2 ≤ ·· · ≤ λN0 . Whether G is bipartite or not, from Theorem 4.1 and
Lemma 2.4, we have (i)

(39)

K f ∗(Q(n)(G)) = 2E1

[
N0

∑
i=2

(
1

f1(λs)
+

1
f2(λs)

)+N0 +(2n−4)E0 +n(E0−N0)+
n

2n−1
(E0−N0 +1)

]

= 2n2E0

N0

∑
i=2

(1+
2n−1

λs
)+2n2E0(

6n2−10n+4
2n−1

E0−
2n2−2n+1

2n−1
N0 +

n
2n−1

)

= (2n−1)n2K f ∗(G)+
4n2(n−1)(3n−2)

2n−1
E0

2− 4n2(n−1)2

2n−1
E0N0−

2n2(n−1)
2n−1

E0.

It follows from Eqns. (37) and (39) that

K f ∗(Q(n)
r (G)) = (2n−1)n2K f ∗(Qn

r−1(G))+
4n2(n−1)(3n−2)

2n−1
Er−1

2− 4n2(n−1)2

2n−1
Er−1Nr−1−

2n2(n−1)
2n−1

Er−1.

= (2n−1)rn2rK f ∗(G)+
4(3n−2)n2r(n2r− (2n−1)r)

(n−1)(2n−1)
E0

2− 2(n−1)n2r((2n−1)r−1)
2n−1

E0N0

+
4n2r(n−1)((2n−1)r−1−1)

(n+1)(2n−1)
E0

2− 8n2r+2(n2r−2− (2n−1)r−1)

(n+1)(2n−1)
E0

2− n2r((2n−1)r−1)
2n−1

E0

= (2n−1)rn2rK f ∗(G)+
4n2r(n(3n−1)n2r− (n−1)2− (2n2 +n−1)(2n−1)r)

(n−1)(n+1)(2n−1)
E0

2

− 2(n−1)n2r((2n−1)r−1)
2n−1

E0N0−
n2r((2n−1)r−1)

2n−1
E0.

The proof is completed. �

Theorem 4.3. For r ≥ 1 and n≥ 2,

Ke(Q
(n)
r (G)) = (2n−1)rKe(G)+

2(n(3n−1)n2r− (n−1)2− (2n2 +n−1)(2n−1)r)

(n−1)(n+1)(2n−1)
E0

− (n−1)((2n−1)r−1)
2n−1

N0−
(2n−1)r−1

2(2n−1)
.

Proof:
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By Eqns. (37) and (38) and Lemma 2.4 (iv), we can get

Ke(Q
(n)
r (G)) =

1
2Er

K f ∗(Q(n)
r (G))

=
1

2n2rE0
((2n−1)rn2rK f ∗(G)+

4n2r(n(3n−1)n2r− (n−1)2− (2n2 +n−1)(2n−1)r)

(n−1)(n+1)(2n−1)
E0

2

− 2(n−1)n2r((2n−1)r−1)
2n−1

E0N0−
n2r((2n−1)r−1)

2n−1
E0)

= (2n−1)rKe(G)+
2(n(3n−1)n2r− (n−1)2− (2n2 +n−1)(2n−1)r)

(n−1)(n+1)(2n−1)
E0

− (n−1)((2n−1)r−1)
2n−1

N0−
(2n−1)r−1

2(2n−1)
.

The proof is completed. �

Theorem 4.4. For r ≥ 1 and n≥ 2,

τ(Q(n)
r (G)) = n(2n−4)s1+2s2−2r · (2n−1)s1−s2+r · τ(G),

where s1 =
r−1
∑

i=0
Ei =

n2r−1
n2−1 E0, and s2 =

r−1
∑

i=0
Ni = rN0 +

2
n+1(

n2r−1
n2−1 − r)E0.

Proof: For Q(n)(G), assume that 0 = λ
′
1 < λ

′
2 ≤ ·· · ≤ λ

′
N1

. Whether G is bipartite or not,

according to Lemma 2.4 (iii), we obtain that

(40)
τ(Q(n)(G))

τ(G)
=

nN0+(2n−2)E0−2 ·
N1
∏
i=2

λ
′
i

N0
∏
i=2

λs

.

And we can get by Theorem 3.2

(41)

N1

∏
i=2

λ
′
i = (

1
n
)E0−N0 · (2n−1

n
)E0−N0+1 ·

N0

∏
i=2

f1(λs) f2(λs)

= (
1
n
)E0−N0 · (2n−1

n
)E0−N0+1 ·

N0

∏
i=2

λs

n

=
(2n−1)E0−N0+1

n2Ep0−N0

N0

∏
i=2

λs.

By Eqns. (40) and (41), we have

τ(Q(n)(G)) = n(2n−4)E0+2N0−2 · (2n−1)E0−N0+1 · τ(G).
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And from the recursive relation, we have

τ(Q(n)
r (G)) = n(2n−4)Er−1+2Nr−1−2(2n−1)Er−1−Nr−1+1

τ(Q(n)
r−1(G))

= n
(2n−4)

r−1
∑

i=0
Ei+2

r−1
∑

i=0
Ni−2r

(2n−1)
r−1
∑

i=0
Ei−

r−1
∑

i=0
Ni+r

τ(G)

= n(2n−4)s1+2s2−2r(2n−1)s1−s2+r
τ(G).

The proof is completed. �
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