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Abstract. In this paper, we introduce the generalized quadrilateral graph Q") (G), which can be got by replacing
each edge of the given graph G with a complete bipartite graph K, ,. We characterize all the spectrum of the graph
o (G) in terms of the given graph. Then we derive the formula for the multiplicative degree-Kirchhoff index, the
Kemeny’s constant and the number of spanning trees of o (G). Finally, we can obtain more about the iterative
graph 0" (G).
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1. INTRODUCTION

1.1. Notions and definitions. Throughout all the paper, we consider a simple and connected
graph G = (V(G),E(G)) with Ny vertices and denote the vertex setof Gby V(G) ={1,2,--- ,Np}.
For any two adjacent vertices s and ¢, we denote it by s ~ . Denote the degree of a vertex s by

ds in G.
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Let Ag be the adjacency matrix of G, where the (s,7)-entry equals to 1 if s ~ 7 and 0 otherwise.
Let d, be the degree of the vertex s and D = diag(dy,d>, - - - ,dy,) be the diagonal matrix of G.

We call Lg = Dg — Ag the Laplacian matrix.

Definition 1. Given a matrix M, let M (s,t) denote the (s,t)-entry of M. For the eigenvalue A of
the matrix M, denote by my(A) the multiplicity of A in M.

For the Ny eigenvalues of £, we label them by A1 < A < --- < Ay,
Definition 2. Define the normalized Laplacian spectrum on £ as 6 = {A1,Aa,..., AN, }.

Definition 3. The probability of jumping from the current vertex s to another vertext is py,

1 .

dy? lf s~1,
Pst =

0, otherwise.

We call PG = (Pst)NyxNy = DEIAG the transition probability matrix.

Definition 4. The normalized Laplacian matrix can be expressed by
1 _1
L6 =1—DEPeDS?,

where I is an Ny X Ny identity marix. According to the definition of £, we have that:

A(;(S,t)

Lels,t) = 8y — .
o(s:1) = 0w =~

Where Oy is the Kronecker delta.
We often use the normalized Laplacian to characterize parameters of graphs, see [4].

Definition 5. [3] The multiplicative degree-Kirchhoff index of G is expressed by K f*(G) =
Y dsdiry.

§s<t

Definition 6. For a stationary distribution of unbiased random walks on G, let the transition
from an initial vertex s to a target vertex t be selected randomly, we define the expected number

of steps we need by K,(G), called the Kemeny’s constant.

Definition 7. Define the number of spanning trees of G by ©(G).
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1.2. Backgrounds. Many graph invariants, including K f*(G) and K,(G), 7(G), can be cal-
culated according to the spectrum of the graph. In recent years, some researchers focused on
expanding a given graph by replacing each edge with another graph and characterize its spec-
trum in terms of the given graph.

Wang et al. [7] generalized the result of [8] by replacing each edge with k triangles, i.e., they
added k edge-disjoint paths of length two between each two adjacent two vertices.

Huang and Li [6] further added k paths of length three between each two adjacent vertices
to get the so-called k-quadrilateral graph Q%(G). Luckily, the normalized Laplacian spectra
of these resulting graphs can be characterized completely in terms of the given graph G. As
applications, one can calculate K f*(G), K.(G) and 7(G) of these graphs again in terms of the

host graph G.

2. PRELIMINARIES

Let n > 2. For each edge e = st, add 2n — 2 vertices to form a complete bipartite graph,
where s and ¢ belong to part X and part Y respectively, and name the vertices in X with p¢, (m =
1,2,---,n—1), the vertices in ¥ with gj(y =1,2,--- ,n —1). We denote by Q(")(G) the new

graph. The Figure 1 gives an example of the o (G) for G = K3 and n = 3.

VAN

FIGURE 1. The graph G = K3 and Q") (G) for n = 3.

Let £, = |[E(Q"(G)| and Ny = [V (Q"(G),. Obviously,

E1 :I’le(), N1 :N0+(2n—2)E0.

Lemma 2.1. [4] For the graph G withc = {0 =21 <Ay <--- < Ay, }. We have
(1) 1% < An, < 2. Besides, Ay, =2 if and only if G is a bipartite graph;
(ii) For any eigenvalue As of £, 2 — A, is also an eigenvalue of £ and m ¢, (As) = mg, (2 —

As) otherwise.
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Lemma 2.2. [5] For the given connected graph G, the rank of the incidence matrix B is

No—1, Gis bipartite,
r(B) =

No, otherwise.
Lemma 2.3. [1] For the simple connected graph G, r(Lg) = No — 1.
Lemma 2.4. For the given graph G with 6 = {0 =4 <Ay <--- < Ay, }, we have
No
M3 Kf*(G) =2E0 ¥ 1,
s=
(D2 Ke(G) = L 3,-
(ii)[4] 7(G) = - H dy - H Ak
(iv) Kf*(G) = 2EK, (G).
3. THE NORMALIZED LAPLACIAN SPECTRUM OF Q") (G)

For Q(”)(G), denote the normalized Laplacian by .Zj. Let d; be the degree of the vertex
s € V(Q"(G)). Denote the adjacency matrix by Ap and the degree matrix Dy. Let Ng =
_1 _1 _1 _1
DGZAGDG2 and NQ = DQZAQDQ2 .
At first, we consider the eigenvalue and its eigenvector in the graph o (G). Take a eigen-

vector v = (v1,v2,...vy, )T for the eigenvalue A of Zp. so we have,
(1) Zov=(—Np)v=~Av.

For u € V(Q")(G)), from the Eqn. (1), we have

Np
(2) (1-2 vu—ZNQuk Z

k=1 uk

For simplicity, let Vo = V(G). And for s € Vp, let Ny = Ng(s

. Lete = st € E(G). By Eqn. (2),

we have that

—1 v
(1-Ayy= Y ——+ Y Z d
1€Ns \/d‘;d; ¢cE(G) is incident with si=1 /d qle
3)
Vi

q°
l

S

I
il ug!

—+ )3 Z
$%1 ¢cE(G) is incident with s/=!1
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, _
(I=Ay =} ——+ )3 Z —
seNi \/d,d,  ecE(G) is incident with (/=1 {/did pl

n—1

4)
Ve

n\/dy

Lozt .k

SEN; ecE(G) 1s incident with ¢ /=1

Similarly, for any ¢ € Ny, we have

Vs Vg,

Vq]
vpl + ! / d/ d/
(5) \/d dys \/ \/dpidqé P
_ W n q.+qu+"‘+"qf;_1
n/d; n

and
Vql 3
sz + / / o / /
© \/d d, \/ \/dpgdqg dd,
Vi + ql+Vq2+"'+Vqt’

n/d, n

And for any s € N;, we have

Vpe Ve Ve
P p P
)V(I" 1 + 2 n—1

(1 _l 1 = v;“ / / /
- \/dsd \/ \/dqidpg S d

Vs +Vp.+"p2+"'+"p"

— n—1
 n/d, n

and

Vps vl’z Vo

(1-A)vgy =~ + —
" \/de \/d \/ 1/az o

Vs + P1+vl’z+' +v17n1

n/dy n
Lemma 3.1. Let A # %, 1 and % If A is an eigenvalue of £y, then m"l%"f_l) is also an
eigenvalue of £ with mgG(wn%lf—l)) = mgQ(l).
Proof: Take an eigenvector v = (vi,vp, -+, vy, ) for the the eigenvalue A of %p. Let e = st €

E(G). Since A # 1, from Eqns. (5) and (6), we have vpe = vpe. By Eqns. (7) and (8), we can

get vye = ve. Easily, we have

Vi =Vps = =V,
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and
Vai = Vas = T Ve
For convenience, let Vpe =Xp, Vgt = Xg. According to (3)(4)(5) and (7) , we have

Xq

9 Z I’l - 1) )
©) ten, v d d’ ecE(G) 1s incident with s nvd,

(1=Ay =Y —2— - (n—1) y

sen, 1V didy ¢cE(G) is incident with " dr
(10) (1-2) v nol
— X, = —_—X
P n d; n 1
and
(11) (1A=t 2]
— —Xp.
q n\/— n P

Combining Eqns. (10) and (11) , we have
n(l—24) (n—1)

1

Similarly, we can have
n(1 —7L)v (n—1)
NN
Combining Eqns. (9) and (13), for A # %, 1 and Z"n’ L it follows
n—1 n(l—2) n—1
1—A)v, =
M=V = G A = (=) L (Tt v [§V \/—d a

_ n(n—1)(1-2) (n—1)? v
"o it @ o VVag

(13) (2n—nA —1)(1 —nld)x,

V.

Therefore, the equation

ni? 2n7L+1

14 =
(14 1—2 tGZN \/d d;

holds for A # }l, 1 and Z"H—_l

1113

From Eqn. (14), it is obvious that nA?2nA+1 jg the eigenvalue of N when A # 1, 1 and

-1

2”7_1. So for any eigenvalue A (A # rll, 1 and 2” !

£2—) and a corresponding eigenvector v of %y,

ACn=ni=1) apq (vs)I,, are an eigenvalue and a corresponding eigenvector of ., respectively.

1-2 s€Vo
This implies that m ¢, (mﬁ%ﬂ;}_l)) > mgy(A).
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On the other hand, for any eigenvalue % (# 0,2) and a corresponding eigenvector

vo) I, of Z5, A is a eigenvalue of %, and the vector determined by (v5)’_,, and Eqn. (12)
s€Vp 0 s€Vp

and Eqn. (13) together is a corresponding eigenvector. Hence m ¢, (%) <mg,(4). So
we have that m g, (X222=1y = oy (). O

Theorem 3.2. For the given simple connected graph G, we have the followings

(i) mg,(0) = 1. And mg,(2) = 1 if G is bipartite;

.. _ 2_ 2__ 1 2_ 2_
i) For A # 0 and 2, both 221 1+VAZ2dtdn —dntl ) g AE2n—1=VAZ2Acdn—dntl (o e
2n 2n

eigenvalues of £y with

B 7 7 1 2_ 2_
mgg(/wzn 1+V2 2n27L+4n 4n+1) :mfg(uzn 1-V2 2n2)t+4n 4n+1) = my,(A);

(i) If G is non-bipartite, m &, (%) = Eo— No;

(iv) If G is bipartite, mZQ(%) =Ey—No+1;
(V) my,(¥1) = Eg—No+ 1;
(vi) me(1> = (211 —4)E0 + Np.

Proof: (i) It is obvious from Lemma 2.1.

(ii) Assume x is the eigenvalue of .2 and x # rlw 1 and % By Lemma 3.1, we have that

—nx— _ 2_ 2_
2 = x(2n1_n;€v 1)’ for A # 0 and 2. Thus x = A2n—1+£VA 2n21+4n dntl

Since each of the eigenvalues A ( A # }l, 1 and 2",1—_1) and its multiplicity in Q") (G) have

been determined in the statement above, here we only need to consider the eigenvalues A €

1 2n—1
n 17 n }

Let v = (v1,v2,--+,vn,)! be the eigenvector corresponding to the eigenvalue A of %p. Let
e € E(G) with end vertices s and 7. For n > 2, substituting A = % into Eqns. (5) and (6), we

have v,e = vpe. By Eqns. (7) and (8), we can get vge = vge. Easily, we have
Vi =Vps = =V,
and

ti:quz'-~:\}qe

n—1"
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For convenience, let Vpe = Xp, Vg = Xg. When A = accordlng to (3)(4)(5) and (7), we have
15 (n—1)v Z (n—1) x—q,
(13) 1EN; \/d_dt ecE(G) is incident with s v,
p

+(n—1)

(n—1)v —
l S‘EZ]V[ dt

)
e€E(G) 1s incident with ¢ Vd,

(16) (n—l)xp:ﬁ—f—(n—l)xq
and
17) (n—1)x, = ;ZT+(n—1)xp

Combining Eqns. (16) and (17), we get

VAR

(iii) Let G be non-bipartite. Take an odd cycle C of length & with vertices sy, 52, ..., s, in turn.

(18) s€Vp, t €Nj.

By Eqn. (18), we have

Vi _ Vs o Vin Vs
Vs, \/dy Vs, s

which implies that v;, = 0 for any sy, and hence we have
(19) vy =0 forall s € V.

Together with Eqns. (15) and (16), we have that

(20) ) x, =0, forall s € Vo
ecE(G) is incident with s
and
(1) x, = X4, forall e € E(G).
Therefore, the eigenvectors v = (v1,V2, ..., vy, )T corresponding to A = & - can be determined

by Eqgns. (19)(20)(21). According to the construction of Q" (G), let x = (xq) be the E
dimensional vector. From Eqns. (19)(20)(21), we have Bx = 0. According to Lemma 2.2, the
basic solution system contains Ep — Ny linearly independent elements, so we have m gQ(%) =

Ey— Np.
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(iv) Let G be bipartite. Combining Eqn. (18) and Eqn. (15), we have

(22) n Vdys = y X, SEVo.

n- ecE(G) 1s incident with s
Let #ﬁ = wy. Denote by X and Y the partite sets of the graph G and without loss of
generality, let 1 € X. Then from Eqn. (18), we have that ﬁj =w;ifs€ X, and #j =

—wy if s € Y. According to Eqn. (22), we have that

xg—dsw1 =0, if s € X,
e€E(G) is incident with s

(23)
) x;+dswy; =0, if s €Y.
ecE(G) 1s incident with s
Therefore, the eigenvectors v = (vi,vy,... ,le)T corresponding to A = % can be determined

by Eqns. (10)(18) and (23). According to the definition of Q(”)(G), let x = (xq)T be the E
dimensional vector.

For convenience, assume that the first |X| rows in the incident matrix B of G correspond to
the vertices in X. Hence the matrix B can be written as B = (g); ) Let Dy and Dy denote the
volume vectors which consist of degree sequences of vertices of X and Y, respectively. We
denote matrix C by

By —Dx

C=
By Dy

Hence Eqns. (10)(18) and (23) are obviously equivalent to C(;‘l) =0.

By Lemma 2.2, the rank of B is Nyp — 1 when G is bipartite. We denote the volume vectors of

C by ej,ep, -+ ,eg,, e from left to right. Assume that e is linearly related to the e, e, ,eg,,
it means that, there exist constants ¢y, 3, -+, cg, making the followed formula true,
24) ey =cie; +crer+ - -+ Cgy€E,.

For every volume of C, there are two entries 1 in By and By, respectively. From Eqn. (24),
X Ny

we have ¢c1 +cy+ - +cg, = Y —dsand c; +co+---+cg, = ) ds. This implies that
i=1 i=|X]+1

X Ny o )

Y (—ds) = Y d,. However, d; > 0 for each s = 1,2,--- | Ny. Hence it is obvious that

i=1 i=[X]+1
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X No
Y —dy;= ) disimpossible. Thus we get a contradiction. So ey and ey,ey,--- ,eg, are
] i=|X|+1

linearly independent, i.e., the rank of matrix C is r(C) = r(B) + 1 = Np.
Therefore, the basic solution space for C(;‘l) = 0 contains Ey — Ny + 1 linearly independent
elements when G is bipartite, i.e., m gQ(l) =Ey—No+ 1.

2n1

(v) For n > 2, substituting A = into Eqns. (5) and (6), we have Ve = Vps. By Eqns. (7)

and (8), we can get Vg = Vgs. Easily, we have

Vi = Vs = = Vo
and
Vai = Vs = T Ve
For convenience, let ve = x), vge = xg. When A= accordlng to (3)(4)(5) and (7), we have
Xq
25 =Y —+@O-1 )y ,
(23) N, v d’ ecE(G) is incident with s v
Vs Xp
(I—njvy =Y, —==+(n—-1) Y 7
sen, V did e€E(G) 1s incident with z\/gf
(26) (1=n)xy = ——+(n—1x
—n)x, = ——=+(n—
p \/LT, q
and
@7 (1—n)xy = —=—+(n—1x
—Nn)xy = n—
q \/ch p
Combining Eqns. (26) and (27), we get
Vs
(28) ,s €Vp, t €Ng.

Vol

Let \;ZT = w». Substituting Eqn. (28) into Eqns. (25) and (26), we have

(29) Y Xy =
ecE(G) is incident with s

wads, s € Vp.
1—n

and

(30) xp+xq=1W—2n, for all e € E(G).
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According to Eqn. (30), we have

31) Z qu:(n—l) Z (xp+x4) = —w2Ep.

seVp teN; e€E(G)

On the other hand, using Eqn. (29), we also have

n 2nwo Ey
(32) Y Y=g w ) A=
sEVp tEN; -n v, —n
Thus, we have wp = 0, which means that v = 0 for any s € V. So, v=(v{,v,---,vy1)7 respect

to A = 2”n—_1 can be completely obtained by equations below

(33) vs =0, s€Vo,

(34) ) xg=0
ecE(G) is incident with s

and

(35) xp+x4=0.

We can describe the adjacency matrix of Q) (G) as

Bg 0---0 Igo-Iro

where Ig, is an E( x E identity matrix. It is routine to check that By + B, = B, BlBg —I—BzBlT =
Ag and B1BT + BB = Dg.

From Eqns. (33)(34) and (35) ,we have (B} — B;)x = 0. Combining Lemma (2.3), we have
r(B) —Ba) = r[(B1 — B2)(B1 — B2)"] = r[(BiB] + B2B] ) — (B1B] + B2B{ )] = r(Dg — Ag) =
r(Lg) = No — 1. So the basic solution space contains Ey — Ny + 1 linearly independent elements,

1.e., mgQ(anl) =FEy—Ny+1.

n
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(vi) Forn >2and A =1 ,from Eqns. (5) and (7), it is clear that

Vi

—==0
Vd;

vq7+vq§+---+vq;_l +

and

Vpp Vs e o =0

Vi
For convenience, for each edge ¢; € E(G), i = 1,2,...,Ey, denote by s; and ¢#; the end vertices

of e;. So, we have the following linear equation system

( el
Vi
Ve Ave Fve 4o 4V  +—4 =0,
9 Ep) 9 4n—1 d°!
(31
€2
Vtz o
Ve +Vve +Ve Fee Ve A+ =0,
q q q3 45-1 d€2
(5}
eEO
1% EEO +v eEO +V eEO _l_ et +v 6’Eo + - O
€k,
q; > a3 4p—1 d.Fo
(36)
el
V_ e —|—V eq —|—V eq —l—. .. +V e _|_ vsl — O7
Py Pa P3 Ppy d§11
€2
Ve Ave 4va Fe fve  f—2 =0,
Py 1) P3 Prq . /d522
€K,
SEO
Ve, +Vep, +Veg, +-0 4V oeg, =0.
Py 12 D3 Ppi deEo
\ SEq

1 --- 1 0 0 0 0
—_——
n—1
0 o 1 --- 1 0 0
—_—
n—1
0 0 0 0 1 - 1
—_——
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Clearly, the submatrix above is of rank 2E,. Hence the basic solution space for (36) cantains
(2n—4)Ey + Ny linearly independent elements. Therefore, m &, (1) = (2n—4)Eo + No.

This completes the proof of the theorem. U

4. SOME APPLICATIONS

Let Q(()n) (G) =G and an) (G) = Q(”)(Q@I(G)) for » > 1. Denote the number of edges of
an) (G)(r > 0) by E,, and denote the number of vertices by N,. By the construction of an) (G),

we have
E, = l’lerfl, N =N,_1+ (2n — Z)Erfl.
Hence
2(n* —1)E,
(37) E = n¥Ey N,=nNot 2" —DEo
n+1

For convenience, for Qﬁ") (G) and r > 0, we use .%, and o, to denote the normalized Laplacian

and its spectrum, respectively. From Theorem 3.2, we have the theorem next.

Theorem 4.1. Forr>2,n> 2,

(1) if G is non-bipartite,

2n—14+vVx2—2x+4n2 —4n+1 1 2n—1
o LV R o o ufo. L2

or={ 2

where

mﬁ(x-i—Zn—l:tW) —my_,(x) for x € 6,_1\{0},
mg,(0) =1,

mg (1) = (2n—4)E,_; +N,_y,

me (L) =E_1—N—

andmgr(z”_') =FE, 1—N,_1+1

n

(1) if G is bipartite,

14V dxtdn? —4 1 1 2n—1
Gr:{x-l— n Vx . X—+4n n+ lx € o0,_1\{0,2}}uU{0,1,2, -, ? h
n n
where
VA2 2x A2 —4n+1y
mﬂ(erZn 1+ x22n2x+4n2 4n+1)_m$ril(x)f0rx€Gr_]\{O,Z},
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mg,(0) =1,
mg(l)=2n—4)E,_1 +N,_1,
mg(2)=1,mg(;) = Er1 — N1 +1
and miﬂr(z"_l) =E,_1—N,_1+1.

n
Theorem 4.2. Forr > 1andn > 2,

4n? (n(3n— n* — (n—1)2 = 2n> +n—1)(2n—1)")

(n—1D)(n+1)(2n—1)
2= ((2n—1)" — 1)E0N0 _n(2n—1) - 1)E0

2n—1 2n—1

Kf*(0"(G)) = (2n— 1)'n¥Kf*(G) + Ey?

(3%)

Proof: Since 0 =A; < A <--- < Ay,. Whether G is bipartite or not, from Theorem 4.1 and
Lemma 2.4, we have (i)

No

1 1
Kf (0" (G)) = 2E, ;(fl()%)+m)+No+(2n—4)Eo+n(E0—N0)+2nn_1(E0—N0+1)
No o on—1 6n* —10n+4 202 —2n+1
> :zanOi:Zz(H n/ls )+ 2 (= 2:111!4r Fo- n2n7n1+ N0+2nr:1)
4n?(n—1)(3n—2 4n?(n—1)>2 2n2(n—1
:(anl)nsz*(G)+ " (l’lznz(]n )E()zf nz(nn_]) EoNp — n2r(ln—1 ) 0-
It follows from Eqns. (37) and (39) that
o e n 4n*(n—1)(3n—2 4n*(n—1)2 22 (n—1
KF(01(6)) = (an— 1K () (G + D=2 g o ATl 2Dy
B PR 4B3n—2)n* (0¥ —(2n—1)") _, 2n—n*((2n—1)"—1)
7(2n71)n Kf (G)+ (n—l)(Zn—]) Ey” — m—1 EyNy
4n2r(n71)((2n71)r’171)E2 8n¥ 2 (n¥ 2 — (2n—1)""1) ) nzr((anl)’fl)E
+ (n+1)(2n—1) o= (n+1)(2n—1) o= 2n—1 0

4n* (n(Bn—1)n* —(n—1)2 = 2n> +n—1)(2n—1)")

=(2n—1)"'n¥Kf*(G) + Do DT Eo?
_ n2r n—1) — n2r n—1) —
_2n-1) 21(1(31 D=1 pono - ((22n_1]) Vg,
The proof is completed. U

Theorem 4.3. Forr > 1andn > 2,

2(n(Bn—1)n? —(n—1)> — (20> +n—1)(2n— 1)’)E
(n—D)(n+1)(2n—1) 0
(n—1)((2n—1)"—1) @n—1)r—1

- 2n—1 0T a1

K.(0"(G)) = (2n— 1)'K.(G) +

Proof:
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By Eqns. (37) and (38) and Lemma 2.4 (iv), we can get

K(01(6)) = 5 Kr (01" (G)

1 4 (n(3n— n? — (n—1)2 — 2n> +n—1)(2n— l)r)E 2
T 2mYE, m—1)(n+1)(2n—1) 0
n— an n—1) — n2r n—1) —

_2—1) 2'(Z(El 1) 1>E0N07 ((22n711) 1)E0)
2(n(Bn—D)n* —(n—1)2 = 2n2 +n—1)(2n—1)")
(n—=1)(n+1)(2n—1)
C(=D(@n-1)y=1) o (2n—1) -1

m—1 T 20n—1)

(2n—1)"n¥Kf*(G) +

=(@2n—-1)'K(G) + Eg

The proof is completed. (]

Theorem 4.4. Forr > 1 andn > 2,

T(an) (G)) _ n(2n74)s1+23272r . (21’1 . 1)s|fs2+r . T(G),

ol n?—1 = 2 ¥l
where sy = Y. Ej="7—Eo, and s = Y. N;=rNo+ il e r)Ep.
i=0 i=0

/

Proof: For Q(”)(G), assume that 0 = l{ < /’Lé <... < 7LN1. Whether G is bipartite or not,

according to Lemma 2.4 (iii), we obtain that

Not(2n-2)Eg—2 M o
n0+(n7)oinll

7(Q"(G)) =2
(40) =
7(G) No
As
And we can get by Theorem 3.2
Mo, 2n—1 No
C— (IN\Eo—No (2 T NEp—No+l1 |
[J3 = G (=) N TR G)
1 2n—1 No 2
41 — (Z\Eo—No (22 " NEo—No+1 | -
@41 G (R

m—1 Ey—Np+1 Ny

2E,0—Ng

i=2

By Egns. (40) and (41), we have

T(Q(n) (G)) _ n(2n—4)E0+2N0—2 . (2]’1 . 1)E0—No+1 . T(G)



GENERALIZED QUADRILATERAL GRAPHS 1123

And from the recursive relation, we have

©(Q)"(G)) = nPr VBTN 2 0 — )N (6))

r—1

r—1 r—1 r—1 r—1
(2}’1—4) Y Ei4+2 Y N;i—2r Y Ei— Y Ni+r
=n i=0 i=0 (2n—1)=0 =0 7(

— n(ln—4)s1+2sz—2r(2n . l)sl _Sz+rT(G).

The proof is completed. [
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