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Abstract: In this paper we present a fourth order numerical method to solve singularly perturbed differential-
difference equations. The solution of this problem exhibits layer behaviour at one end. A fourth order finite
difference scheme on a uniform mesh is developed. The effect of delay and advance parameters on the boundary
layer(s) has also been analyzed and depicted in graphs. The applicability of the proposed scheme is validated by
implementing it on model examples. To show the accuracy of the method, the results are presented in terms of
maximum absolute errors.
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1. INTRODUCTION

Mathematically, any ordinary differential equation in which the highest derivative is multiplied
by a small positive parameter and containing at least one shift term(delay or advance) is known
as singularly perturbed differential-difference equation(SPDDE). Such problems arise frequently
in the study of human pupil light reflex [1], control theory [2], mathematical biology [3], etc. The

mathematical modelling of the determination of the expected time for the generation of action
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potentials innerve cells by random synaptic inputs in dendrites includes a general boundary value
problem for singularly perturbed differential-difference equation with small shifts. Different
numerical methods were proposed to solve singularly perturbed problems by Roberts [4], Bender
and Orszag [5], O’Malley [6], and Miller et al. [7]. In [8], Lange and Miura considered
boundary-value problems for singularly perturbed linear second-order differential-difference
equations with small shifts. The analyses of the layer equations using Laplace transform lead to
novel results. Numerical study for approximating the solution of SPDDE given by Kadalbajoo
and Sharma[9] with mixed shifts. In [10] Kadalbajoo and Kumar presented a technique based on
piecewise uniform mesh and quasilinearization process for SPDDE with small shifts.
Chakravarthy and Rao [11] proposed a modified fourth order Numerov method is presented for
solving singularly perturbed differential-difference equations of mixed type. Authors constructed
a special type of mesh, so that the terms containing shift lie on nodal points after discretization.
This finite difference method works nicely when the delay parameter is smaller or bigger to
perturbation parameter. In [12], Ravi Kanth and Murali has given a numerical method based on
parametric cubic spline for a class of nonlinear singularly perturbed delay differential equations.
Quasilinearization process is applied to reduce the nonlinear singularly perturbed delay
differential equations into a sequence of linear singularly perturbed delay differential equations.
To handle the delay term, they have constructed a special type of mesh in such a way that the
term containing delay lies on nodal points after discretization. RaviKanth and Murali [13]
discussed an exponentially fitted spline method for singularly perturbed convection delay

problems

2. DESCRIPTION OF THE METHOD

Think about SPDDE along with little delay and additionally advance parameters of the kind:
eu’(x) + p(u'(x) + q()ulx — 8) + r(ulx)+s(ulx + 1) = f(x) 1)
vx € (0,1) and under the boundary conditions

ux)=¢px) on—-56§<x<0 2
ux)=yx) on 1<x<1+n (€))
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Here p(x), q(x),r(x),s(x),p(x) and y(x) are sufficiently smooth functions on (0, 1),
the perturbation parameter ¢is small positive parameter (0 <g<<1), and 0 < § = o(¢) and
0<n=o0() are the delay(negative  shift) and the advance(positive shift)
parameters respectively.Typically, the solution for Eq.(1)-Eq.(3) reveals layer behaviour at one
end of the interval [0,1] depending upon the sign of p(x) + s(x)n — q(x)é.
By utilizing Taylor series almost the aspect x, the deviating argument conditions may be taken as
u(x — 8) = u(x) — su'(x) 4)
u(x +n) = u(x) +nu'(x) ()
Using Eq.(4) and Eq.(5) in Eqg.(1) we receive an asymptotically equal singularly perturbed

boundary value problem of the type:

eu’' (x) + a(ou'(x) + B)ulx) = f(x) (6)
y(0) = @(0) = ¢, (7
y() =y =y, (8)

where a(x) = p(x) + s(x)n — q(x)d
B(x) = q(x) +1(x) +s(x)

Since0 < § << 1land 0 < n << 1, The transition from Eq.(1) to Eq.(6) is admissible. Further
details on the validity of this transition is found in El’sgol’ts and Norkin[14].
On discretizing the interval [0,1] into N equal subintervals of step size & = %to make sure that
x; = ih,i =0,1,2, ... N.
Let u; = u(x;) for x; € [0,1]
Assuming that  u(x) has continuous derivatives on [0,1] and making use of Taylor’s
series expansions of ui+1 and ui-1 upto O(h"), we get the finite difference approximations for u’;
and u”; as

u'; = Uip1—Uj—1 E "o iu(s) + T
Lt 2h 6 ' 120 %
)
6
where T; = —%um(gﬂ), for &; € [xi—1, %]
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" Ujpq—2Ui+U— /’lZ 4 6
u" =t = 1—Eui() 6 l()-l-‘[z (10)
h8
where 7, = —gu(g)(fz); for &; € [x;-1, %]

Substituting  Egs. (9) and (10) into Eq. (6) and simplifying, we obtain:

1 a; W W@ () _
7 (Uipr = 20 +Uq) + o Uy —Ug) — Uy — U — oy + By =1+t

(11)
4
7= :Ru(ﬁ)(fz) — a;T; — T, isthelocal truncation error and
a(x)/e=a,B(x)/e =B fx)/e =1
By successively differentiating both sides of Eq. (6) and evaluating at xi , and using into

Eqg.(11), we obtain:

1 " ,
h_z(ui+1 2u; +u;—q) + (u’l+1 uj—q1) + Pu; + Qiu; + Ry =S,

fori=12,——-—-N-1 (12)
where
h2 2 4
Pi—ga ——(a —2a;—B) — 120&(2aal—3a”1—3/3 + a;(a’; + ;) — a;(a?
—2a'; — )
hz
Qi =z (@ +f) - [a(a + ) — 't — 26
4
— g lai@i + B + @ + B — @ = 387 + i’y — (' + B (aF - 2a'; = B)]
2 2 4
h ' h ' " h " " ; 2 '
Ri‘g“iﬁi—ﬁ(“iﬁi—ﬁi)—mal[ B+ aB =B = B(af —2as = B)] + B;
2 4 h4-
= J— — - 2 ", _ m
Si=r+ 12 120a(a 3a’; — ﬁl)lr +I 1200{] +120ar

Now, using central difference approximation for u"; and u’; in Eq.(12) and further simplifying,
we get:
E;yi1 — Fy; + Giy;y1 = Hyfori=12,————-N—1

where
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1 a P 0Q
E=—— gt XL
YORE o 2h + W 2h

1 a P 0
G=Et ottt

3. NUMERICAL EXAMPLES

The exact solution of Eq. (1) to Eq. (3) with constant coefficients (i.e,

p(x) =p,q(x) = q,r(x) =71,5(x) =5,f(x) = f,0(x) = ¢ and y(x) =y)

is given by ‘U,(_X') = Clemlx + Czemzx + f/C3

where
_ —(@+sn—q8)+{(p+sn—q8)?—4ecs _ —(p+sn—q8)—y/(p+sn-q8)2—4ecs
m1 - ’ mZ -
2& 2&
—f+ycs+e™2(f-pcs3) f-ycs+e™(=f+qpcs)
c; = cy, = C3 = r+s
1 (eM1—e™M2)cy ’ 2 (eM1—e™M2)cy ’ 3 q +7+

Example 1. Consider the SPDDE with left end boundary layer:
eu"(x)+u'(x) +2u(x—6) —3u(x) =0, k) =1, y(x)=1
The numerical results are given in Table 1 & Fig.1.

Table 1. The maximum absolute errors in the solution of Example 1 fore =0.1 and n =0

S\ N 8 32 128 512
0.00 | 6.9153e-03 2.5271e-05 9.7873e-08 3.8222e-10

0.05 | 5.0195e-03 1.8142e-05 7.0494e-08 2.7596e-10

0.09 | 3.7678e-03 1.3493e-05 5.2858e-08 2.0778e-10

Results in Kadalbajoo and Sharma [15]
0.00 | 0.09907804 0.03700736 0.00954678 0.00214501

0.05 | 0.09659609 0.03640566 0.00924661 0.00202998

0.09 | 0.09277401 0.03556652 0.00895172 0.00192488
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Example 2. Consider the SPDDE with left end boundary layer:
eu"(x) +u'(x) = 3u(x)+2u(x+n) =0, px) =1, y(x) =1
The numerical results are given in Table 2 & Fig. 2.

Table 2. The maximum absolute errors in the solution of Example 2for € = 0.1 and §=0

n \N 8 32 128 512
0.00 | 6.9153e-03 2.5271e-05 9.7873e-08 3.8222e-10

0.05 | 9.1907e-03 3.3936e-05 1.3196e-07 5.1523e-10

0.09 | 1.1286e-02 4.2002e-05 1.6457e-07 6.4247e-10

Results in Kadalbajoo and Sharma [15]
0.00 | 0.09907804 0.03700736 0.00954678 0.00214501

0.05 | 0.09977501 0.03727087 0.00979659 0.00224472

0.09 | 0.10031348 0.03723863 0.00996284 0.00458698

Example 3. Consider the SPDDE with left end boundary layer:
eu"(x) +u'(x) —2u(x—6) —5u(x)tu(x+n) =0,px) =1,yx) =1
The numerical results are given in Tables 3 and 4 & Figs. 3 and 4.

Table 3. The maximum absolute errors in the solution of Example 3fore =0.1 and n = 0.05

6 \N 8 32 128 512
0.00 | 2.2405e-02  8.9231e-05 3.4466e-07 1.3457e-09

0.05 | 2.8631e-02  1.1750e-04 4.5156e-07 1.7633e-09

0.09 | 3.4338e-02  1.4437e-04 5.5404e-07 2.1617e-09

Results in Kadalbajoo and Sharma [15]
0.00 | 0.09190267 0.03453494 0.01164358 0.00300463

0.05 | 0.10233615 0.03823132 0.01295871 0.00335137

0.09 | 0.11018870 0.04110846 0.01400144 0.00362925
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Table 4. The maximum absolute errors in the solution of Example 3fore = 0.1 and § = 0.05

n \N

8 32 128 512

0.00

0.05

0.09

2.5394e-02 1.0266e-04 3.9499e-07 1.5440e-09

2.8631e-02 1.1750e-04 4.5156e-07 1.7633e-09

3.1402e-02 1.3043e-04 5.0093e-07 1.9547e-09

0.00

0.05

0.09

Results in Kadalbajoo and Sharma [15]
0.09720029 0.03640446 0.01229476 0.00317786

0.10233615 0.03823132 0.01295871 0.00335137

0.10632014 0.03965833 0.01348348 0.00349050

Example 4. Consider SPDDE with right end boundary layer:

eu'"(x) —u'(x) —2u(x—6)+ulx)=0,p(x)=1,y(x) = -1

The numerical results are given in Table 5 & Fig. 5.

Table 5. The maximum absolute errors in the solution of Example 4 fore =0.1 and n =0

5 \N

8 32 128 512

0.00

0.05

0.09

1.6153e-02 5.9019e-05 2.2858e-07 8.9266e-10

1.0877e-02 3.9305e-05 1.5273e-07 5.9597e-10

7.6714e-03 2.7464e-05 1.0761e-07 4.1931e-10

0.00

0.05

0.09

Results in Kadalbajoo and Sharma [15]
0.07847490 0.04678972 0.01727912 0.00443086

0.09222560 0.03828329 0.01487799 0.00380679

0.10509460 0.03149275 0.01299340 0.00331935

1099
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Example 5. Consider the SPDDE with right end boundary layer:
eu"(x) —u'(x)+ulx) —2ulx+n)=0,pkx) =1,ykx) =-1
The numerical results are given in Table 6 & Fig. 6.

Table 6. The maximum absolute errors in the solution of Example5fore =0.1 and §=10

7 \N 8 32 128 512
0.00 | 1.6153e-02 5.9019e-05 2.2858e-07 8.9266€-10

0.05 | 2.3063e-02 8.5147e-05 3.3109e-07 1.2927e-09

0.09 | 2.9918e-02 1.1133e-04 4.3622e-07 1.7029e-09

Results in Kadalbajoo and Sharma [15]
0.00 | 0.07847490 0.04678972 0.01727912 0.00443086

0.05 | 0.06834579 0.05516436 0.01972508 0.00506769

0.09 | 0.08328237 0.06168267 0.02169662 0.00558451

Example 6. Consider the SPDDE with right end boundary layer:
eu"(x) —u'(x) —2u(x—6) +u(x) —2ulx+n)=0,px) =1,ykx) = -1
The numerical results are given in Tables 7 and 8 & Figs. 7 and 8.

Table 7. The maximum absolute errors in the solution of Example 6 fore = 0.1 and n = 0.05

6 \N 8 32 128 512
0.00 | 2.2592e-02 8.5192e-05 3.3407e-07 1.3046e-09

0.05 | 1.6657e-02 6.1800e-05 2.4154e-07 9.4339e-10

0.09 | 1.2806e-02 4.7196e-05 1.8344e-07 7.1611e-10

Results in Kadalbajoo and Sharma [15]
0.00 | 0.09930002 0.03685072 0.01331683 0.00342882

0.05 | 0.09997296 0.03218424 0.01167102 0.00299572

0.09 | 0.10044578 0.02850398 0.01038902 0.00266379




Table 8. The maximum absolute errors in the solution of Example 6 for e=0.1 and § = 0.05

Numerical Solution

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

SOLVING SPDDE USING FOURTH ORDER NUMERICAL METHOD

n\N 8 32 128 512
0.00 | 1.1956e-02 4.3990e-05 1.7080e-07 6.6680e-10
0.05 | 1.6657e-02 6.1800e-05 2.4154e-07 9.4339e-10
0.09 | 2.1298e-02 7.9762e-05 3.1372e-07 1.2248e-09
Results in Kadalbajoo and Sharma [15]
0.00 | 0.10055269 0.02759534 0.01007834 0.00258299
0.05 | 0.09997296 0.03218424 0.01167102 0.00299572
0.09 | 0.09944067 0.03591410 0.01297367 0.00334044
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Fig. 1. Numerical solution of Example 1 for e =0.1 and =20
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g. 2. Numerical solution of Example 2 for e =0.1 and =0
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Fig. 3. Numerical solution of Example 3 for e = 0.1 and n = 0.05
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Fig. 5. Numerical solution of Example 4 for e =0.1 and =20
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. 7. Numerical solution of Example 6 for e = 0.1 and 7 = 0.05
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Fig. 8. Numerical solution of Example 6 for e = 0.1 and & = 0.05

4. DISCUSSIONS AND CONCLUSION

We have discussed fourth order numerical method to solve singularly perturbed
differential-difference equations exhibiting one end layer behaviour. To discuss the applicability
of the method we have solved model examples by taking different values of N, &,8 and n. The
numerical solution is compared with the exact solution to test the proposed method. To support
and strengthen the method, numerical results are compared with the results of Kadalbajoo and
Sharma [15]. We have presented maximum absolute errors for the standard examples chosen
from the literature. From the tables, the results demonstrate that the present method produced
good approximation to the exact solution. To analyze the effect of the parameters on the
solution, the numerical results have been plotted using graphs. From the graphs (Fig.1 - Fig. 4),
we observed that when the solution of the boundary value problem exhibits layer behaviour on
the left side, the affect of delay or advance on the solution in the boundary layer region is
negligible, while in the outer region it is considerable and the change in advance affects the

solution similarly as the change in delay effects, but reversely. From the graphs (Fig. 5 — Fig. 8),
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we observed that when the solution of the boundary value problem exhibits layer behaviour on

the right side, the changes in delay or advance affect the solution in the boundary layer region as

well as the outer region. The thickness of the layer increases as the size of the delay increases

while it decreases as the size of the advance increases.
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