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Abstract. In this paper, we presents a deterministic mathematical  model on the dynamics of typhoid fever disease. 

The Adomian Decomposition Method (ADM) is used to solve the model equations. In solving the model, the validity 

of the ADM is established by the classical fourth-order Runge-Kutta method implemented in Maple 18.  In other to 

confirm the accuracy of the method, a comparison  was carried out between the ADM solution and Runge-Kutta(RK4). 

The findings obtained confirm the precision and accuracy of the ADM to cope with the study of morden epidemics. 
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1. INTRODUCTION 

Typhoid fever is a systemic infection, triggered by the ingestion of infected food or water, caused 

by the bacterium Salmonella Typhi. Prolonged fever, fatigue, nausea, loss of appetite, and diarrhea 

or even diarrhoea describe acute illness. Symptoms are often non-specific and other febrile 
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disorders are clinically non-distinguishable [1]. There are also non-specific and clinically non-

distinguishable signs of typhoid fever from other febrile diseases. Medical severity, however, 

varies and serious cases can lead to significant complications or even death. Recent findings 

indicate that an estimated 11–20 million people get sick from typhoid fever and between 128 000 

and 161 000 people die from it every year. The disease is endemic in  South America [2], Indian 

subcontinent [3], Southeast Asia [4] and mostly in  Africa [5]. During year 2000, it was estimated 

that the disease caused illness is 21.6 million and 216,500 deaths worldwide. For 

many researchers, modeling the transmission dynamics of typhoid fever is an essential and 

important study. The study of infectious diseases in the past has concentrated primarily on their 

effects on the human population. Although,  infectious diseases are present to some degree in 

human societies at all times, the results of epidemics are the most evident and spectacular [6]. 

George Adomian [7], an American mathematician, was the first to establish Method of Adomian 

decomposition. It is a form of semi-analysis that can be used in the solution of partial and ordinary 

differential equations in both nonlinear and linear order. It can also be used in solving higher order 

nonlinear differential equations. Also, it can be used in solving nonlinear differential equations of 

higher order. [8-9] considered Adomian Decomposition approach to solve deterministic models 

but not on the typhoid fever model. In fluid mechanics, [ 10-12] and in numerical analysis, [13,14]. 

Several mathematical models have been developed on this disease [15-32], but none has 

considered the solution of typhoid fever model by Adomian Decomposition Method. 

The aim of this paper is to present the application of Adomian Decomposition Method to the 

proposed model and to verify the validity of the Adomian Decomposition Method in solving the 

model using Maple 18’s classical fourth-order Runge-Kutta method as a basis for comparisone. 

 

2. MODEL FORMULATION 

A deterministic, compartmental mathematical model is formulated in this chapter to explain the 

transmission dynamics of typhoid fever to extend and complement those existing in the literature. 
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The model is composed of four compartments: The Susceptible Class is for people vulnerable to 

typhoid fever. The infectious group consists of people who are aware of their infection and are in 

a position to transfer the disease to vulnerable people who are infected by the disease. The Carrier 

class involves individuals who are infected and are capable of infecting others but show no signs 

of infection. The recovered class comprises individuals who have been infected and then recovered 

from the disease, who will not be re-infected or transferred to those in this group. 

The number of individuals in the Susceptible, Infected, Carrier, and  Recovered classes are 

functions of time denoted by S(t), I(t), Ic (t), R(t) respectively. 

Susceptible population  are incresesed by immigration or birth at the rate   . We assume that 

proportion   of susceptible class progress to carrier infected class, while the compliment 1  

migrate to infected class. We assumed that the rate of transmission   for carriers is higher than 

the rate of transmission   of symptomatically infected individuals due to the fact that they are 

more likely to be unaware of their condition, and therefore continue with their regular activities. 

Carriers may become symptomatic at a rate   . Infectious individuals can receive treatment and 

recover at the rate   . Susceptible individuals receive vaccination to protect themself against 

infection at the rate   . 1 -  is an educational parameter that caters for limiting both carriers and 

symptomatic individuals from spreading typhoid. This parameter lies in the interval 0 <  < 1 

When 0=  It means that there are no education programs in place so that vulnerable people are 

unaware of typhoid fever. 1= , then it means that all susceptible individuals are fully aware of 

typhoid fever, that is to say they know what causes the diseases, how it is spread and how to avoid 

contracting the disease.  

Table 1 gives a detailed summary of the parameters, while Figure 1 shows the model's 

compartmental flow diagram. The above description can be represented by a system of differential 

equations given as  
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FIGURE 1: Pictorial Illustration  of the  Model  
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Table  1: Parameter values of the model 

Variables Description 

)(tS  Susceptible population at time t  

)(tIc  Carrier infectious population at time t  

)(tI  Infectious population at time t  

)(tR  Recovered population at time t  

ParametersInterpretation 

  Recruitment rate into susceptible class  

1  Natural mortality rate  

2  Natural rate for carrier class and disease induced death rate  

3  Natural death rate for infected class and disease induced death rate  

4  Natural mortality rate  

  Rate at which carriers develop symptom  

  Education parameter  

  Vaccination rate  

  Probability that newly infected individuals are asymptomatic or carrier

  Transmission rate for carrier group  

  Transmission rate for infected group 

  Force of infection 

  Recovery rate for infected group 

 

 
3. ADOMIAN DECOMPOSITION METHOD 

 3.1 Definition of Adomian Decomposition Method 

Consider the equation  

(3)             L y R y N y f t      

where  L y  is the differential operator,  R y  is the remainder of the differential operator, 

 N y  is the nonlinear terms,  f t  is an inhomogeneous term and L  can be defined as the 
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highest order of differential equation. Making  1L L y  the subject of formula after (3) has been 

multiplying through by the inverse operator L   1that is L  to multiply (3), we obtain 

(4)          1 1 1 1L L y L f t L R y L N y        

For both  1L f t  and  1L R y  are linear which means they are integrable,  1L N y  is 

nonlinear. Meanwhile , 1L  is an n-fold integration of an nth order L  and the nonlinear term (

 N y ) can be defined as 
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where nB  is the Adomian polynomials and it can be derived from its iteration and its 
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The composition solution series can be written as 
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  3.2 Solution of the  Model Using Adomian Decomposition Method 

From the model (2), since this model is the system of first order differential equations then we 

define differential operation ( L ) and its inverse operator ( 1L )  to be 
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Simplifying the left hand side of (8) with the interval from 0 to t  according to 1L  definition. We 
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have 

(9) 
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From (10), the initial stage gives  
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4. NUMERICAL SIMULATION AND GRAPHICAL ILLUSTRATION OF MODEL  

In this section,we presents the numerical simulation which demonstrate the analytical results for 

the model. This is accomplished by using the set of parameter values based on the literature and 

assumptions given in table 1, as well as assumptions. By substituting the following  initial 

conditions for the different compartments. 60=(0)S , 40=0)cI , 20=(0)I , 10=(0)R  in equation 

(12) as well as solving equation (13), we obtain the following expansion up to 12th term. Further, 

the ADM is demonstrated against Maple 18’s  fourth order Runge-Kutta procedure for the solution 

of typhoid fver model. Fig (2) to (5) show the combined plots of the solutions of )(tS , )(tI c , )(tI  

and )(tR  by ADM and RK4  

S(t) = 60 + 9.99931480 x 105t –  5.709649911 x 105t2 + 98122.20012 x t3 –  9.186204736 x 108t4 

+ 6.704742248 x 108t5 –  1.607645503 x 1012t6 + 2.413714881 x1012t7 –  2.111060097 x 

1015t8 + 5.668721345 x 1015t9 –  2.220693766 x 1018t10 + 1.020803353 x 1019t11  –  

1.938795776 x 1021t12  

Ic(t) = 40 + 4.6000t + 1.749891240 x 105t2 – 3.091519267 x 104t3 + 4.593079843 x 108t4 –  

3.322973422 x 108t5 + 8.038207626 x 1011t6 –  1.203182706 x 1012t7 + 1.055525033 x 1015t8 

–  2.830607448 x 1015t9  + 1.110337658 x 1018t10 –  5.100793834 x 1018t11 + 9.693978882 x 

1020t12  

I(t) = 20 + 10.4000t + 1.749856100 x 105t2 – 5.016288354 x 104t3 + 4.593151062 x 108t4 – 

3.626130224 x 108t5 + 8.038438389 x 1011t6 – 1.241080244 x 1012t7 + 1.055579165 x 1015t8 

– 2.869315751 x 1015t9 + 1.110434763 x 1018t10 – 5.134030334 x 1018t11  + 9.693978882 x 

1020t12  

R(t) = 10 + 31.580t + 1.499913798 x 105t2  – 2.044968858 x 104t3 – 1.320411706 x 103t4 + 

1.378007501 x 107t5 – 1.212904500 x 107t6 + 1.722727867 x 1010t7 – 2.614274876 x 1010t8 

+ 1.759667562 x 1013t9 – 4.53941743 x 1013t10 + 1.510749956 x 1016t11 
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4.1. Comparison Graphs Between R-K 4 and ADM Methods 

 

 FIGURE 2. The graph of Susceptible against Time for both ADM and R-K 4 

 

 

 

FIGURE 3. The graph of Carrier Infection against Time  for both ADM and R-K 4 
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FIGURE 4. The graph of Infectious against Time for both ADM and R-K 4  

 

 

FIGURE 5. The graph of Recovered against Time  for both ADM and R-K 4  
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Table  2: Parameters values for model 

Parameter Initial Value Source 

2  0.2  Assumed 

  0.3  Assumed 

1  0.142  Mushayabasa, (2011) 

3  0.2  Assumed 

4  0.142  Mushayabasa, (2011) 

  0.3  Assumed 

  0.5  Assumed 

  0.02  Assumed 

  0.01 Mushayabasa, (2011) 

  0.75 Assumed 

  0.3  Estimated 

  106 
Lauria et al.,(2009) 

 

Table 3. Comparison table between R-K 4 and ADM methods 

TIME 
S(t) Ic(t) I(t) R(t) 

R-K 4 ADM R-K 4 ADM R-K 4 ADM R-K 4 ADM 

0 60.0000 60.0000 40.0000 40.0000 20.0000 20.0000 10.0000 10.0000 

0.001 1059.3597 1059.3597 40.1800 40.1800 20.1690 20.1858 10.1815 10.1816 

0.002 2057.5654 2057.5651 40.7161 40.7163 20.6938 20.7277 10.6629 10.6630 

0.003 3054.5841 3054.5830 41.6250 41.6256 21.5909 21.6424 11.4441 11.4441 

0.004 4050.3582 4050.3556 42.9355 42.9368 22.8887 22.9587 12.5248 12.5249 

0.005 5044.8031 5044.7977 44.6901 44.6928 24.6295 24.7192 13.9050 13.9052 

0.006 6037.8016 6037.7921 46.9474 46.9522 26.8716 26.9825 15.5846 15.5849 

0.007 7029.1983 7029.1827 49.7853 49.7931 29.6923 29.8264 17.5635 17.5639 

0.008 8018.7906 8018.7662 53.3052 53.3174 33.1927 33.3527 19.8417 19.8421 

0.009 9006.3163 9006.2797 57.6384 57.6566 37.5034 37.6926 22.4190 22.4195 

0.01 9991.4384 9991.3852 62.9533 62.9799 42.7924 43.0150 25.2953 25.2960 
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5. DISCUSSION OF RESULTS FOR ADOMIAN DECOMPOSITION METHOD 

The solutions obtained by using Adomian Decomposition Method with given initial conditions 

compared favourably with the solution obtained by using classical fouth-other Runge-Kuta 

method. The solutions of the two methods follows the same pattern and behaviour. This shows 

that Adomian Decomposition Method is suitable and efficient to conduct the analysis of typhoid 

models.  

 

6. CONCLUSION 

We presents a deterministic mathematical  model on typhoid fever transmission, Adomian 

Decomposition Method is used to attempt the series solution of the model. Numerical simulations 

were carried out to compare the results obtained  with the result of classical fourth-order Runge-

Kutta method. The results of the simulations were displayed graphically.The results obtained from 

ADM when compared with RK4  confirm the accuracy of ADM in solving the typhoid fever 

model. 
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