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Abstract: In this paper, we develop Adam’s Block with first and second derivative future points for solving linear
and non-linear first order initial value problems in ordinary differential equations. The derivation of the method is
based on Taylor series approach. The region of absolute stability of the method is investigated using the boundary

locus method and this family of methods have been found to be A-stable for r =2,3,4 and 5 . Numerical experiments

are demonstrated with the method and computational comparisons are presented with some existing numerical
methods. The computational comparison depicts the efficiency of the methods on initial value problems in ordinary
differential equations (ODEs).
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1. INTRODUCTION
Many real life problems in science and engineering can be modeled into first order initial value

problem of the form:
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()= f(t,y(0), y(t,) =y, tela,b], (1)

where f is continuous within the interval of integration /a,b] We also assume that f satisfies the

Lipchitz condition which guarantees the existence and uniqueness of solution of (1) [10]. The
author [13] studied the discrete approach of (1) using one step methods and Linear multi-step
methods while researchers such as [17], [18] and [5] have studied the continuous approach of (1).
Several methods have been in existence for the solutions of (1) proposed by researchers, some of
which are the Euler’s methods, the Runge-Kutta methods, the multistep methods, the General
Linear Methods (GLM) among others. Modifications have been made on some of these methods
due to some limitations and deficiencies observed either in terms of stability or implementation
cost and mostly when they are needed for certain classes of ODEs. Numerical methods are adopted
in situations where analytic solutions are difficult and are generally required to possess high level
of accuracy.

Block methods have been found as one of the numerical methods that perform well in most
ordinary differential equations and it is self-starting without requiring a predictor or starting
method for its computation. The idea of block method was first presented by [14] as a method for
solving ordinary differential equations. This has now become popular and it is still in active part
of research. The block methods have been modified by researchers. The author [4] proposed a
hybrid block method for first order initial value problems in ordinary differential equations. The
numerical results show competitiveness with the exact solution. Several of the modified block
method can be found in [19], [15], [20], [12], [8], [3], etc.

Our interest in this research work is to derive a class of block method of the form:

+ Eh’F ()

n+k+12

k
A°Y, ., —AY, ., =h)Y B,F, . +hDF

n+k+1

where

T T T
Yn+k = [yn+k yn+k+1 yn+r] > Yn+k—l = [yn—r+1 yn—r+2 yn+k—1] s F:H—k = [.f»ﬁ-k fn+k+l fn+r] >
— T _ T . T ' . T
F;Hk—l - [f;:—r#f f;:—r+k+1 ﬁwk—l] s F;z+k+1 - [f;1+k+l f;z+k+2 f;1+r+k] > F;:+k+1 - |:f;1+k+l f;:+k+2 f;:+;~+k:|
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and A% A, Bj, D and E are properly chosen matrices to ensure stability and improved accuracy of

the method.

The method (2) is obtained from the general Adam’s method

k
yn+k k-1 T hzbjf;t+j’ n>k (3)
=0
by adding first and second derivative future points. This yields the family of the block methods.

Our interest is also to investigate the properties of the proposed method in terms of zero-stability,

A-stability, consistency and convergence.

2. DEVELOPMENT OF THE BLOCK METHOD

The local truncation error associated with the proposed block method (2) is given as

n

k
Tn+k = AOYn+k - AYn+k—1 - hz Ban+j —hDF +k+1 Ethn'+k+1 (4)
=0

where k 1is the step-length of the method and h is the step-size
The Taylor series expansion of each of the right terms of (4) and collecting terms in powers of h
gives:

T.. =Chy +C,h’y +Ch’y, +-+ C,h"yr + O(h"™), (5)
where Cis are constants and i=1(1) p+1

Forr=2, we have

Yn+1 = [yrHl yn+2 ]T > Yn = [ynfl yn ]T H EHI = [fn+1 f;1+2 ]T > E1 = [f‘rkl f;1 ]T s
Fn+2 = [fn+2 fn+3 ]T H Fvn'JrZ = [f;l‘+2 ‘f;z'+3 :'T

o |1 0 0 1 b, b, ¢ G 0 0 e 0
4" = , A= , By = , B = , D= , E=
0 1 0 1 b, b, 0 ¢ 0 d 0 e,

Substituting these matrices into (4) and taking Tn+=0, we have

L 0|l ¥ _0 L)l v _h b b ||/ _h a G| fou —ho 01 fri _hzq 0 ﬂ+2 _0
0 L[yl [0 1]y, b b, ] f, 0 ¢l /fin 0 dj| fua 0 e f;;u o
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Expanding the above matrix equation gives

Vust =YV, —hb f, = hbyf, —he, f, ., —he, f,., - hzel-fn.-#Z =0

=y, —hbyf, = hb,f, —he,f,., —hdf, ;- hze4fn'+3 =0

(6)
yn+2

Using mathematica software to solve (6) for the values of by, by, bs, by, ci, ¢2, c4, d, €1, es gives

the method as

_ 23hf,,, , 9hf, . 29hf,,, 83hf,,, , 11h°f,,
y1+n - yn - + + - +
1080 20 40 540 180 7
_ 7hf,,,  127hf, 31hf, 481hf, , 19h°f,,
Yaoen = Yo - + + + -
60 135 15 540 45
Forr =3, we have
T T T
Yn+1 = [yn+1 yn+2 yn+3] 4 n = [yn—z yn—l yn—l] > Fn+1 = [f;wl fn+2 fn+3] >
Fn = [fn—z f;I—I fz ]T > Fn+2 = [fn+2 fn+3 fn+4 ]T > Fn'+2 = I:f;1'+2 f‘n'+3 fnl+4:|T
1 00 0 01 b b b ¢q ¢ 0 0 0O g 0 0
A0=010,A:001,Bo=b4 by b |, B=l0 ¢ ¢ |, D=0 0 0|, E=/0 ¢ O
0 01 001 b, b b 0 0 ¢ 0 0 d 0 0 e
Substituting these matrices into equation (4) gives
100}y,]]|00 1}y, b b b|f, G 6 0]/, 00 0}/, qoofmz 0
010[%,H00 1|y ,[b & h|f[H0 ¢ ¢ fmz—hOOOan—hZO e 0 f;+3:0
00 1y 001y | |BA&B&|L| [00g|fi] [00d]fu] |00 ¢]f] |0
Expanding the above matrix equation gives
Vur = Vu—hb f, s —hb,f, = hb,f, —hc f,.,—he,f,., — hzelf'rwz =0
yn+2 - yn - hb4fn—2 - hben—l - hb6fn - thfn+2 - hcé n+3 hzeSf'n+3 = 0 (8)

Yoz =Yy —hby f, s —hbgf, = hbyf, —heyf, s —hd, f, ., — hze9f ea =0

Using Mathematica software to solve (8) for the values of b;, bs, bs, b4, bs, bs, by, bs, be,ci, c2, cs,

c6,¢9, do, €2, es, eg yields the following block method
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11 7 83hfn+19 1831 11

+n + hf +n 7 A = in T S~ +n + +_h2f'+
Yiew = ¥ U900 "2 T3y e 160 3 h17280 T 288 2o )
I 59 ., L LIhf, 74 2653 hf
y2+n Yn 375 -2+n 180 -1+n 9 45 2+n 4500 3+n 3+n
29 477 1407hf, 63 25211 609
y3+n = Yn +t— -2+n __h -1+n —_— 3+n - 4+n _h2f4+n
160 500 640 20 16000 800
Again forr =4, we have
T
Y., = [ynH Yoz Vi3 yn+4] [yn 3 Va2 Vo yn] s B [fn+1 Joir  Soas -fn+4]

v=lfs S Sn S] P [fm frn s Sus] s Frn=[frn fon fow fis]

1000 0001 b b b b ¢ ¢ 00 0000 6 0 0
orool Joootl kb b k| 0 e 0 0000 |0 ¢ 0
oo 10" o001 " |k b b blz’Bl_O 0 ¢, ¢, 0000 |00 ¢ 0

0001 0001 b, b, b b 00 0 ¢ 000d 00 0 e
Substituting these matrices into (4) yields
1000fy,[|0001|xs| |4 b & b, G6 0 0]fs0 [0000ff, 600 0]s,[0
0100{3.[[000 1]y, @Q@Z%fmz 0¢qg 0ff, OOOOﬁ%_hZO%OOjZQ 0
0010[3:[{00013,| |88 b b|fis| 1006 Gffy| [0000(f,] |00 0]f,||0
0001|3.,/[0001] % | |& & b &S 000 ¢/ 000d|f.s 000q6fm50
Expanding, we obtain

Vuur = Vo —hb f, s —=hbyf, , —hb, f, | —hb, [, —he [, —hey f,., - hze1f'n+2 =0

Visr = Vo —hbs fo s —hbg f,, —hb; f, = hby f, —heg f,., —he, f — h266f'n+3 =0 (10)

Vuss =Yy —hbo f, s —hb, f, , —hb [, —hb, f, —hc, f,.s—hcy [y — hze”f s =0

Vusa =Yy —hbyf, s —hby,f, s —hbsf, , —hbf, —hcgf,.,—hdf, s— hzeléf'ws =0

Using mathematica software on (10) gives the values of the unknown parameters and the

following block method

LTI, 039K, 533, 4238Kf, 1469k, 9031Af, 1621Kf,

Yren = V0 T T8350 5250 840 2835 1050 21000 9450

L
by V63, MO, D8SOSH, 264TH, TIZTHF, 6ASIIOH, DRRLL
13720 5600 14000 896 2800 5488000 4725

16930, 4401, 28593, 26477hf, TI27h, G14S1I9Kf,, 19683f,

Vi =V T30 5600 14000 896 2800 5488000 39200
IS, 10936hf,., 22592hf,. 4506, 14986hf,, 2551838hf, 11888K°L,

Yoo =V Ty 5145 4725 875 3675 1157625 11025

For r=5, we have
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Yn+1 = [yn+1 yn+2 yn+3 yn+4 yn+5]> Yn = [yn—4 yn—3 yn—z yn—l yn]’E1+l = [»f;'l+l f;z+2 f;z+3 j(n+4 J(n+5]7
F, = [f;t74 Jos Soa S fn]» F. =[fn+2 Jus Soea S fn+6]’ F;;+2 = [ﬂﬂ ﬂ+3 ﬂ+4 f;;+5 ﬁ;m:l

1 0 0 0 0 0 0 0 0 1 b, b, b, b, b,
01 0 0 0 0 0 0 0 1 by b, by b, b,
4°=l0 0 1 0 0|, 4=/0 0 O O 1|, B,=|b, b, b, b, b,]|,
00 0 1 0 0 0 0 0 1 b, b, by b, by
0 0 0 0 1| 0 0 0 0 1] b, by, by by, by
e, ¢, 0 0 0 [0 0 0 0 O] (e, 0 0 0 0]
0 ¢, ¢ 0 O 0 0 0 0 O 0 e 0 0 O
B =0 Cs Cp ,D=[0 0 0 0 O, E=|{0 0 ¢, 0 0
0 0 0 ¢y cy 0 0 0 0 O 0 0 0 ¢, O
10 0 0 0 o 00 0 0 d] 0 0 0 0 e,
Substituting into (4) gives
10 0 0 Ol[y,,] [0 0 0 0 1][y_,] [b b b b bllf]
01 0 0 O}y, 00 0 0 1|y, by b, b by by | [
001 0 O0flyy|—|0 0 0 0 1||y,|-h|by by, by by bysl|| f.s
00 0 1 0y, 00 0 0 1jjy, b by by by by || fi
_0 0 0 0 1__y71+5_ _O 0 00 1__yn_ _b2l by, by b, bZS__fn+5_ B _
¢, ¢, 0 0 O)f.] o 0 0 0 O][f..] e 0 0 0l f.,]| [0]
0 ¢, ¢ 0 01 f, 0000 0|f, 00 e 0 0 O f.,] |0
~hl0 0 ¢, ¢, O fin|=h0 0 0 0 Offy|-k]0 0 e 0 0| f.|=l0]
0 0 0 ¢y Cyll fis 0000 0|Ff. 00 0 ¢ O f.| |0
00 0 0 o[ f,] (0000 dff] [0 0 0 0 e f.] O]

After expanding, we obtain

Yun =Yy =hbf, = hbyf, s =hbyf, = hb,f, = hbsf, = hc, . —he,f,, =hef',,, =0
Vors = Vo —hbgfo = b, f, s —hbyf, , = hby f,  —hby f, —he, foy —hey fry —hoe [ =0

Voes =Yy —hby fo g —hby foy = hby fy = by fo = hby [ = e foy —hey froy — B f s =0 (12)
Vora = Vo —hbi fo = by [y —hbi fo = hbig fo = hbyy f —heig froy —hesy fros —heg f s =0

Vurs =V —hby fo s —hby, f, s —hby f, = hby, f, = hbys f, —heys s —hdf, .o — hzezsf'ws =0

Using Mathematica software on (12) gives the values of the unknown parameters and the

following block equation
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S3f sy 3V, | 23930, 40330/, 16789hf, 3611f, 154913t  13K°f.,

Yin =0 yg38a T 33600 | 53760 30240 26880 | 6720 2419200 640
3067hf,,, 128hf .., AOKf,. 983hf,. G6G673hf, 935hf,. TIIOLhf,. 92hf.. (13)
Yon Tt 05000 045 100 945 | 3780 | 756 231525 | 735
90423hf,., 36913hf .., 9549hf,. 40959hf,. 136021hf, 33883hf,., 29786121kf,, 449014,
Yam =0t 003520 54880 | 4480 11200 | 35840 | 15680 35123200 | 125440
2666hf ., 229hf,. 32264hf,. 9T6hf,. 7T54hf, 352hf,. 684107hf,., 1000Af.,,
Yam =0t 0s0s 105 | s145 105 105 | 105 416745 | 1323
Yooy 122515 ,,, _1209125/f,,,  148T125hf,,, SS483TSf.,,, BOSSSHY,  246380Shf., 4689662650, 458975y,
145152 217728 100352 296352 6912 508032 170698752 338688

3. PROPERTIES OF THE PROPOSED BLOCK METHOD

The Order and Error Constants of the proposed Block method

Definition 1. The linear operator L associated with a linear multistep method is given by

LIy(x);h] =Y [a,y(x+ jh)=hB,y'(x + jh)]

=0
where d is the order of the differential equation and y(x) is an arbitrary function that is
continuous and differentiable on /[a,b] Using the Taylor series about point x in y(x+ jh)and
Y (x+ jh) gives

L[y(x);h]=Coy(x)+Cly'(x)+...+quq(x)+Cq+1yq”(x)+...,
where

G =(,+to+a,+..+a,)

C =(o+2a,+3a;+...+ka,)

1
(g-D!

(B +27 B, +..+ kT B)

C, =$(0¢1 +2%a, +3"a, +...+ k') —

For ¢=2,3,...

A block method is said to have order p if

G =G =C=..C,=0,C,,, #0. The first coefficient that does not vanish C,., is known as the

+1

error constant and Cp ah’ +1y(pﬂ) (x,)is called the principal local truncation error [9]. The order

and error constants of the proposed family of the block method are listed below.
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Table 1: Order and Error Constants of the family of the proposed method

Order (p) Error Constant
> PRt

| 2400 2 225
6

19 773 —1693]T
| 70080 * 18900 * 5600

T 53 3067 30141 —10664:|T
| 56448 * 132300 ° 156800 ° 11025

[ 7667 —11531 —23841  —72809 —12141025]T
| 14515200 ® 793800 ® 179200 ® 99225 % 4064256

Zero Stability of the Proposed Block Method

Definition 2. The block rnethod(z)is said to be zero-stable if no root of the first characteristic

polynomial p(r) = det [rA® — A] is having a modulus greater than one and every root of modulus
one is simple, where A%nd A are the coefficients of y - function in our block method. The roots
with modulus one is known as the principal roots and the other roots are called spurious roots [2].
Therefore for the proposed block method for r =2, we have

1 0 0 1
7 —

0 1 0 1

p(1)=det[rA" -A]= =0

_I"
p(r)—o

p(r)=r(r—-1)=0

r=0;r—-1=0

r=20,1

In this case, the maximum value of r is 1. Hence the method for r =2 is zero-stable.

Forr=3

—_
(==

o] [o
p(1)=det[rA®-Al={#|0 1 0|-|0
0 0 1| |0
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r 0 -1
p(r)=0 r —-1|=0
0O 0 r-1

p(r)=rlr(r-1)J]=0
p(r)=r’(r-1)=0
r?=0;r-1=0
r=0,0,1

Therefore, the maximum value of r is 1. Hence the method for r =3 is zero-stable.

For r=4
1 00 0][0 001
(1) = det[rA” A]=r0 S R
P 001 0|]0 00 1]
000 1|]0 0 01
r0 0 —1
()0 0 -1 0
r) = =
P 0 -1
0 0 0 r-—1

r 0 0 0O »r O
p(r)y=r|0 r 0O |-10 0 r|{=0
0 0 r-1{ |0 0 O

p(t)y=r[r’(r-11=0

p(t)y=r*(r-1)=0
rP=0r—1=0
r=20,0,0,1

In this case, the maximum value of r is 1. Hence the method for r =4 is zero-stable.

For r=5
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1 000 0] 00001
01 00 0/ |00 0 0 1
(1) =det[rA® -Al=|[0 0 1 0 0|-]0 0 0 0 1/=0
000 1 0/ /000 01
0000 1] |00 0 0 1]
F 00 0 -l
0 r 00 -1
p(r)=0 0 r 0 -1{=0
000 r -1
0000 r-1
0 0 0] 10 r 0 0
“lor 0 ol oo oo
e N N I R
0 0 =1 o 0 0 o0

p(r)=r[r’(r-1]=0

p(r)=r'(r-1=0
rtf=0r-1=0

r=20,0,0,0,1

Therefore, the maximum value of » is 1. Hence the method for r =5 is zero-stable.

Region of Absolute Stability

Definition 3. A block method is said to be A-stable if its region of absolute stability or the linear
stability domain contains the whole of the left hand half plane i.e. Re(hd) < 0, [6].

The boundary locus method proposed by [13] and [11] is adopted in finding the region of absolute

stability of our proposed block method.
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04 o
02 /
—
[ \
0 : 05 \ 10 5 / 20
—)
-2\
\
-04 ~—_—
Figure 1: Boundary Locus of the proposed Block Figure 2: Boundary Locus of the proposed Block
Method for r =2 Method for r =3
06 ¢
04 g 2
& / 1 (7<
| KA
i r
y g 1 15 2 L N
/|y .
-02 \'\'l \ ¥<
)
-04 N \ 2
-06 3

Figure 3: Boundary Locus of the proposed

Block Method for 7 — 4 Figure 4: Boundary Locus of the proposed

Block Method for r =5
The block methods for r=2,3,4,5 are seen to be A-stable and for values of r =6,7,... the method

become computationally difficult due to large volume of data under processing.

Consistency and Convergence of the Proposed Block Method

Theorem 1. Dahlquist Equivalence Theorem

Consistency and zero stability are sufficient condition for a block method to be convergent [6].
Definition 4. A block method with order p is consistent if the following conditions stated below
are satisfied [13]:

° le

e Xa;=0.

j=0



1481
ADAM’S BLOCK WITH FIRST AND SECOND DERIVATIVE FUTURE POINTS

Since our proposed method is consistent and zero-stable, it implies that the proposed block
method is convergent.

Numerical Experiments

To test the efficiency of our methods, we consider some initial value problems in ODEs that have
been solved by some existing methods.

Problem 1: y'+y=0,y(0)=1,A=0.,0<x<1
Exact solution [1]: y(x)=¢e"

Problem 2: y'+ 60y —10x = —, y(0)=%, h=0.1, 0<x<10

1
6
Exact solution [16]: y(x) = é[x +e ]

Problem 3: y'—1—x+2y=0, y(0)=2, h=0.1, 0<x<I
Exact solution [16]: y(x) = %[2x +7e +1]

Problem4: 2y = (2x—-1)y* =2y, y(0)=~+2, h=0.1, 0<x<1

Exact solution [21]: p(x) = 1

x+le“
2

Error = |Exact result — Computed Result|

Table 2: Comparison of solutions for problem 1

X Solution in [1] Proposed Method Exact solution
0.1 | 0.9048374180 0.9048374180 0.9048374180
0.2 | 0.8187307492 0.8187307540 0.8187307530
0.3 | 0.7408182137 0.7408182110 0.7408182200
0.4 | 0.6703200365 0.6703200000 0.6703200460
0.5 | 0.6065306482 0.6065306600 0.6065306590
0.6 | 0.5488116230 0.5488116351 0.5488116360
0.7 | 0.4965852895 0.4965853020 0.4965853030
0.8 | 0.4493289490 0.4493289630 0.4493289640
0.9 | 0.4065696441 0.4065696520 0.4065696590
1.0 | 0.3678794252 0.3678794420 0.3678794410
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Table 3: Comparison of solutions for Problem 2

x Solution in[16] Proposed Method Exact solution
0.1 | 0.015807560 0.017079791 0.017079792
0.2 | 0.015807560 0.033334372 0. 033334357
0.3 | 0.003436326 0.050000021 0. 050000002
0.4 | 0.071562688 0.066666668 0. 066666667
0.5 | 0.074687356 0.083333343 0. 083333333
0.6 | 0.110312807 0.100000081 0. 100000000
0.7 | 0.111594664 0.116666688 0. 116666667
0.8 | 0.132309964 0.133333334 0. 133333333
0.9 | 0.143308542 0.150000001 0. 150000000
1.0 | 0.164574792 0.166666634 0. 166666667

Table 4: Comparison of solutions for Problem 3

x Solution in[16] Proposed Method Exact solution
0 2.000000000 2.000000000 2.000000000
0.1 | 1.700000000 1.704231478 1.732778818
0.2 | 1.641084610 1.523896021 1.523960081
0.3 | 1.448463233 1.360420334 1.360420363
0.4 | 1.304033029 1.236325710 1.236325687
0.5 | 1.192758695 1.143789033 1.143789022
0.6 | 1.112191440 1.082408903 1.077089871
0.7 | 1.056080923 1.031446870 1.031544687
0.8 | 1.019872305 1.003318801 1.003318906
0.9 | 0.999759807 0.989274023 0.989273054
1.0 | 0.992681275 0.986837404 0.986836745




Table 5: Comparison of solutions for problem 4

ADAM’S BLOCK WITH FIRST AND SECOND DERIVATIVE FUTURE POINTS

x Solution in[7] Proposed method Exact Solution
0.1 1.18608991 1.18618973 1.18619591
0.2 1.02808143 1.02817003 1.02819279
0.3 0.90856202 0.90868210 0.90869320
0.4 0.81303397 0.81304189 0.81304294
0.5 0.73324162 0.73341481 0.73340497
0.6 0.66501098 0.60549433 0.66518150
0.7 0.60536149 0.60549293 0.60549394
0.8 0.55229052 0.55245211 0.55245110
0.9 0.50459061 0.50476560 0.50476580
1.0 0.46142011 0.46153234 0.46153435

4. CONCLUSION

1483

The proposed block method in this paper has been demonstrated on three linear and one non-linear

problem in ordinary differential equations. The methods have shown high competitiveness as

results can be seen in tables of comparisons (Table 2, 3, 4 and 5). The proposed block method

converged almost to the exact solutions of the ordinary differential equations. This family of

methods is A-stable, zero-stable, consistent and convergent. These are the characteristics of

efficient numerical integrators. Therefore, it can be adopted for both linear and non-linear initial

value problems in ordinary differential equations and can as well solve system of stiff initial value

problems due to the wide region of absolute stability.
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