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Abstract. In this paper, we introduce conformal semi-slant submersions from Cosymplectic manifolds onto Rie-
mannian manifolds. We investigate integrability of distributions and the geometry of leaves of such submersions
from Cosymplectic manifolds onto Riemannian manifolds. Moreover, we examine necessary and sufficient condi-
tions for such submersions to be totally geodesic where characteristic vector field € is vertical.

Keywords: cosymplectic manifolds; semi-slant submersion; conformal semi-slant submersion.

2010 AMS Subject Classification: 35C15, 53C22, 53C42, 53C50.

1. INTRODUCTION

Firstly, O’ Neill [26] and Grey [19] defined and studied the theory of Riemannian submersion
between Riemannian manifolds. Later, this notion was widely studied in differential geometry.
The Riemannian submersions have several important applications both in mathematics and in

physics, because of their applications in Yang-Mills theory [8], Kaluza-Klein theory [9, 20],
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robotic theory [5], supergravity and superstring theories [21, 25] etc. On the other hand Rie-
mannian submersions are very useful in Riemannian geometry for studying the geometry of
Riemannian manifolds equipped with differentiable structures.

By using the concept of Riemannian submersion and the condition of almost complex map-
ping, Watson [32] introduced the notion of almost Hermitian submersions. Sahin [30] intro-
duced the notion of anti-invariant Riemannian submersions from almost Hermitian manifolds.
Afterwards, he also defined slant submersions from almost Hermitian manifolds onto a Rie-
mannian manifold in [31]. As a generalization of slant, semi-invariant, and anti-invariant sub-
mersions, Park and Prasad [27] defined and studied the notion of semi-slant submersions from
an almost Hermitian manifold onto a Riemannian manifold. Considering different conditions
on Riemannian submersions many geometers studied this area and obtained lots of results on
this ([14, 7, 15, 17], [29]).

In 1985, D. Chinea [11] extended the notion of almost Hermitian submersion to different sub-
classes of almost contact metric manifolds. He investigated some geometric properties between
base manifold and total manifold as well as fibers. Recently, considering different conditions
on Riemannian submersions many studies have been done([10, 12, 16, 22]).

A related topic of growing interest deals with the study of Riemannian submersion so-called
horizontally conformal submersions: these maps, which provide a natural generalization of
Riemannian submersion, were introduced independently by Fuglede [13] and Ishihara [23].
As a generalization of holomorphic submersions, Gudmundsson and Wood [15] introduced the
notion of conformal holomorphic submersions and obtained necessary and sufficient conditions
for conformal holomorphic submersions to be a harmonic morphism. Recently, Akyol and
Sahin studied the notion of conformal anti-invariant submersions and conformal semi-invariant
submersions from almost Hermitian manifolds onto Riemannian manifolds ([3], [4]). Akyol
introduced the concept of conformal semi-slant submersions from almost Hermitian manifolds
onto Riemannian manifolds [1]. In 2019, Prasad and Kumar defined and studied the notion of
conformal semi-invariant submersions from almost contact metric manifolds onto Riemannian
manifolds [28] and conformal semi-slant submersions from Lorentzian para Sasakian manifolds

onto Riemannian manifolds [24] (see also [2, 18]).
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In the present paper, we study conformal semi-slant submersion from Cosymplectic mani-
folds onto Riemannian manifolds. The paper is organized as follows: In the second section, we
gather main notions and formulae for other sections. In the third section, we give the definition
of conformal semi-slant submersions and some results. We also study the integrability of distri-
butions and the geometry of leaves of vertical distribution. Finally, we obtain certain conditions

for such submersions to be totally geodesic.

2. PRELIMINARIES

In this section, we recall main definitions and properties of Cosymplectic manifolds and
submersions.
We consider M is a (2n+ 1)—dimensional almost contact manifold [11] which carries a

tensor field ¢ of the tangent space, 1 —form 71 and characteristic vector field & satisfying
(1) 9 = —I+n®g @) =1,
(Pé = 0, no (P =0,

where I : TM; — TM; is the identity map.

Since any almost contact manifold (M1, ¢,&,n) admits a Riemannian metric g such that

() g8(0X1,0X;) = g(X1,X2) —n(X1)n(X2),

for any vector fields X;,X, € I'(TM, ), where I'(T M) represents the Lie algebra of vector fields
on M;. The manifold M; together with the structure (¢,&,1n,g) is called an almost contact
metric manifold.

The immediate consequence of (2), we have

3) n(X1) =g(X1,8) and g(¢X1,X2)+g(X1,0X2) =0,

for all vector fields X,X, € T'(TM,).
An almost contact structure (¢,&,7) is said to be normal if the almost complex structure J

on the product manifold M; x R is given by

IO, £5) =00~ &, n(U) )
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where J2 = —I and f is the differentiable function on M; X R has no torsion i.e., J is integrable.

The condition for normality in terms of ¢, & and 1 is [¢, ] +2dn ® & = 0 on M, where [@, @]

is the Nijenhuis tensor of ¢. Now, the fundamental 2-form is defined by ®(X;,X>) = g(X1, 0 X>).
An almost contact metric manifold is said to be a Cosymplectic manifold if it is normal and

both @ and n are closed. The structure equation of a Cosymplectic manifold is given by
“) (Vx, 0)X2 =0,

for all vector fields X1, X, € I'(TM;), where V represents the Levi-Civita connection of (M, g).

Moreover, for a Cosymplectic manifold, we have

(&) Vx, & =0,

for every vector field X; € I'(TM;).

Example 1. We consider R***! with Cartesian coordinates (x;,y;,z) (i = 1,.....,k) and its usual
contact form N = dz.

The characteristic vector field & is given by 9%, and its Riemannian metric g and tensor field

¢ are given by

) 0 & 0
g =Y ((dxi)>+ (dy)*)+ (dz)*, ¢ = |=&; 0 0],i=1,....k
i=1
0 0 0

This gives a Cosymplectic structure on R**1. The vector fields E; = aiy,»’EkH = a%l,é = a%
form a @—basis for the Cosymplectic structure. On the other hand, it can be shown that

(R***1 ¢ & n,g) is a Cosymplectic manifold.

Let (M}, g1) and (M5, g>) be two Riemannian manifolds of dimension m and n respectively,
where g1 and g; are the Riemannian metrics on M| and M,. Let f : (My,g1) — (M>,g>) be a dif-
ferentiable map. We call the map f a differentiable submersion if f is surjective and the differen-
tial (fi), has a maximal rank for any p € M;. The map f is said to be a Riemannian submersion
if f is a differentiable submersion and (f.), : ((ker(fi)p)®,(g1)p) — (Tr(pyM2, (82) £(p)) is @
linear isometry for each p € My, where (ker(f,),)" is the orthogonal complement of the space

ker(f:), in the tangent space TpM; of M at p.
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Let f: (My,0,&,1m,81) — (M3, g>) be a differentiable map from almost contact metric man-

ifold (My,0,£,1m,g1) to Riemannian manifold (M,,g,). We call the map f slant submer-

sion if f is a Riemannian submersion and the angle 6 = 6(X)) between ¢X; and the space

ker(f:)p, —{&}, is constant for non-zero vector fields X; € ker(f.), —{E}, if & € ker(fs),
and p € M. We call the angle 0 a slant angle.

Let f: (My,g1) — (M2,g2) be a differentiable map between Riemannian manifolds. The

second fundamental form of f is given by

(©6) (VL) (X1, X2) = V4, fuXo — £u(Vx, X2),

for all X1,X, € T'(TM,), where V/ is the pullback connection and we denote conveniently by
V the Levi-Civita connections of the metrics g; and g;.

Define O’Neill’s tensors .7 and <7 by

@) ApF = IOV g VE + V'V 5pp FF,

8) IgF =V ygVF + V' VypICF,

for any vector field E, F on M, where V is the Levi-Civita connection of g;. It is easy to see that
I and @7 are skew-symmetric operators on the tangent bundle of M; reversing the vertical
and the horizontal distributions. We summarize the properties of the tensor fields .7 and .o/

On the other hand, from equations (7) and (8), we have

) Vx,Xo = Ix, X2+ V' Vx X,
(10) Vx, Vi = I Vi+ 7V Vi,
(11) Vv, X1 = oy, X1 + V' Vy X1,
(12) Vy Vo = Vy, Vo + oty Va,

for all X1,X, € I'(ker f,) and V},V; € I'(ker f,)*, where JOVx, Vo = oy, X1, if V5 is basic. It

is not difficult to observe that .7 acts on the fibers as the second fundamental form, while .o/
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acts on the horizontal distribution and measures of the obstruction to the integrability of this
distribution.

It is seen that for ¢ € My, X1 € ¥, and V| € S the linear operators
iy, Ix, : TyMy — Ty;Mp
are skew-symmetric, that is
(13) 81 (HEF) = —gi(E, o F) and g1 (Ix, E,F) = —gi(E, Ix, F)

for each E,F € T,M;. We have also defined the restriction of .7 to the vertical distribution
T |y« is precisely the second fundamental form of the fibres of f. Since 7y is skew-
symmetric we get: f has totally geodesic fibres if and only if .7 = 0 [6].

Next, we find necessary and sufficient condition for conformal semi-slant Riemannian sub-
mersion to be totally geodesic. We recall that a differentiable map f between two Riemannian

manifolds is called totally geodesic if
(Vf*)(Vl,VZ) =0, for all V{,V, € F(TMI).

A geometric clarification of a totally geodesic map is that it maps every geodesic in the total

space into a geodesic in the base space in proportion to arc lengths.

Lemma 1. Let (My,9,£,1,81) be an m—dimensional Cosymplectic manifold and (M, g) be
an n—dimensional Riemannian manifold. Let f : M| — M, be a differentiable map between
them and p € M. Then f is called horizontally weakly conformal or semi-conformal at p if

either df, = 0, or df, maps the horizontal space # = ((ker f),)* conformally onto Tr(p\Ma.

The second condition in the above definition exactly is the same as df, is symmetric and

there exists a number A (p) # 0 such that

(14) g2(f:X1, £:X2) = A% (p)g1(X1,Xa), forall X1, X, € ((ker f),)*.

Here A(p) is called the square dilation of f at p. The map f is called horizontally weakly
conformal or semi-conformal on M| if it is horizontally weakly conformal at every point on M.

If f has no critical point, then it is said to be a (horizontally) conformal submersion [26].
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We should mention that a horizontally conformal submersion f : M| — M, is called horizon-

tally homothetic if the gradient of its dilation A is vertical, i.e.,
(15) (gradL) =0,

at p € M, where 7 is the complement orthogonal distribution to " = ker f in I'(T,M).

Again, we recall the following definition from [6].

Let f : M| — M; be a conformal submersion. A vector field E on M is called projectiable if
there exist a vector field E on M, such that f(Ep) = E 7(p) for any p € M;. In this case E' and
E are called f—related. A horizontal vector field X, on M is called basic, if it is projectiable.
It is a well known fact that if Z is a vector field on M,, then there exists a unique basic vector

field Z which is called the horizontal lift of Z.

Lemma 2. Let f : M| — M, be a horizontal conformal submersion. Then, for any horizontal

vector fields X1,X> and vertical vector fields V1,V,, we have

(i) (Vf*)(xl,Xz) =X (lnl)f*Xz +X2(ln7L)f*X1 —gl(Xl,Xz)f*(gradanL),
(i) (VL) (V1,V2) = = £ (T, V),
(i) (V1) (X1, V1) = = fo(VY' V) = — fu(5, V).

3. CONFORMAL SEMI-SLANT SUBMERSIONS

In this section, we define and study conformal semi-slant submersion from Cosymplectic

manifolds.

Definition 1. Let (My,¢,&,1,81) be a Cosymplectic manifold and (My, g>) be a Riemannian
manifold. A horizontal conformal submersion f: (My,¢0,E.1,81) — (M2, g2) is called confor-

mal semi-slant submersion if there is a distribution Dy C (ker f) such that
(16) kerf*:Dl@D2@<é >, (])(D])ZD],

and the angle 0 = (V) between 9V, and the space (D), is constant for non-zero vector field
Vi € (Dy)p and p € My, where Dy,Dy and < & > are mutually orthogonal in (ker f). As it is,

the angle 0 is called the semi-slant angle of the horizontally conformal submersions.
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It is known that the distribution ker f; is integrable. Hence above definition (1) implies that

the integral manifold (fiber) f~'(g),q € M, of ker f. is a semi-slant submanifold.

Now, we shall give some examples of conformal semi-slant submersion from Cosymplectic

manifold onto Riemannian manifold.

Example 2. Let R’ has a Cosymplectic structure as in Example 1. Let f : R7 — R? be a sub-

mersion defined by

3,X2—Y3
X1,X2,X3,Y1,Y2,Y3,2) = € s V2
f( Y1,Y2,¥3,2) = €’ ( 7 )

Then, by direct calculations, we obtain the Jacobian matrix of f as

1 1
0 7 000 5 0
0O 0 001 0O O
After a straightforward computation, we obtain
0 1, 0 0 0 0 0
kerf,) = span{Vi=— Vo=—(—+—)V3=—,Vy=—,Vs=—1},
(ker £.) pan{V, o0x1 2 \/§<8x2 (9y3) 3 0x3 4 ay1 > 8z}
1 0 0 0

1 _ _ e (- —_—
(kerf*) - SpCll’l{Hl - \/z(aXZ ay3>7H2 3y2 .

Thus it follows that Dy = span{V},V4} and D, = span{V,,V3}. Thus, the map f is a conformal

semi-slant submersion with the semi-slant angle 6 = 7 and dilation A = e

Example 3. Let R’ has a Cosymplectic structure as in Example 1. Let f : R7 — R? be a sub-
mersion defined by

V3x1 — 2
fxn,x2,x3,91,¥2,¥3,2) = en(T,yM

Then, by direct calculations, we obtain the Jacobian matrix of f as

V3 1

5 000 —5 00

0 001 0 00O

After some straightforward computations, we derive
1,0 d d d d d
kerf.) = Vi==(s— 3— )\ o=— WV=-Vi=-—Vs=—1},
( erf ) span{ 1 2(8x1 + \/_ayz) 2 axz 3 8x3 4 ay3 5 az}
d d

Lo LV SR
(kerf*) - Span{Hl_z(\/gaxl ayz)aHZ_ayl}‘
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Thus it follows that Dy = span{V3,V4} and Dy = span{V},V,}. Thus, the map f is a conformal
semi-slant submersion with the semi-slant angle 0 = % and dilation A = e”.
Let f be a conformal semi-slant submersion from Cosymplectic manifold (M1,¢,&,1,g1)

onto Riemannian manifold (M>, g>). For X; € I'(ker f,.), we have
a7) Xi = PX1 4+ 0Xi +n(X1)&,

where PX; € I'(Dy) and 0X; € I'(D»).
For X, € I'(ker f, ), we have

(18) 0Xo = yX) + wXs,

where yX; and wX> are vertical and horizontal components of ¢ X, respectively.

Also for X3 € T'(ker f.)*, we have
(19) 0X3 = BX; + CX;,

where BX3 and CX3 are vertical and horizontal components of ¢X3 respectively.

Then, I'(ker f,)* decomposed as
(20) T(kerf,)" = 0Dy &,

where ( is the orthogonal complement of D, in I'(ker f,)* and it is invariant with respect to
$.

Let f: (My,¢,E,1m,81) — (Ma,g2) is conformal semi-slant submersion from Cosymplec-
tic manifold (M;,¢,£,m,g1) onto Riemannian manifold (M,,g>). Thus the using equations

(3),(18) and (19), we get
(21) g1 (WX1,X2) = —g1(X1,¥X2), g1(V1,CV2) = —g1(CV1,V2),

for all X1, X, € T'(ker fi) and V1, V5 € T'(ker f.)*.
Then the using equations (1), (18),(19) and (20), we get

(22) wD| = Dy, @Dy =0, yD, C Dy, B([(ker f,)*) = Da.
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Lemma 3. Let (M1,0,E,1,81) be a Cosymplectic manifold and (M»,g,) be a Riemannian
manifold. If f : (M1,0,E.,1,81) = (M2, g>) is conformal semi-slant submersion, then

VX +BoX, = —X, +1(X)) &, oyX; +CoX; =0,

WBX> 4+ BCX, =0, ®BX> +C*X, = —Xo,

for all X, € T'(ker f) and X, € T'(ker f,)*.
We define the co-variant derivatives of ¥ and @ as follows:

(23) (Vx, ¥)X; = Vx, yX, — WV, X3,

(24) (VXL (D)Xz = %Vxl X, — COVXle,
for all X1,Xp € F(kerf*), where §X1X2 = V%XIXQ.

Lemma 4. Let (M1,0,E,1m,81) be a Cosymplectic manifold and (M»,g,) be a Riemannian
manifold. If f : (M1,0,E.,1,81) = (M2, g>) is conformal semi-slant submersion, then

(1)
(VXl II/)X2 = B’%(IXZ - L%(l (DXZ,
(VXI (D)XZ = C<7.X1X2 - i%(l WX27
for all X1,X, € I'(ker f).

(2)
T, BV| + HVx,CV, = CHVx, Vi +0.I%, Vi,

Vx, BV + Jx,CVi = B#'Vx, Vi + yVyx, Vi,
for all X; € T'(ker f,) and V; € T'(ker ).

(3)
7/VVI X —l—ﬂfvl X = B%lel + l///VVVle,

@7\/1 X —l—ijvl wX| = Cdlel + CO’VVV]XI,
for all X; € I'(ker f,) and V; € I'(ker f,)*.

(4)
by, BVy + 5V, CVy = CHVy, Vo + 058y, Va,
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V'Vy,BVy + oty CVy = BNV y, Vo + yaty, Vs,

for all Vi,V € T'(ker fi)*.

Lemma 5. Ler f: (My,0,E,1,81) — (Ma,g2) is conformal semi-slant submersion from an
almost contact metric manifold (My,9,&,1,g1) onto Riemannian manifold (M»,g>). Then f is
a proper conformal semi-slant submersion if and only if there exists a constant A € [—1,0] such
that

l//2X1 = )\,Xl, forall X, € F(Dz),

where A = —cos% 6.

Proof. For any non-zero vector field X; € I'(D;), we have

| wX ||
(25) cosO = )

| X1 ||
and
26) cosd — g1(0X1, vXp)

FwX [l ¢X: 17

where 6(X)) is the semi-slant angle.
Using equations (1),(2),(18) and (26), we get

—g1(X1, w?X))
| wXy ||| X1 |

27 cosO =
From equations (25) and (27), we have
1/12X1 — —cos? 0.X;.

If A = —cos” 6, then
viX) = AX),

for all X; € I'(D,). O

From Lemma 5 and equations (2), (18) and (19), then we easily have

Corollary 1. Let f is conformal semi-slant submersion from an almost contact metric manifold

(My,9,E,1,81) onto a Riemannian manifold (M3, g ), then

(28) g1 (WX1,yXp) = cos® 0g1 (X1, X2),
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(29) g1(0X),0X>) = sin” g1 (X1, X2),
forall X,,X, € T'(Dy).

Lemma 6. Let f is conformal semi-slant submersion from a Cosymplectic manifold

(My,9,6,7m,81) onto a Riemannian manifold (M,,g>) with the slant angle 6 € [0,7]. If @ is

parallel with respect to V on D, then we have

Tux, WX1 = —cos* 8., X\, for all X € T(Dy).
Proof. 1If o is parallel, then from Lemma (4), we have
(30) CIx, X2 = Fx,¥Xa, for all X1, X € I'(Dy).
Interchanging the role of X and X,, we have
(31 CIx, X\ = Fx,yXi, forall X1, X, € I'(D;)
Since .7 is symmetric, from equations (30) and (31), we get

Fux, WXi = —cos? 0.9, X, forall X; € [(Dy).

Theorem 1. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(My,9,&,1m,81) onto a Riemannian manifold (My,g>). Then the invariant distribution Dy is

integrable if and only if

62 ((VA)(X1,0%) — (V1) (62, 0X1), . (0V1))

= g1(W(Vx,0X2 — Vi, 0X1), V1),
forall X,,X, € T'(Dy) and Vy € T'(D»).
Proof. We note that D is integrable if and only if g;([X1,X2],V1) =0, g1([X1,X2],V2) =0,
and g1 ([X1,X2],&) = 0, for all X1,X, € I'(D;),V; € T'(D,) and V; € (ker f,)*. Since ker f; is

integrable g;([X1,X3],V2) = 0. Thus, D, is integrable if and only if g;([X;,X2],Vi) =0 and
g1([X1,X%],8) =0.



CONFORMAL SEMI-SLANT SUBMERSIONS 1335

Now, for any X,X, € I'(D;), we have
1([X1,X],8) = &1(Vx,X2,8) —g1(Vx,X1,8)
= _gl(X%VXl&)_"gl(leVng)

Using equation (5), we have

g1([X1,X%],8) =0.
Now, from equations (2),(3),(4),(6),(9) and (18), we have
g1([X1,.X2], V1)
= g1(Vx,0X2 — Vi, X1, YV1) + g1(HVx, 0 X0, 0V1) — g1 (H'Vx,0X1, 0V7).
Since f is conformal submersion, using equation (14) and Lemma 2, we have
g1([X1,X2], V1)
= 0 ((VA)XL0X) — (V£) (X, 0X1), £:(0V1)) — 1 (W(Vx, 0% — VX)), Vi),
Then D; is integrable <

562((V ) (X1, 0X2) = (VL) (X2, 031, £ (V1))

= gl(W(§X1 0X> — §X2¢X1)7V1>'

Theorem 2. Let f be conformal semi-slant submersion from a Cosymplectic manifold
(My,9,E,1,81) onto a Riemannian manifold (M5, g>). Then the slant distribution D, is inte-

grable if and only if
G, OV — Ty, Vo + Y ( Ty, 0yVo — T, 0yVy) € I'(Dy),
forallVi,V, € T'(D,).
Proof. We note that D, is integrable if and only if g;([V},V2],X1) =0, g1([V1,V2],X2) = 0 and

g1((V1,V5],&) =0, for all V{,V, € I'(D5),X; € I'(Dy) and X; € (ker f,)*. Since ker f, is inte-
grable then g1 ([V},V2],X5) = 0, and also, g1 ([V1, V2], &) = 0. Thus, D; is integrable if and only
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ifgl([VI,VQ],X1> =0.
From equations (2),(3),(4),(6) and (18), we have

gi(Vi,Va],0X1) = a1([Vi,V2],0X1),

= —g1(Vy,vo,X1) — g1(Vy,0V2,X1) + g1 (Vi V1, X1) + g1 (Vy,0V1, X)),
Next, using equation (9) and Lemma 5, we have
sin® g1 ([Vi, V2], 0X1) = g1(:F, 0V1 — T, 0V2,X1) + 81 (W( Ty, 0YVs — Ty, 0YV)), X)),
Thus D, is integrable <

T, OV — Ty, Vo + Y ( Ty, 0yVo — F,0yVy) € T'(Dy).

Theorem 3. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(My,¢,E,m,81) onto a Riemannian manifold (M-, g,). Then the distribution (ker f,)* is inte-

grable if and only if

1
ﬁgz(vxzf*(CXl) — Vx, f+(CXa), f«(@V1))
= g1 (JZ%XIBXZ — ,KZszBXI, a)Vl) + g1 (VVXIBXZ — ”//VXZBX1 + JZ/XICXz — JZ)ZXZCXD I//Vl) —
g1(X1,0V1)g1(CXa, gradInA) + g1 (X2, 0V1)g1(CXy, gradInA)

+2g1(X1,CX2)g1(gradln7L,a)Vl),
for all X,,X, € T'(ker f.)* and V; € T(ker f).

Proof. For all X1,X, € T'(ker f,.)* and V| € T'(ker f.), using equations (2) — (5),(11), (12), (18)
and (19), we get
g1([X1, %], V1)
= a1(Vx, X2, V1) —81(Vx, X1, V1)
= g (QQ{XIBXZ — ,QfXZBXh (DVl) + g1 (’VVXlBXZ — ”//VXZBX1 + ”Q{XI CX, — MXQCXD I//Vl) +

g1(HVx,CXy — 'V x,CX1,0V)).
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Since f is conformal submersion and using equation (6) and Lemma 2, we have
g1([X1,X2], V1)

= g1(x,BXy — o, BX), 0V)) + g1 (¥ Vx,BXy — V'V, BX| + oy, CXo — 5,CX1, WV} ) +
2382V S (CXa), £o(@V1)) — 5582((V£) (1, C%). fo(0VA) ~
28V (CX1), Fi(@V1)) + 3382((V£:) (06, CX1), £o(@V1)),

= g1(x,BXy — o, BX1,0V)) + g1 (¥ Vx,BXy — V'V, BX| + oy, CXo — 5,CX1, WV} ) +
362V . (CX), £ (0V1)) — 2582 (CX1), £ (0VA) -
2 8(X1(IN2) . (CXa) + Xa(InA) £ (CX1) 81X, CXa) e (grad InA), . (@V1)) +
28X (0A)£2(CXa) + Xa(InA)£2(CX1) — 81 (X1, CXa) fu(grad n ), . (0V1)),

= g1(, BXs — o, BX1,0V)) + g1 (¥ Vy,BXy — V'V, BX| + oy, CXs — 5,CX1, WV} ) +

1 1
ﬁgz(vxlf*(cxz),f*(wvl)) - ﬁgZ(VXzf* (CXy), f«(0V1)) —
g1(X1, 0V1)g1(CXp,gradln ) + g1 (Xa, @V1)g1(CX1,gradln )

+281(X1,CX2)g1(gradIn A, wVy),

which completes the proof. U

Theorem 4. Let f be a conformal semi-slant submersion from a Cosymplectic manifold
(My,0,E,1,81) onto a Riemannian manifold (M,,g,). Then the distribution D defines totally
geodesic foliation on M if and only if

1
ﬁgz((vf*)(Vl, OV2), fi(wX1))
= g1(V'Vy, 0V, yX1),
and
1
ﬁgz((Vf*) (V1,0V2), f(CX3))
= g1(V2, V' Vy,¥yBXo) + g1(V2, Jv, 0BX>),

for all Vi,V» € T'(D1), X1 € T'(Dy) and X, € T'(ker f.)*.
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Proof. The distribution D; defines a totally geodesic foliation on M| if and only if g; (Vy, V2, X)) =
0,81(Vy,V2,X2) =0and g (Vy,V2,§) =0, forall V|,V € T'(Dy), X; € I'(Dy) and X5 € [(ker f,)*.
After a straightforward computation, we obtain g (Vy,V2,§) =0, for all V;,V, € T'(Dy).
Now, for all V},V, € I'(Dy ), X; € I'(D,) and using equations (2) — (5),(9),(10),(18) and (19),
we have
g1(Vy2,X1) = g1(Vy,0V2,0X1),
= gl(VV1¢V27 WXI) +g1(VV1¢V27 le)?

= &1(V Vv, V2,0X1) +81(F, V2, 0X1).
Since f is conformal submersions and using equation (6) and Lemma 2, we have
1
g1(VyVa,X1) = g1(V'Vy,¢V2,0X1) + ﬁgz(f*(%&Vz),f*(wX])),
1
= 81(7Vvi9V2,0X1) — 5582((V1) (V1,0V2), £ (@X1)).

On the other hand, for all Vi, V, € T'(Dy), X, € T'(ker f,)* and using equations (2) — (5), (9),
(10), (18) and (19), we have

g1(Vvi2,X2) = g1(Vy,0V2,0X2),
= &1 (VV1¢V27BX2) +gl (VV1¢V27CX2)7
= _gl(VV1V27¢BX2) +g1(gV1¢V2,CX2),

= a1(V2, VVyyBXy) +g1(Va, Fv, 0BX,) + g1 (1, 9V2,CX).
Since f is conformal submersions and using equation (6) and Lemma 2, we have

g1(Vy,V2,X5)

1
= g1(Va, ¥ Vy,yBX3) + g1 (Va, Fv, 0BX;) + 7282 ([« (A, 0W2), £ (CX2)),

= 1V Vi YBX) 81 (VT OBX:) — (VL) (0, 9V, (X)),

which completes the proof. U
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Theorem S. Let f be a conformal semi-slant submersion from a Cosymplectic manifold
(My,9,&,1m,81) onto a Riemannian manifold (M3, g>). Then the distribution D, defines totally

geodesic foliation on M if and only if

L ea((VF)(X1, %), . (1))

= gi(oyXy, Ix, oY1),

and

1362 (Vax, f-(0X), £(9CD:)) — 5 52((VF) (X1, 0¥X), £ (12))

- gl(‘%(l szuBYZ) _gl(%(l)XQI//Xl7¢CY2) _gl(th a)Xz)gl(gmdlnl, ¢CY2)7
forall X;,X, €T'(Dy), Y, €T(Dy) and Y, € F(kerf*)L.

Proof. The distribution D; defines a totally geodesic foliation on M if and only if g1 (Vx, X2,Y1) =
0,81(Vx, X2,Y2) =0and g1 (Vx, X2,&) =0, forall X;, X, € [(D,), Y; € [(D;) and Y5 € T'(ker fi)*.
By using equations (2) — (5),(9),(18), (19) and Lemma 2, we have
81(Vx, X2,0Y1)

= —gi1(pVx, X2, 1),

= —&1(Vx,0X2,11),

= g1(OYXa,Vx, 0Y1)+ g1 (Vx, ¥ X2, 0Y1) + g1 (0X2, Vi, Y1),
Since f is conformal submersion and using equation (6) and Lemma 2, we have

sin? 0g1(Vx, X2, Y1)
= (Y%, Vi, 0%1) — 3 ea((VF) (X1 1), fo(0X2).

A
On the other hand using equations (2) — (5),(9) — (12),(18), (19) and Lemma 5, we have

21(Vx, X2, Y2)
= 21(Vx,¥Xa,0Y2) +¢1(Vx, 0X2,0Y>),
= —g1(Vx,0yX2,12) +g1(Vx, 0X>,0Y>),

- _gl(VX1 IIIZXZaYZ) _gl(vxlwWXZ,Yz) +g1(VX1 wX27¢Y2)7
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Therefore, we have
sin? 0g1(Vx, X2,Y2)
= —g1(Vx,0yXy,0Y2) +¢1(Vx, 0X2,BY2) + g1(Vx, 0X;,CY>),
= g1(Ix,0X2,BY,) — g1 (HVx,0¥X,Y2) — g1 (Hpx, YX1,9CY2) —

81(HV ox,0X1,9CY2).
Since f is conformal submersions and using equation (6) and Lemma 2, we have
Sin2 Ggl (VXIXZ, Yz)

1
= g1(Ix, 0X2,BY,) — g1(Hpx, ¥X1,9CYs) — ﬁg2(f*(%vxlwwxz)7f*(yz)) -

1
ﬁgz(f* (%VwXZ(DX1),f*(¢CY2));

= g1(x,0X2,BY>) — g1(Hwx, YX1,9CY>) + %gz((VfQ(Xl, OYXs), f«(Y2)) —

1
ﬁgz(c%”va)xzf*((Dxl),f*wCYz)) —g1(wX;,wX>)g1(gradln A, ¢CY>),

which completes the proof. 0

From Theorems 4 and 5, we have the following result:

Theorem 6. Let f be a conformal semi-slant submersion from a Cosymplectic manifold
(My,9,E,1,81) onto a Riemannian manifold (M»,g>). Then the fibers of f are locally product
manifold if and only if

%gZ((Vf*)(Xla¢X2)7f*(a)yl)) = gl(/y/vxl ¢X27 II/YI)a

%gz((Vf*)(Xl,¢X2),f*(CY3)) = 81(X2, V' Vx, yBY3) + g1(X2, Ix, BY3),

and

1

ﬁgz((vf*)(lﬁ,Y2)7f*(00X1)) = g1(oyYs, Fy, 0X1),

2382(Van . (O0), £(0CH)) — 252((V) (0, 0972), £.(1)

- gl(%ﬁ (DYZ,BY:?,) _81<427a)Y2‘l/Y17¢CY3) _gl(wY17wY2)g1 (gradlnl, ¢CY3>7
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forall X\,X, € T(Dy), Y1,Y> € T(Dy) and Y3 € T'(ker f.)*.

As the distribution ker f; is integrable, it is only studied the integrability of the distribution

(ker f.)* and afterwards we discuss the geometry of leaves of (ker f.) and (ker f.)=.

Theorem 7. Let f be a conformal semi-slant submersion from a Cosymplectic manifold
(My,0,E,1,81) onto a Riemannian manifold (M,,g>). Then any two conditions below imply

the third:

(i) (ker f.)™ is integrable.

(if) f is a horizontally homothetic map.
(i)

%gZ(VXzf*<CX1) = Vx, [+(CX2), fi(@V1))

= g (JZ%XIBXz — JZ%XZBXI , (DVl) + g1 (”//VXIBXZ — VVXszl + JZ%XI CX, — JZ/X2CX1, l//Vl),

for all X1, X, € T'(ker fi)* and V| € T'(ker f5).
Proof. For all X1, X, € T'(ker fi)* and V| € T'(ker f.), from Theorem 3, we have
362V 1 (CX1) = Vi, f(CXa), (V)

—  g1(,BXs — A5, BX1, OV} + g1 (¥ Vx, BXy — ¥V, BX; + oy, CXs — o, CX1, WV}) —
21(X1,0V))g1(CXa,gradInA) + g1 (Xa, @V1)g1(CXy,gradln )
+2g1(X1,CX2)g1(gradn A, ®Vy).

Now, if using (i) and (ii), we get (iii)

%82(szf*(CX1) — Vx, [+ (CXa), fx(0V1))

= g1 (,Qfxl BX, — JZ{XZBXI , (x)Vl) + g1 ("f/VXl BX, — ”f/VXszl + JZ{XI CX, — %chxl, l//Vl).

0

Theorem 8. Let f be conformal semi-slant submersion from a Cosymplectic manifold (My,9,E,1,81)

onto a Riemannian manifold (M5, g>). Then the distributions (ker f,)* defines a totally geodesic
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foliation on M if and only if

x,CXy + V'V, BX; € T(Dy),

and

1
ﬁ{gz(vxl [(X2), 00Y1) — g2(Vx, f:(CX2), fi(0)2))}
= g1(Ax,BX2,0Y1)+g1(X1,gradlnd)gi (X2, 09Y;) +
g1(X2,gradIn)g (X1, wY1) — g1(X1,X2)g1(gradIn A, wdY) —

g1(CXa,gradIn)g (X1, wY1) +g1(X1,CXz)g1(gradIn A, oY1),

for all X1,X; € T'(ker i)+, Y, € T(Dy) and Y1 € T(Dy).

Proof. The distribution I'(ker f,)* defines a totally geodesic foliation on M; if and only if

21 (VX1X2,Y2) =0, gl(vX1X27Y1) =0 and gl(vX1X27§) = 0, for all X1,Xp € F(kerf*)L,Yz €
F(Dl) and Y] € F(Dz).

Let X{,X, € I'(ker f,)*. Now using equation (5), We have
gl(Vxle,é) = _gl(XZaVX1§> =0.
By using equations (2) — (5),(11),(12),(18) and (19), we have
81(Vx, X2, 12)
= gl(VXI ¢X27¢Y2)7
= &1 (”//VXIBX2 + JZ{XICX2, ¢Y2)7

= —g1(¢(V'Vx,BXy + o, CX;),Y2).
On the other hand, using equations (2) — (5),(11),(12),(18), (19) and Lemma 5, we have

81(Vx, X2,71)
= gl(led)XZv(PYl)a

= —g1(Vx, X2, ¥?Y1) — g1(Vx, X2, 0WY7) + g1 (Vx, BX2, 0Y1) + g1 (Vx,CXa, ©Y)),
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Therefore, we have

Sin2 le (VXIXZ, Yl)

= gl(JZfXIBXZ, (DYl) — gl(%VXIXZ, COI[/Yl) +g1(%Vx1CX2, O)Yl).
Since f is conformal submersion and using equation (6) and Lemma 2, we have

sin® 8g (Vx, X2,11)
= g1(o, BX), o) +%gz(f*(%vxle)yf*(wll/YO) - %gz(f*(%”vxlCXz),f*(le)),
= 1(k B, 011) — 32V [ (6a) S (OWN)) + 52V, f(CRe), (@) +
%gz(xl (In2)fi(X2) + X2 (InA) fo(X1) — 81(X1, X2) fu(gradIn A ), fi(@yY1)) —
%gz(Xl (InA) £ (CX2) +CXa(InA) i (X1) — g1(X1,CX2) fi(gradIn ), fi(@Y1)),
= 1[0 BYo, 001) — (A Vx, (X0), Fo(OWT)) 4 (A, (CK), fol @)+
81(X1,gradIn)g, (Xo, 0yY1) + g1 (X2, gradInA)g1 (X1, @yYr)
—81(X1,X2)g1(gradIn A, 0 YY) — g1(CX2,gradlnA) g (X1, ©Y1)

+g1(X1,CX2)g1(gradIn A, oYy),
which completes the proof. 0

Theorem 9. Let f be conformal semi-slant submersion from a Cosymplectic manifold (My,9,E,1,81)
onto a Riemannian manifold (M, g>). Then the distributions (ker f) defines a totally geodesic

foliation on M if and only if

1
sz(VmXZf*(q)CV])?f*(a)X] )

= —g1(o(VVx yXo + Tx 0X2), V1) + 81 (Ix, ¥vX2,CVy) —

81(Hox,9CV1, wX1) + g1(0X1, 0X2)(¢CVy,gradIn A ),

for all X,X, € (ker f.) and V| € (ker f.)*.
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Proof. For all X1, X, € (ker f.) and V| € (ker f.)*, using equations (2) — (5),(9), (10), (18) and
(19), we have
21(Vx, X2, V1)
= 81(Vx,0X2,0V1),
= g1(V'Vx,¥X2,BV))+g1(Ix, 0X2,BV;) +
21(Vx,¥X2,CV1) +g1(Vx, 0X2,CVy),
= —g1(0(V'Vx, vXs+ Tx, 0X2), Vi) + g1 (Tx, yX2,CV))
—81(Vox,0CV1, ¥X)),
= —g1(o(VVx, yXo+ Ix,0X2),Vi)+ 81 (Tx,vXa2,CVy) —

81(Vox, 0CV1, ¥X1) — g1 (Vox,0CVi, 0X;),

Since f is conformal submersion and using equation (6) and Lemma 2, we have

81(Vx, X2, V1)
= —g1(0(V'Vx, yXo + Ix, 0X2), V1) + 81(Tx, yX2,CV1) —

1 (o 0CV1 YX) — o (Vo fo(9CVI) f(0X1)) +

%gz((Vf*)(a)Xz,(f)CVl);f*(le))v

= —g1(0(¥Vx, ¥vXo+ Tx,0X2), V1) + g1 (Tx, yX2,CVy) —

1 (o 0CV1, YX) — o (T fo(9CVI), f(0X1)) +

g1(0X1,0X,)(pCV),gradln i),

which completes the proof. 0

Theorem 10. Let f be a conformal semi-slant submersion from a Cosymplectic manifold
(My,9,&,1m,81) onto a Riemannian manifold (M5,g,). Then any two conditions below imply
the third:
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(i) (ker f.) defines a totally geodesic foliation on M.
(ii) A is a constant on I'(1t).
(i)
1
1282 (Vox f+(6CV1), f(0X))
= —g1(0(VVx yXo + Ty, 0X2),V1) + 81(Tx, y X2, V1) —
81 (fQ{COXZ (PCVI ) II/XI )7
for all X1,X, € T'(ker f.) and V; € T'(ker f.)*.

Proof. From Theorem 9, we have

%gz(vwxzf*@cvl)?f*(le))

= —g1(o(VVx, yXo+ Ix,0X2),V1)+81(TFx,¥Xa2,CVy) —

81(Aox,9CV1,yX1) + g1 (0X1, 0X2)(¢CVy,gradln ),

for all X1, X, € I'(ker fi) and V; € T'(ker f;)*.

Now, if we have (i) and (iii), then we obtain
g1(wX1,0X>)g1(HgradlnA,¢CVy) = 0.

From above equation, A is a constant on I'(i). Similarly, one can obtain the assertions. [

4. TOTALLY GEODESICNESS OF THE CONFORMAL SEMI-SLANT SUBMERSIONS

At this part, we shall examine the totally geodesicness of a conformal semi-slant submersion.
First, we give necessary and sufficient conditions for a conformal semi-slant submersion to be
totally geodesic map. Remember that a smooth map f between two Riemannian manifolds is

called totally geodesic if V f, = 0.

Theorem 11. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(My,¢,&,1m,81) onto a Riemannian manifold (M, g>). Then, f is a totally geodesic map if

Vi, fe(X2) = —fu(C(o, WZi + AV x, 0Z) + ox, WZr + 7' Vx, 0Zs) +

(D(”//VXI vz + szxl wZ; + ”//Vxl vz, + Q/Xl C{)Zz)),
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forall Xy € T'(ker f.)* and Xp = Z1 + Z», where Z1 € T'(ker f.) and Z, € T'(ker f.)*.
Proof. From equation (6), we have
(Vf*)(Xl aXZ) = VX1f*<X2> — Jx (VX1X2)7

for all X; € T'(ker f;)* and X, = Z; + Z,, where Z; € T'(ker f,) and Z, € I'(ker f,)*.
Using equations (1) — (5),(9) — (12),(18) and (19), we have

(V1) (X1, X2)

= Vx, fo(X2) + f:(0>Vx, Xo —(Vx, X0)E),

= Vx,fi(X2) + fu(0Vx, 0X2),

= Vx, fi(X2) + f(0VX,0Z1 + VX, Z2),

= Vx, f[i(X2)+ fx(0Vx,0Z1 4+ ¢Vx,Zy),

= Vx, fi(X2) + fu(Box, WZ) + CIx\ WZ1 + Y V'V, WZi + 0V Vx, WZ +
BV x, 0Z +CIV x, 071 + Yyox, 02 + 0.2x, OZ; +
Batx WZy +Calx Wl + YV Vx Wl + 0V Vx, yZ, +

+BIVx, 02y + CHVx, W2y + Yoty 07y + 0., wZ,),
Thus taking into account the vertical parts, we get

(Vf*)(Xl ,Xz) = Vx f« (Xz) + f« (C(%Xl vz + %VX] w7z + JZ/X] vz + %pvxl (DZZ) +

O(V'Vx, WZ + oy, 0Z) + V' Vx, W2, + olx, 01s)),
which gives our assertion. 0

Theorem 12. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(My,¢,E,1m,81) onto a Riemannian manifold (M3, g>). Then f is a totally geodesic map if and

only if
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(VL)X 0Y), 1.(2)) — g2(Var £.(0X), £.(9C2))}

= —g1(FxoY,BZ)+ g\ (HpyWvX,0CZ) + g1 (0Y, 0X)gi(gradlnA,¢CZ),

81(7'Vx,0X2,BZ) = —g1(Ix,0X>,CZ),
(iii)

&1 (TnYBZ V) ~ 81T CZBY) = 2ea((V£) (1, 0B2), £.(V)

—%gz((Vf*)(Yl»CZ)’f*(CV))

(iv) f is a horizontally homothetic map,

for all X1,X, € T'(Dy), X,Y € I'(D»),Y; € T'(ker f.) and Z,V € I'(ker f,)*.

Proof. (i) From equation (6), we have

%gz((Vf*)(X,Y),f*(Z)) = _gl<VXYaZ)a

for all X,Y € I'(D) and Z € ['(ker f,)*.
Using equations (1) — (5),(10),(18), (19) and Lemma 2, we have

82((VL)X.Y),£.(2)

= —g1(Vx9Y,02),
= g1(Vxy?Y,2) +g1(VxoyY,Z) — g1 (Vx®Y,BZ) — g1 (Vx ©Y,CZ),
= —cos”0g1(VxY,Z) + g1 (A Vx WY, Z) — g1 (Tx ©Y,BZ) +

81(VorvX,9CZ) + g1(Vor 0X,9CZ).

1347
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Therefore, we have

. 1
sin® 0-5.82((V/) (X, Y), £(2))
= g1(HVeoxwY,Z)— g (Ix0Y,BZ) + g1 (Fuy WX, $CZ)
+81(HV oy 0X,9CZ),

= —41( (Y. BZ) + 41 (oYX, 0CZ) — 3562((VL) (X, 09Y), £.(2) +

2282(Vor £-(0X), £.(0CZ)) + g1(0Y, 0X)g1 (grad InA, 0C7).

(ii) From equation (2.6), we have

%gz((Vf*)(Xl,Xz),f*(Z)) =—21(Vx, X2,2),

for all X1,X, € I'(Dy) and Z € T'(ker f.)*.
Using equations (1) — (5),(9) and (19), we have
1
(V1) (X1,%0),£+(2)
= —81(V'Vx,0X2,BZ) — g1(Ix,9X>,CZ).

(iii) From equation (6), we have

%gz((Vf*)(YhZ)af*(V» =—81(VnZ,V),

for all Z,V € T'(ker f.)* and Y| € T'(ker f,).
Using equations (2) — (5),(9),(10) and Lemma 2, we get
28((V£)(04,2), £.(V)
= —&1(Vr9Z,¢V),
= g1(¢Vy,BZ,V)—g1(Vy,CZ,BV)—g(Vy,CZ,CV),
= g1(Fy WBZ,V)+g1(HVy,0BZ,V) — g\(F,CZ,BV) — g1 (H#Vy,CZ,CV),

= (T YBZY) ~ 1Ty CZBY) — 550((V£,) (11, 082), £.(V)

+%g2((vf*)(yl,cz),f*(CV))-
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(iv) For X1,X, € I'(u), from Lemma 2, we get
(Vf) (X1, X2) = X1 (In2) £ (X2) + X2 (InA) fi(X1) — g1(X1, X2) fi(gradIn A ).

The above equation taking X, = ¢ X, we get

(VA X, 0X1) = Xi(Ind)f.(9X1) + ¢Xi (InA) £.(X1) — 81(X1, 9X1) fi(gradIn A),

= Xi(In2)f.(¢X1) +¢Xi(In1) £ (X,).
If (V£.)(X1,0X1) = 0, then we have
(32) X1(InA) fi(¢X1) + X1 (InA) £ (X)) = 0.
Taking inner product in equation (32) with f.(¢X)), we get
g1(gradin, X1)g1(f«(9X1), f«(9X1)) + g1(gradIn A, X1)g1 (fX1, f9X1) = 0.

From above equation, it follows that A is a constant on I'(11).

In a similar way, for Z;,Z, € I'(ker f;), using Lemma 2, we get
(Vf*) (a)Zl y 0)Zz> = W7 (ln).)f*((l)Zz) -+ (L)Zz(lnﬂ,)f* (O)Zl) — 81 ((!)Zl , a)Zz)f* (gradln?t).
From above equation, taking Z, = Z;, we obtain

(V) (0Z1,0Z)) = oZ(Ind)f.(0Z)+oZ(Inl)f.(0Z;)
—g1(0Z1,0Z)) fi(gradIn X),

(33) = 207, (ln/'L)f*(a)Zl) — 41 ((DZI, COZl)f* (gradln),).
Taking inner product in (33) with f.(®Z;) and since f is conformal submersion, we get

2g1(wZy,gradnA) gy (f+(0Zy), fi(0Z1)) — g1(0Z1, 0Z1) g2 (f+(@Z1), fi(gradlnA)) = 0.

From above equation it follows that A is a constant on I'@(ker fi). So A is a constant
on I'(ker f.)*. On the other hand if f is a horizontally homothetic map it is obvious that

(Vfi)(Z1,Z2) = 0. Thus proof is complete. O
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Definition 2. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(My,9,&,m,81) onto Riemannian manifold (M»,g,). Then f is called a (0D, 1) —totally geo-
desic map if
(Vf*)(a)Xl,Xz) = 0,

forall X, € T(Dy) and X, € T'(u).

Theorem 13. Let f be conformal semi-slant submersion from a Cosymplectic manifold
(My,9,E,1m,81) onto a Riemannian manifold (My,g>). Then f is called a (®D;,)—totally

geodesic map if and only if f is horizontally homothetic map.
Proof. Forall X; € I'(D;) and X, € T'(it), by Lemma 2, we have
(VL) (0X1,X2) = 0X;(Ind) f.(X2) + Xo(InA) fi (0X)) — g1 (0X1,X2) fx(gradIn X).
If f is a horizontally homothetic, then
(V) (0X1,X2) =0
Conversely if (Vi) (wX;,X;) =0, we have
(34) X1 (Ind) f.(X2) +Xo(In ) fi (0X;) = 0.

Since f is conformal submersion and taking inner product in equation (34) with f,(®wX;),

we have
gi(@Xy,gradind)gs (f(X2), fu(@X1)) + g1(Xa,gradInA) g2 (fi(@X1), fi(0X1)) = 0.

Above equation implies that A is a constant on I'(u). Besides holding inner product in equa-

tion (34), with £, X,, we get
gi(gradin A, wXy)g2(fuXa, f:Xo) + g1(gradIn A, Xo) g2 (fr Xy, fX2) = 0.

From above equation it follows that A is constant on I'(wD;).

Thus A is constant on (I'(ker f,)*). Therefore proof is complete. O
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Theorem 14. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(My,9,E,1m,81) onto a Riemannian manifold (M5, g>). Then f is a totally geodesic map if and

only if

(@) V' Vx,0Xo +CTx,0X, =0, for all X;,X, € I'(Dy),

(b) C(Tx, WY + Aoy, X1) + 0(¥ Vx, WY + Ty, 0Y;) =0, for all X; € [(D;) and ¥; € T(Dy),

(¢) C(IzBZy+ 47,CZr)+ @(V'Vz,BZy + F7,CZy) =0, for all Z; € T'(ker f,) and Z; €
[(ker f.)*.

Proof. (a) From equation (6), we have
(V£)(X1,X2) = = fu(Vx, X2),

for all X1,X, € I'(Dy).
Using equations (1),(2),(9),(10),(18) and (19), we have

(Vf)(X1,X2)
= f(oVx, 0X2),

= f(WV'Vx,0X:+ 0V Vx, 0X2 + BIx, 0 X2+ C I, 0X).
Since y¥ Vx, ¢Xo +BJx, 90X, € T'(ker f.), we get
(Vf*)(Xl 7X2) = f*(wnf/vxl ¢X2 + C‘%(l (PXZ)

Thus, since f is a linear isomorphism between (ker ) and TM;, (V£.)(X1,X) =0 &
aﬂ/VXl 0X> + C%{l 0X> =0.
(b) For X; € I'(Dy), Y1 € I'(D,), from equations (1) — (5) and (18), we get

(VI (X1,1) = fu(0Vx, yY1 + ¢ Vx 0)1).
Again using equations (9) — (12),(18) and (19), we get

(VA& X1,1) = fu(BIx WY1 +CIx WY1 + Y7 Vy, yY| + 07 Vx yY

+B.yy, X1 + Cpy, X1 + Y Tx, Y + 0 T, 0Y)).
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Since BIx, Y| + vV Vx, yY| + B,y X1 + v I, @Y € T'(ker f,), we have
(V) (X1, 1)
= fi(C(Tx, WY1 + Doy, X1) + OV Vx, yY| + Tx, 0Y1)).
Since f is a linear isomorphism between (ker f,.)- and TMa, (V£.)( X1,Y1) =0 < C( T, wY) +
Sy, X1) + (V' Vx, vY1 + Tx,0Y) = 0.
(¢) For Z; € I'(ker f,) and Z, € I'(ker f,)*, from equation (1) — (5) and (19), we obtain
(VI)(Z1,22) = f:(9(VZ, By + V7,C2y)).
Using equations (9) — (12),(18) and (19), we have
(Vf)(Z1,22)
= f.(BJy BZy+C T3 BZy+ WV V7, BZy+ 0¥ V7 BZ,
+W.Ty,CZy + 0Ty, CZy + Bty CZy + City, CZs).
Since Bz, BZy +y V'V 7, BZy + y.97,CZy + Bat7,CZ; € I(ker f.)*, we have
(Vf)(Z1,22)
= fulC(IzBZy+ 97,CZy) + (V' V72 BZr + T7,CZ)).

Since f is a linear isomorphism between (ker f;)* and TMa, (Vf.)(Z1,2Z) =0 C( Tz, BZy +
7,CZy) + o(V'Vz,BZy+ T7,CZy) = 0.

Therefore proof is complete. 0
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