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Abstract. In this paper, we introduce conformal semi-slant submersions from Cosymplectic manifolds onto Rie-

mannian manifolds. We investigate integrability of distributions and the geometry of leaves of such submersions

from Cosymplectic manifolds onto Riemannian manifolds. Moreover, we examine necessary and sufficient condi-

tions for such submersions to be totally geodesic where characteristic vector field ξ is vertical.
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1. INTRODUCTION

Firstly, O’ Neill [26] and Grey [19] defined and studied the theory of Riemannian submersion

between Riemannian manifolds. Later, this notion was widely studied in differential geometry.

The Riemannian submersions have several important applications both in mathematics and in

physics, because of their applications in Yang-Mills theory [8], Kaluza-Klein theory [9, 20],
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robotic theory [5], supergravity and superstring theories [21, 25] etc. On the other hand Rie-

mannian submersions are very useful in Riemannian geometry for studying the geometry of

Riemannian manifolds equipped with differentiable structures.

By using the concept of Riemannian submersion and the condition of almost complex map-

ping, Watson [32] introduced the notion of almost Hermitian submersions. Sahin [30] intro-

duced the notion of anti-invariant Riemannian submersions from almost Hermitian manifolds.

Afterwards, he also defined slant submersions from almost Hermitian manifolds onto a Rie-

mannian manifold in [31]. As a generalization of slant, semi-invariant, and anti-invariant sub-

mersions, Park and Prasad [27] defined and studied the notion of semi-slant submersions from

an almost Hermitian manifold onto a Riemannian manifold. Considering different conditions

on Riemannian submersions many geometers studied this area and obtained lots of results on

this ([14, 7, 15, 17], [29]).

In 1985, D. Chinea [11] extended the notion of almost Hermitian submersion to different sub-

classes of almost contact metric manifolds. He investigated some geometric properties between

base manifold and total manifold as well as fibers. Recently, considering different conditions

on Riemannian submersions many studies have been done([10, 12, 16, 22]).

A related topic of growing interest deals with the study of Riemannian submersion so-called

horizontally conformal submersions: these maps, which provide a natural generalization of

Riemannian submersion, were introduced independently by Fuglede [13] and Ishihara [23].

As a generalization of holomorphic submersions, Gudmundsson and Wood [15] introduced the

notion of conformal holomorphic submersions and obtained necessary and sufficient conditions

for conformal holomorphic submersions to be a harmonic morphism. Recently, Akyol and

Sahin studied the notion of conformal anti-invariant submersions and conformal semi-invariant

submersions from almost Hermitian manifolds onto Riemannian manifolds ([3], [4]). Akyol

introduced the concept of conformal semi-slant submersions from almost Hermitian manifolds

onto Riemannian manifolds [1]. In 2019, Prasad and Kumar defined and studied the notion of

conformal semi-invariant submersions from almost contact metric manifolds onto Riemannian

manifolds [28] and conformal semi-slant submersions from Lorentzian para Sasakian manifolds

onto Riemannian manifolds [24] (see also [2, 18]).
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In the present paper, we study conformal semi-slant submersion from Cosymplectic mani-

folds onto Riemannian manifolds. The paper is organized as follows: In the second section, we

gather main notions and formulae for other sections. In the third section, we give the definition

of conformal semi-slant submersions and some results. We also study the integrability of distri-

butions and the geometry of leaves of vertical distribution. Finally, we obtain certain conditions

for such submersions to be totally geodesic.

2. PRELIMINARIES

In this section, we recall main definitions and properties of Cosymplectic manifolds and

submersions.

We consider M1 is a (2n+ 1)−dimensional almost contact manifold [11] which carries a

tensor field φ of the tangent space, 1−form η and characteristic vector field ξ satisfying

φ
2 = −I +η⊗ξ , η(ξ ) = 1,(1)

φξ = 0, η ◦φ = 0,

where I : T M1 −→ T M1 is the identity map.

Since any almost contact manifold (M1,φ ,ξ ,η) admits a Riemannian metric g such that

(2) g(φX1,φX2) = g(X1,X2)−η(X1)η(X2),

for any vector fields X1,X2 ∈ Γ(T M1), where Γ(T M1) represents the Lie algebra of vector fields

on M1. The manifold M1 together with the structure (φ ,ξ ,η ,g) is called an almost contact

metric manifold.

The immediate consequence of (2), we have

(3) η(X1) = g(X1,ξ ) and g(φX1,X2)+g(X1,φX2) = 0,

for all vector fields X1,X2 ∈ Γ(T M1).

An almost contact structure (φ ,ξ ,η) is said to be normal if the almost complex structure J

on the product manifold M1×R is given by

J(U, f
d
dt
) = (φU− f ξ , η(U)

d
dt
),
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where J2 =−I and f is the differentiable function on M1×R has no torsion i.e., J is integrable.

The condition for normality in terms of φ , ξ and η is [φ ,φ ]+2dη⊗ξ = 0 on M1, where [φ ,φ ]

is the Nijenhuis tensor of φ . Now, the fundamental 2-form is defined by Φ(X1,X2) = g(X1,φX2).

An almost contact metric manifold is said to be a Cosymplectic manifold if it is normal and

both Φ and η are closed. The structure equation of a Cosymplectic manifold is given by

(4) (∇X1φ)X2 = 0,

for all vector fields X1,X2 ∈ Γ(T M1), where ∇ represents the Levi-Civita connection of (M1,g).

Moreover, for a Cosymplectic manifold, we have

(5) ∇X1ξ = 0,

for every vector field X1 ∈ Γ(T M1).

Example 1. We consider R2k+1 with Cartesian coordinates (xi,yi,z) (i = 1, .....,k) and its usual

contact form η = dz.

The characteristic vector field ξ is given by ∂

∂ z , and its Riemannian metric g and tensor field

φ are given by

g =
k

∑
i=1

((dxi)
2 +(dyi)

2)+(dz)2, φ =


0 δi j 0

−δi j 0 0

0 0 0

 , i = 1, .....k.

This gives a Cosymplectic structure on R2k+1. The vector fields Ei =
∂

∂yi
,Ek+i =

∂

∂xi
,ξ = ∂

∂ z

form a φ−basis for the Cosymplectic structure. On the other hand, it can be shown that

(R2k+1,φ ,ξ ,η ,g) is a Cosymplectic manifold.

Let (M1,g1) and (M2,g2) be two Riemannian manifolds of dimension m and n respectively,

where g1 and g2 are the Riemannian metrics on M1 and M2. Let f : (M1,g1)→ (M2,g2) be a dif-

ferentiable map. We call the map f a differentiable submersion if f is surjective and the differen-

tial ( f∗)p has a maximal rank for any p∈M1. The map f is said to be a Riemannian submersion

if f is a differentiable submersion and ( f∗)p : ((ker( f∗)p)
⊥,(g1)p) → (Tf (p)M2,(g2) f (p)) is a

linear isometry for each p ∈M1, where (ker( f∗)p)
⊥ is the orthogonal complement of the space

ker( f∗)p in the tangent space TPM1 of M1 at p.
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Let f : (M1,φ ,ξ ,η ,g1)→ (M2,g2) be a differentiable map from almost contact metric man-

ifold (M1,φ ,ξ ,η ,g1) to Riemannian manifold (M2,g2). We call the map f slant submer-

sion if f is a Riemannian submersion and the angle θ = θ(X1) between φX1 and the space

ker( f∗)p−{ξ}p is constant for non-zero vector fields X1 ∈ ker( f∗)p−{ξ}p if ξ ∈ ker( f∗)p

and p ∈M1. We call the angle θ a slant angle.

Let f : (M1,g1)→ (M2,g2) be a differentiable map between Riemannian manifolds. The

second fundamental form of f is given by

(6) (∇ f∗)(X1,X2) = ∇
f
X1

f∗X2− f∗(∇X1X2),

for all X1,X2 ∈ Γ(T M1), where ∇ f is the pullback connection and we denote conveniently by

∇ the Levi-Civita connections of the metrics g1 and g2.

Define O’Neill’s tensors T and A by

(7) AEF = H ∇H EV F +V ∇H EH F,

(8) TEF = H ∇V EV F +V ∇V EH F,

for any vector field E,F on M1, where ∇ is the Levi-Civita connection of g1. It is easy to see that

TE and AE are skew-symmetric operators on the tangent bundle of M1 reversing the vertical

and the horizontal distributions. We summarize the properties of the tensor fields T and A .

On the other hand, from equations (7) and (8), we have

(9) ∇X1X2 = TX1X2 +V ∇X1X2,

(10) ∇X1V1 = TX1V1 +H ∇X1V1,

(11) ∇V1X1 = AV1X1 +V ∇V1X1,

(12) ∇V1V2 = H ∇V1V2 +AV1V2,

for all X1,X2 ∈ Γ(ker f∗) and V1,V2 ∈ Γ(ker f∗)⊥, where H ∇X1V2 = AV2X1, if V2 is basic. It

is not difficult to observe that T acts on the fibers as the second fundamental form, while A
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acts on the horizontal distribution and measures of the obstruction to the integrability of this

distribution.

It is seen that for q ∈M1, X1 ∈ Vq and V1 ∈Hq the linear operators

AV1, TX1 : TqM1→ TqM2

are skew-symmetric, that is

(13) g1(AV1E,F) =−g1(E,AV1F) and g1(TX1E,F) =−g1(E,TX1F)

for each E,F ∈ TqM1. We have also defined the restriction of T to the vertical distribution

T |V ×V is precisely the second fundamental form of the fibres of f . Since TV is skew-

symmetric we get: f has totally geodesic fibres if and only if T ≡ 0 [6].

Next, we find necessary and sufficient condition for conformal semi-slant Riemannian sub-

mersion to be totally geodesic. We recall that a differentiable map f between two Riemannian

manifolds is called totally geodesic if

(∇ f∗)(V1,V2) = 0, for all V1,V2 ∈ Γ(T M1).

A geometric clarification of a totally geodesic map is that it maps every geodesic in the total

space into a geodesic in the base space in proportion to arc lengths.

Lemma 1. Let (M1,φ ,ξ ,η ,g1) be an m−dimensional Cosymplectic manifold and (M2,g2) be

an n−dimensional Riemannian manifold. Let f : M1 → M2 be a differentiable map between

them and p ∈ M1. Then f is called horizontally weakly conformal or semi-conformal at p if

either d fp = 0, or d fp maps the horizontal space H = ((ker f∗)p)
⊥ conformally onto Tf (p)M2.

The second condition in the above definition exactly is the same as d fp is symmetric and

there exists a number λ (p) 6= 0 such that

(14) g2( f∗X1, f∗X2) = λ
2(p)g1(X1,X2), for all X1,X2 ∈ ((ker f∗)p)

⊥.

Here λ (p) is called the square dilation of f at p. The map f is called horizontally weakly

conformal or semi-conformal on M1 if it is horizontally weakly conformal at every point on M1.

If f has no critical point, then it is said to be a (horizontally) conformal submersion [26].
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We should mention that a horizontally conformal submersion f : M1→M2 is called horizon-

tally homothetic if the gradient of its dilation λ is vertical, i.e.,

(15) H (gradλ ) = 0,

at p ∈M1, where H is the complement orthogonal distribution to V = ker f∗ in Γ(TpM1).

Again, we recall the following definition from [6].

Let f : M1→M2 be a conformal submersion. A vector field E on M1 is called projectiable if

there exist a vector field Ê on M2 such that f∗(Ep) = Ê f (p) for any p ∈M1. In this case E and

Ê are called f−related. A horizontal vector field X2 on M1 is called basic, if it is projectiable.

It is a well known fact that if Ẑ is a vector field on M2, then there exists a unique basic vector

field Z which is called the horizontal lift of Ẑ.

Lemma 2. Let f : M1→M2 be a horizontal conformal submersion. Then, for any horizontal

vector fields X1,X2 and vertical vector fields V1,V2, we have

(i) (∇ f∗)(X1,X2) = X1(lnλ ) f∗X2 +X2(lnλ ) f∗X1−g1(X1,X2) f∗(grad lnλ ),

(ii) (∇ f∗)(V1,V2) =− f∗(TV1V2),

(iii) (∇ f∗)(X1,V1) =− f∗(∇
M1
X1

V1) =− f∗(AX1V1).

3. CONFORMAL SEMI-SLANT SUBMERSIONS

In this section, we define and study conformal semi-slant submersion from Cosymplectic

manifolds.

Definition 1. Let (M1,φ ,ξ ,η ,g1) be a Cosymplectic manifold and (M2,g2) be a Riemannian

manifold. A horizontal conformal submersion f : (M1,φ ,ξ ,η ,g1)→ (M2,g2) is called confor-

mal semi-slant submersion if there is a distribution D1 ⊂ (ker f∗) such that

(16) ker f∗ = D1⊕D2⊕< ξ >, φ(D1) = D1,

and the angle θ = θ(V1) between φV1 and the space (D2)p is constant for non-zero vector field

V1 ∈ (D2)p and p ∈M1, where D2,D1 and < ξ > are mutually orthogonal in (ker f∗). As it is,

the angle θ is called the semi-slant angle of the horizontally conformal submersions.



1330 SUSHIL KUMAR, RAJENDRA PRASAD, SANDEEP KUMAR VERMA

It is known that the distribution ker f∗ is integrable. Hence above definition (1) implies that

the integral manifold (fiber) f−1(q),q ∈M2 of ker f∗ is a semi-slant submanifold.

Now, we shall give some examples of conformal semi-slant submersion from Cosymplectic

manifold onto Riemannian manifold.

Example 2. Let R7 has a Cosymplectic structure as in Example 1. Let f : R7→ R2 be a sub-

mersion defined by

f (x1,x2,x3,y1,y2,y3,z) = e3(
x2− y3√

2
,y2).

Then, by direct calculations, we obtain the Jacobian matrix of f as0 1√
2

0 0 0 − 1√
2

0

0 0 0 0 1 0 0

 .

After a straightforward computation, we obtain

(ker f∗) = span{V1 =
∂

∂x1
,V2 =

1√
2
(

∂

∂x2
+

∂

∂y3
),V3 =

∂

∂x3
,V4 =

∂

∂y1
,V5 =

∂

∂ z
},

(ker f∗)⊥ = span{H1 =
1√
2
(

∂

∂x2
− ∂

∂y3
),H2 =

∂

∂y2
}.

Thus it follows that D1 = span{V1,V4} and D2 = span{V2,V3}. Thus, the map f is a conformal

semi-slant submersion with the semi-slant angle θ = π

4 and dilation λ = e3.

Example 3. Let R7 has a Cosymplectic structure as in Example 1. Let f : R7→ R2 be a sub-

mersion defined by

f (x1,x2,x3,y1,y2,y3,z) = eπ(

√
3x1− y2

2
,y1).

Then, by direct calculations, we obtain the Jacobian matrix of f as√3
2 0 0 0 −1

2 0 0

0 0 0 1 0 0 0

 .

After some straightforward computations, we derive

(ker f∗) = span{V1 =
1
2
(

∂

∂x1
+
√

3
∂

∂y2
),V2 =

∂

∂x2
,V3 =

∂

∂x3
,V4 =

∂

∂y3
,V5 =

∂

∂ z
},

(ker f∗)⊥ = span{H1 =
1
2
(
√

3
∂

∂x1
− ∂

∂y2
),H2 =

∂

∂y1
}.
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Thus it follows that D1 = span{V3,V4} and D2 = span{V1,V2}. Thus, the map f is a conformal

semi-slant submersion with the semi-slant angle θ = π

6 and dilation λ = eπ .

Let f be a conformal semi-slant submersion from Cosymplectic manifold (M1,φ ,ξ ,η ,g1)

onto Riemannian manifold (M2,g2). For X1 ∈ Γ(ker f∗), we have

(17) X1 = PX1 +QX1 +η(X1)ξ ,

where PX1 ∈ Γ(D1) and QX1 ∈ Γ(D2).

For X2 ∈ Γ(ker f∗), we have

(18) φX2 = ψX2 +ωX2,

where ψX2 and ωX2 are vertical and horizontal components of φX2 respectively.

Also for X3 ∈ Γ(ker f∗)⊥, we have

(19) φX3 = BX3 +CX3,

where BX3 and CX3 are vertical and horizontal components of φX3 respectively.

Then, Γ(ker f∗)⊥ decomposed as

(20) Γ(ker f∗)⊥ = ωD2⊕µ,

where µ is the orthogonal complement of ωD2 in Γ(ker f∗)⊥ and it is invariant with respect to

φ .

Let f : (M1,φ ,ξ ,η ,g1)→ (M2,g2) is conformal semi-slant submersion from Cosymplec-

tic manifold (M1,φ ,ξ ,η ,g1) onto Riemannian manifold (M2,g2). Thus the using equations

(3),(18) and (19), we get

(21) g1(ψX1,X2) =−g1(X1,ψX2), g1(V1,CV2) =−g1(CV1,V2),

for all X1,X2 ∈ Γ(ker f∗) and V1,V2 ∈ Γ(ker f∗)⊥.

Then the using equations (1),(18),(19) and (20), we get

(22) ψD1 = D1, ωD1 = 0, ψD2 ⊂ D2, B(Γ(ker f∗)⊥) = D2.
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Lemma 3. Let (M1,φ ,ξ ,η ,g1) be a Cosymplectic manifold and (M2,g2) be a Riemannian

manifold. If f : (M1,φ ,ξ ,η ,g1)→ (M2,g2) is conformal semi-slant submersion, then

ψ
2X1 +BωX1 =−X1 +η(X1)⊗ξ , ωψX1 +CωX1 = 0,

ψBX2 +BCX2 = 0, ωBX2 +C2X2 =−X2,

for all X1 ∈ Γ(ker f∗) and X2 ∈ Γ(ker f∗)⊥.

We define the co-variant derivatives of ψ and ω as follows:

(23) (∇X1ψ)X2 = ∇̂X1ψX2−ψ∇̂X1X2,

(24) (∇X1ω)X2 = H ∇X1ωX2−ω∇̂X1X2,

for all X1,X2 ∈ Γ(ker f∗), where ∇̂X1X2 = V ∇̂X1X2.

Lemma 4. Let (M1,φ ,ξ ,η ,g1) be a Cosymplectic manifold and (M2,g2) be a Riemannian

manifold. If f : (M1,φ ,ξ ,η ,g1)→ (M2,g2) is conformal semi-slant submersion, then

(1)

(∇X1ψ)X2 = BTX1X2−TX1ωX2,

(∇X1ω)X2 =CTX1X2−TX1ψX2,

for all X1,X2 ∈ Γ(ker f∗).

(2)

TX1BV1 +H ∇X1CV1 =CH ∇X1V1 +ωTX1V1,

∇̂X1BV1 +TX1CV1 = BH ∇X1V1 +ψ∇X1V1,

for all X1 ∈ Γ(ker f∗) and V1 ∈ Γ(ker f∗)⊥.

(3)

V ∇V1ψX1 +AV1ωX1 = BAV1X1 +ψV ∇V1X1,

AV1ψX1 +H ∇V1ωX1 =CAV1X1 +ωV ∇V1X1,

for all X1 ∈ Γ(ker f∗) and V1 ∈ Γ(ker f∗)⊥.

(4)

AV1BV2 +H ∇V1CV2 =CH ∇V1V2 +ωAV1V2,
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V ∇V1BV2 +AV1CV2 = BH ∇V1V2 +ψAV1V2,

for all V1,V2 ∈ Γ(ker f∗)⊥.

Lemma 5. Let f : (M1,φ ,ξ ,η ,g1)→ (M2,g2) is conformal semi-slant submersion from an

almost contact metric manifold (M1,φ ,ξ ,η ,g1) onto Riemannian manifold (M2,g2). Then f is

a proper conformal semi-slant submersion if and only if there exists a constant λ ∈ [−1,0] such

that

ψ
2X1 = λX1, for all X1 ∈ Γ(D2),

where λ =−cos2 θ .

Proof. For any non-zero vector field X1 ∈ Γ(D2), we have

(25) cosθ =
‖ ψX1 ‖
‖ φX1 ‖

,

and

(26) cosθ =
g1(φX1,ψX1)

‖ ψX1 ‖‖ φX1 ‖
,

where θ(X1) is the semi-slant angle.

Using equations (1),(2),(18) and (26), we get

(27) cosθ =
−g1(X1,ψ

2X1)

‖ ψX1 ‖‖ φX1 ‖
.

From equations (25) and (27), we have

ψ
2X1 =−cos2

θ .X1.

If λ =−cos2 θ , then

ψ
2X1 = λX1,

for all X1 ∈ Γ(D2). �

From Lemma 5 and equations (2),(18) and (19), then we easily have

Corollary 1. Let f is conformal semi-slant submersion from an almost contact metric manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2), then

(28) g1(ψX1,ψX2) = cos2
θg1(X1,X2),
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(29) g1(ωX1,ωX2) = sin2
θg1(X1,X2),

for all X1,X2 ∈ Γ(D2).

Lemma 6. Let f is conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2) with the slant angle θ ∈ [0, π

2 ]. If ω is

parallel with respect to ∇ on D2, then we have

TψX1ψX1 =−cos2
θ .TX1X1, for all X1 ∈ Γ(D2).

Proof. If ω is parallel, then from Lemma (4), we have

(30) CTX1X2 = TX1ψX2, for all X1,X2 ∈ Γ(D2).

Interchanging the role of X1 and X2, we have

(31) CTX2X1 = TX2ψX1, for all X1,X2 ∈ Γ(D2)

Since T is symmetric, from equations (30) and (31), we get

TψX1ψX1 =−cos2
θ .TX1X1, for all X1 ∈ Γ(D2).

�

Theorem 1. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then the invariant distribution D1 is

integrable if and only if

1
λ 2 g2((∇ f∗)(X1,φX2)− (∇ f∗)(X2,φX1), f∗(ωV1))

= g1(ψ(∇̂X1φX2− ∇̂X2φX1),V1),

for all X1,X2 ∈ Γ(D1) and V1 ∈ Γ(D2).

Proof. We note that D1 is integrable if and only if g1([X1,X2],V1) = 0, g1([X1,X2],V2) = 0,

and g1([X1,X2],ξ ) = 0, for all X1,X2 ∈ Γ(D1),V1 ∈ Γ(D2) and V2 ∈ (ker f∗)⊥. Since ker f∗ is

integrable g1([X1,X2],V2) = 0. Thus, D1 is integrable if and only if g1([X1,X2],V1) = 0 and

g1([X1,X2],ξ ) = 0.
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Now, for any X1,X2 ∈ Γ(D1), we have

g1([X1,X2],ξ ) = g1(∇X1X2,ξ )−g1(∇X2X1,ξ )

= −g1(X2,∇X1ξ )+g1(X1,∇X2ξ )

Using equation (5), we have

g1([X1,X2],ξ ) = 0.

Now, from equations (2),(3),(4),(6),(9) and (18), we have

g1([X1,X2],V1)

= g1(∇̂X1φX2− ∇̂X2φX1,ψV1)+g1(H ∇X1φX2,ωV1)−g1(H ∇X2φX1,ωV1).

Since f is conformal submersion, using equation (14) and Lemma 2, we have

g1([X1,X2],V1)

= − 1
λ 2 g2((∇ f∗)(X1,φX2)− (∇ f∗)(X2,φX1), f∗(ωV1))−g1(ψ(∇̂X1φX2− ∇̂X2φX1),V1).

Then D1 is integrable⇔

1
λ 2 g2((∇ f∗)(X1,φX2)− (∇ f∗)(X2,φX1), f∗(ωV1))

= g1(ψ(∇̂X1φX2− ∇̂X2φX1),V1).

�

Theorem 2. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then the slant distribution D2 is inte-

grable if and only if

TV2ωV1−TV1ωV2 +ψ(TV1ωψV2−TV2ωψV1) ∈ Γ(D2),

for all V1,V2 ∈ Γ(D2).

Proof. We note that D2 is integrable if and only if g1([V1,V2],X1) = 0, g1([V1,V2],X2) = 0 and

g1([V1,V2],ξ ) = 0, for all V1,V2 ∈ Γ(D2),X1 ∈ Γ(D1) and X2 ∈ (ker f∗)⊥. Since ker f∗ is inte-

grable then g1([V1,V2],X2) = 0, and also, g1([V1,V2],ξ ) = 0. Thus, D2 is integrable if and only
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if g1([V1,V2],X1) = 0.

From equations (2),(3),(4),(6) and (18), we have

g1([V1,V2],φX1) = g1([V1,V2],φX1),

= −g1(∇V1ψV2,X1)−g1(∇V1ωV2,X1)+g1(∇V2ψV1,X1)+g1(∇V2ωV1,X1),

Next, using equation (9) and Lemma 5, we have

sin2
θg1([V1,V2],φX1) = g1(TV2ωV1−TV1ωV2,X1)+g1(ψ(TV1ωψV2−TV2ωψV1),X1),

Thus D2 is integrable⇔

TV2ωV1−TV1ωV2 +ψ(TV1ωψV2−TV2ωψV1) ∈ Γ(D2).

�

Theorem 3. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then the distribution (ker f∗)⊥ is inte-

grable if and only if

1
λ 2 g2(∇X2 f∗(CX1)−∇X1 f∗(CX2), f∗(ωV1))

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1)−

g1(X1,ωV1)g1(CX2,grad lnλ )+g1(X2,ωV1)g1(CX1,grad lnλ )

+2g1(X1,CX2)g1(grad lnλ ,ωV1),

for all X1,X2 ∈ Γ(ker f∗)⊥ and V1 ∈ Γ(ker f∗).

Proof. For all X1,X2 ∈ Γ(ker f∗)⊥ and V1 ∈ Γ(ker f∗), using equations (2)−(5),(11),(12),(18)

and (19), we get

g1([X1,X2],V1)

= g1(∇X1X2,V1)−g1(∇X2X1,V1)

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1)+

g1(H ∇X1CX2−H ∇X2CX1,ωV1).
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Since f is conformal submersion and using equation (6) and Lemma 2, we have

g1([X1,X2],V1)

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1)+

1
λ 2 g2(∇X1 f∗(CX2), f∗(ωV1))−

1
λ 2 g2((∇ f∗)(X1,CX2), f∗(ωV1))−

1
λ 2 g2(∇X2 f∗(CX1), f∗(ωV1))+

1
λ 2 g2((∇ f∗)(X2,CX1), f∗(ωV1)),

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1)+

1
λ 2 g2(∇X1 f∗(CX2), f∗(ωV1))−

1
λ 2 g2(∇X2 f∗(CX1), f∗(ωV1))−

1
λ 2 g2(X1(lnλ ) f∗(CX2)+X2(lnλ ) f∗(CX1)−g1(X1,CX2) f∗(grad lnλ ), f∗(ωV1))+

1
λ 2 g2(X1(lnλ ) f∗(CX2)+X2(lnλ ) f∗(CX1)−g1(X1,CX2) f∗(grad lnλ ), f∗(ωV1)),

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1)+

1
λ 2 g2(∇X1 f∗(CX2), f∗(ωV1))−

1
λ 2 g2(∇X2 f∗(CX1), f∗(ωV1))−

g1(X1,ωV1)g1(CX2,grad lnλ )+g1(X2,ωV1)g1(CX1,grad lnλ )

+2g1(X1,CX2)g1(grad lnλ ,ωV1),

which completes the proof. �

Theorem 4. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then the distribution D1 defines totally

geodesic foliation on M1 if and only if

1
λ 2 g2((∇ f∗)(V1,φV2), f∗(ωX1))

= g1(V ∇V1φV2,ψX1),

and

1
λ 2 g2((∇ f∗)(V1,φV2), f∗(CX2))

= g1(V2,V ∇V1ψBX2)+g1(V2,TV1ωBX2),

for all V1,V2 ∈ Γ(D1), X1 ∈ Γ(D2) and X2 ∈ Γ(ker f∗)⊥.
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Proof. The distribution D1 defines a totally geodesic foliation on M1 if and only if g1(∇V1V2,X1)=

0, g1(∇V1V2,X2)= 0 and g1(∇V1V2,ξ )= 0, for all V1,V2 ∈Γ(D1), X1 ∈Γ(D2) and X2 ∈Γ(ker f∗)⊥.

After a straightforward computation, we obtain g1(∇V1V2,ξ ) = 0, for all V1,V2 ∈ Γ(D1).

Now, for all V1,V2 ∈ Γ(D1), X1 ∈ Γ(D2) and using equations (2)− (5),(9),(10),(18) and (19),

we have

g1(∇V1V2,X1) = g1(∇V1φV2,φX1),

= g1(∇V1φV2,ψX1)+g1(∇V1φV2,ωX1),

= g1(V ∇V1φV2,φX1)+g1(TV1φV2,ωX1).

Since f is conformal submersions and using equation (6) and Lemma 2, we have

g1(∇V1V2,X1) = g1(V ∇V1φV2,φX1)+
1

λ 2 g2( f∗(TV1φV2), f∗(ωX1)),

= g1(V ∇V1φV2,φX1)−
1

λ 2 g2((∇ f∗)(V1,φV2), f∗(ωX1)).

On the other hand, for all V1,V2 ∈ Γ(D1), X2 ∈ Γ(ker f∗)⊥ and using equations (2)− (5), (9),

(10), (18) and (19), we have

g1(∇V1V2,X2) = g1(∇V1φV2,φX2),

= g1(∇V1φV2,BX2)+g1(∇V1φV2,CX2),

= −g1(∇V1V2,φBX2)+g1(TV1φV2,CX2),

= g1(V2,V ∇V1ψBX2)+g1(V2,TV1ωBX2)+g1(TV1φV2,CX2).

Since f is conformal submersions and using equation (6) and Lemma 2, we have

g1(∇V1V2,X2)

= g1(V2,V ∇V1ψBX2)+g1(V2,TV1ωBX2)+
1

λ 2 g2( f∗(TV1φV2), f∗(CX2)),

= g1(V2,V ∇V1ψBX2)+g1(V2,TV1ωBX2)−
1

λ 2 g2((∇ f∗)(V1,φV2), f∗(CX2)),

which completes the proof. �
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Theorem 5. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then the distribution D2 defines totally

geodesic foliation on M1 if and only if

1
λ 2 g2((∇ f∗)(X1,X2), f∗(ωY1))

= g1(ωψX2,TX1φY1),

and

1
λ 2 g2(∇ωX2 f∗(ωX1), f∗(φCY2))−

1
λ 2 g2((∇ f∗)(X1,ωψX2), f∗(Y2))

= g1(TX1ωX2,BY2)−g1(AωX2ψX1,φCY2)−g1(ωX1,ωX2)g1(grad lnλ ,φCY2),

for all X1,X2 ∈ Γ(D2), Y1 ∈ Γ(D1) and Y2 ∈ Γ(ker f∗)⊥.

Proof. The distribution D2 defines a totally geodesic foliation on M1 if and only if g1(∇X1X2,Y1)=

0, g1(∇X1X2,Y2)= 0 and g1(∇X1X2,ξ )= 0, for all X1,X2 ∈Γ(D2),Y1 ∈Γ(D1) and Y2 ∈Γ(ker f∗)⊥.

By using equations (2)− (5),(9),(18), (19) and Lemma 2, we have

g1(∇X1X2,φY1)

= −g1(φ∇X1X2,Y1),

= −g1(∇X1φX2,Y1),

= g1(ωψX2,∇X1φY1)+g1(∇X1ψ
2X2,φY1)+g1(ωX2,∇X1Y1),

Since f is conformal submersion and using equation (6) and Lemma 2, we have

sin2
θg1(∇X1X2,φY1)

= g1(ωψX2,∇X1φY1)−
1

λ 2 g2((∇ f∗)(X1,Y1), f∗(ωX2)).

On the other hand using equations (2)− (5),(9)− (12),(18), (19) and Lemma 5, we have

g1(∇X1X2,Y2)

= g1(∇X1ψX2,φY2)+g1(∇X1ωX2,φY2),

= −g1(∇X1φψX2,Y2)+g1(∇X1ωX2,φY2),

= −g1(∇X1ψ
2X2,Y2)−g1(∇X1ωψX2,Y2)+g1(∇X1ωX2,φY2),
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Therefore, we have

sin2
θg1(∇X1X2,Y2)

= −g1(∇X1ωψX2,φY2)+g1(∇X1ωX2,BY2)+g1(∇X1ωX2,CY2),

= g1(TX1ωX2,BY2)−g1(H ∇X1ωψX2,Y2)−g1(AωX2ψX1,φCY2)−

g1(H ∇ωX2ωX1,φCY2).

Since f is conformal submersions and using equation (6) and Lemma 2, we have

sin2
θg1(∇X1X2,Y2)

= g1(TX1ωX2,BY2)−g1(AωX2ψX1,φCY2)−
1

λ 2 g2( f∗(H ∇X1ωψX2), f∗(Y2))−

1
λ 2 g2( f∗(H ∇ωX2ωX1), f∗(φCY2)),

= g1(TX1ωX2,BY2)−g1(AωX2ψX1,φCY2)+
1

λ 2 g2((∇ f∗)(X1,ωψX2), f∗(Y2))−

1
λ 2 g2(H ∇ωX2 f∗(ωX1), f∗(φCY2))−g1(ωX1,ωX2)g1(grad lnλ ,φCY2),

which completes the proof. �

From Theorems 4 and 5, we have the following result:

Theorem 6. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then the fibers of f are locally product

manifold if and only if

1
λ 2 g2((∇ f∗)(X1,φX2), f∗(ωY1)) = g1(V ∇X1φX2,ψY1),

1
λ 2 g2((∇ f∗)(X1,φX2), f∗(CY3)) = g1(X2,V ∇X1ψBY3)+g1(X2,TX1ωBY3),

and

1
λ 2 g2((∇ f∗)(Y1,Y2), f∗(ωX1)) = g1(ωψY2,TY1φX1),

1
λ 2 g2(∇ωY2 f∗(ωY1), f∗(φCY3))−

1
λ 2 g2((∇ f∗)(Y1,ωψY2), f∗(Y3))

= g1(TY1ωY2,BY3)−g1(AωY2ψY1,φCY3)−g1(ωY1,ωY2)g1(grad lnλ ,φCY3),
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for all X1,X2 ∈ Γ(D1), Y1,Y2 ∈ Γ(D2) and Y3 ∈ Γ(ker f∗)⊥.

As the distribution ker f∗ is integrable, it is only studied the integrability of the distribution

(ker f∗)⊥ and afterwards we discuss the geometry of leaves of (ker f∗) and (ker f∗)⊥.

Theorem 7. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then any two conditions below imply

the third:

(i) (ker f∗)⊥ is integrable.

(ii) f is a horizontally homothetic map.

(iii)

1
λ 2 g2(∇X2 f∗(CX1)−∇X1 f∗(CX2), f∗(ωV1))

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1),

for all X1,X2 ∈ Γ(ker f∗)⊥ and V1 ∈ Γ(ker f∗).

Proof. For all X1,X2 ∈ Γ(ker f∗)⊥ and V1 ∈ Γ(ker f∗), from Theorem 3, we have

1
λ 2 g2(∇X2 f∗(CX1)−∇X1 f∗(CX2), f∗(ωV1))

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1)−

g1(X1,ωV1)g1(CX2,grad lnλ )+g1(X2,ωV1)g1(CX1,grad lnλ )

+2g1(X1,CX2)g1(grad lnλ ,ωV1).

Now, if using (i) and (ii), we get (iii)

1
λ 2 g2(∇X2 f∗(CX1)−∇X1 f∗(CX2), f∗(ωV1))

= g1(AX1BX2−AX2BX1,ωV1)+g1(V ∇X1BX2−V ∇X2BX1 +AX1CX2−AX2CX1,ψV1).

�

Theorem 8. Let f be conformal semi-slant submersion from a Cosymplectic manifold (M1,φ ,ξ ,η ,g1)

onto a Riemannian manifold (M2,g2). Then the distributions (ker f∗)⊥ defines a totally geodesic
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foliation on M1 if and only if

AX1CX2 +V ∇X1BX2 ∈ Γ(D2),

and

1
λ 2{g2(∇X1 f∗(X2),ωφY1)−g2(∇X1 f∗(CX2), f∗(ωY2))}

= g1(AX1BX2,ωY1)+g1(X1,grad lnλ )g1(X2,ωφY1)+

g1(X2,grad lnλ )g1(X1,ωφY1)−g1(X1,X2)g1(grad lnλ ,ωφY1)−

g1(CX2,grad lnλ )g1(X1,ωY1)+g1(X1,CX2)g1(grad lnλ ,ωY1),

for all X1,X2 ∈ Γ(ker f∗)⊥,Y2 ∈ Γ(D1) and Y1 ∈ Γ(D2).

Proof. The distribution Γ(ker f∗)⊥ defines a totally geodesic foliation on M1 if and only if

g1(∇X1X2,Y2) = 0, g1(∇X1X2,Y1) = 0 and g1(∇X1X2,ξ ) = 0, for all X1,X2 ∈ Γ(ker f∗)⊥,Y2 ∈

Γ(D1) and Y1 ∈ Γ(D2).

Let X1,X2 ∈ Γ(ker f∗)⊥. Now using equation (5), We have

g1(∇X1X2,ξ ) = −g1(X2,∇X1ξ ) = 0.

By using equations (2)− (5),(11),(12),(18) and (19), we have

g1(∇X1X2,Y2)

= g1(∇X1φX2,φY2),

= g1(V ∇X1BX2 +AX1CX2,φY2),

= −g1(φ(V ∇X1BX2 +AX1CX2),Y2).

On the other hand, using equations (2)− (5),(11),(12),(18), (19) and Lemma 5, we have

g1(∇X1X2,Y1)

= g1(∇X1φX2,φY1),

= −g1(∇X1X2,ψ
2Y1)−g1(∇X1X2,ωψY1)+g1(∇X1BX2,ωY1)+g1(∇X1CX2,ωY1),
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Therefore, we have

sin2
θg1(∇X1X2,Y1)

= g1(AX1BX2,ωY1)−g1(H ∇X1X2,ωψY1)+g1(H ∇X1CX2,ωY1).

Since f is conformal submersion and using equation (6) and Lemma 2, we have

sin2
θg1(∇X1X2,Y1)

= g1(AX1BX2,ωY1)+
1

λ 2 g2( f∗(H ∇X1X2), f∗(ωψY1))−
1

λ 2 g2( f∗(H ∇X1CX2), f∗(ωY1)),

= g1(AX1BX2,ωY1)−
1

λ 2 g2(H ∇X1 f∗(X2), f∗(ωψY1))+
1

λ 2 g2(H ∇X1 f∗(CX2), f∗(ωY1))+

1
λ 2 g2(X1(lnλ ) f∗(X2)+X2(lnλ ) f∗(X1)−g1(X1,X2) f∗(grad lnλ ), f∗(ωψY1))−

1
λ 2 g2(X1(lnλ ) f∗(CX2)+CX2(lnλ ) f∗(X1)−g1(X1,CX2) f∗(grad lnλ ), f∗(ωY1)),

= g1(AX1BX2,ωY1)−
1

λ 2 g2(H ∇X1 f∗(X2), f∗(ωψY1))+
1

λ 2 g2(H ∇X1 f∗(CX2), f∗(ωY1))+

g1(X1,grad lnλ )g1(X2,ωψY1)+g1(X2,grad lnλ )g1(X1,ωψY1)

−g1(X1,X2)g1(grad lnλ ,ωψY1)−g1(CX2,grad lnλ )g1(X1,ωY1)

+g1(X1,CX2)g1(grad lnλ ,ωY1),

which completes the proof. �

Theorem 9. Let f be conformal semi-slant submersion from a Cosymplectic manifold (M1,φ ,ξ ,η ,g1)

onto a Riemannian manifold (M2,g2). Then the distributions (ker f∗) defines a totally geodesic

foliation on M1 if and only if

1
λ 2 g2(∇ωX2 f∗(φCV1), f∗(ωX1))

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)−

g1(AωX2φCV1,ψX1)+g1(ωX1,ωX2)(φCV1,grad lnλ ),

for all X1,X2 ∈ (ker f∗) and V1 ∈ (ker f∗)⊥.
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Proof. For all X1,X2 ∈ (ker f∗) and V1 ∈ (ker f∗)⊥, using equations (2)− (5),(9),(10),(18) and

(19), we have

g1(∇X1X2,V1)

= g1(∇X1φX2,φV1),

= g1(V ∇X1ψX2,BV1)+g1(TX1ωX2,BV1)+

g1(∇X1ψX2,CV1)+g1(∇X1ωX2,CV1),

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)

−g1(∇ωX2φCV1,ψX1),

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)−

g1(∇ωX2φCV1,ψX1)−g1(∇ωX2φCV1,ωX2),

Since f is conformal submersion and using equation (6) and Lemma 2, we have

g1(∇X1X2,V1)

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)−

g1(AωX2φCV1,ψX1)−
1

λ 2 g2(∇ωX2 f∗(φCV1), f∗(ωX1))+

1
λ 2 g2((∇ f∗)(ωX2,φCV1), f∗(ωX1)),

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)−

g1(AωX2φCV1,ψX1)−
1

λ 2 g2(∇ωX2 f∗(φCV1), f∗(ωX1))+

g1(ωX1,ωX2)(φCV1,grad lnλ ),

which completes the proof. �

Theorem 10. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then any two conditions below imply

the third:
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(i) (ker f∗) defines a totally geodesic foliation on M1.

(ii) λ is a constant on Γ(µ).

(iii)

1
λ 2 g2(∇ωX2 f∗(φCV1), f∗(ωX1))

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)−

g1(AωX2φCV1,ψX1),

for all X1,X2 ∈ Γ(ker f∗) and V1 ∈ Γ(ker f∗)⊥.

Proof. From Theorem 9, we have

1
λ 2 g2(∇ωX2 f∗(φCV1), f∗(ωX1))

= −g1(ω(V ∇X1ψX2 +TX1ωX2),V1)+g1(TX1ψX2,CV1)−

g1(AωX2φCV1,ψX1)+g1(ωX1,ωX2)(φCV1,grad lnλ ),

for all X1,X2 ∈ Γ(ker f∗) and V1 ∈ Γ(ker f∗)⊥.

Now, if we have (i) and (iii), then we obtain

g1(ωX1,ωX2)g1(Hgrad lnλ ,φCV1) = 0.

From above equation, λ is a constant on Γ(µ). Similarly, one can obtain the assertions. �

4. TOTALLY GEODESICNESS OF THE CONFORMAL SEMI-SLANT SUBMERSIONS

At this part, we shall examine the totally geodesicness of a conformal semi-slant submersion.

First, we give necessary and sufficient conditions for a conformal semi-slant submersion to be

totally geodesic map. Remember that a smooth map f between two Riemannian manifolds is

called totally geodesic if ∇ f∗ = 0.

Theorem 11. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then, f is a totally geodesic map if

∇X1 f∗(X2) = − f∗(C(AX1ψZ1 +H ∇X1ωZ1 +AX1ψZ2 +H ∇X1ωZ2)+

ω(V ∇X1ψZ1 +AX1ωZ1 +V ∇X1ψZ2 +AX1ωZ2)),
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for all X1 ∈ Γ(ker f∗)⊥ and X2 = Z1 +Z2, where Z1 ∈ Γ(ker f∗) and Z2 ∈ Γ(ker f∗)⊥.

Proof. From equation (6), we have

(∇ f∗)(X1,X2) = ∇X1 f∗(X2)− f∗(∇X1X2),

for all X1 ∈ Γ(ker f∗)⊥ and X2 = Z1 +Z2, where Z1 ∈ Γ(ker f∗) and Z2 ∈ Γ(ker f∗)⊥.

Using equations (1)− (5),(9)− (12),(18) and (19), we have

(∇ f∗)(X1,X2)

= ∇X1 f∗(X2)+ f∗(φ 2
∇X1X2−η(∇X1X2)ξ ),

= ∇X1 f∗(X2)+ f∗(φ∇X1φX2),

= ∇X1 f∗(X2)+ f∗(φ∇X1φZ1 +φ∇X1Z2),

= ∇X1 f∗(X2)+ f∗(φ∇X1φZ1 +φ∇X1Z2),

= ∇X1 f∗(X2)+ f∗(BAX1ψZ1 +CAX1ψZ1 +ψV ∇X1ψZ1 +ωV ∇X1ψZ1 +

BH ∇X1ωZ1 +CH ∇X1ωZ1 +ψAX1ωZ1 +ωAX1ωZ1 +

BAX1ψZ2 +CAX1ψZ2 +ψV ∇X1ψZ2 +ωV ∇X1ψZ2 +

+BH ∇X1ωZ2 +CH ∇X1ωZ2 +ψAX1ωZ2 +ωAX1ωZ2),

Thus taking into account the vertical parts, we get

(∇ f∗)(X1,X2) = ∇X1 f∗(X2)+ f∗(C(AX1ψZ1 +H ∇X1ωZ1 +AX1ψZ2 +H ∇X1ωZ2)+

ω(V ∇X1ψZ1 +AX1ωZ1 +V ∇X1ψZ2 +AX1ωZ2)),

which gives our assertion. �

Theorem 12. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then f is a totally geodesic map if and

only if
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(i)

1
λ 2{g2((∇ f∗)(X ,ωψY ), f∗(Z))−g2(∇ωY f∗(ωX), f∗(φCZ))}

= −g1(TX ωY,BZ)+g1(AωY ψX ,φCZ)+g1(ωY,ωX)g1(grad lnλ ,φCZ),

(ii)

g1(V ∇X1φX2,BZ) =−g1(TX1φX2,CZ),

(iii)

g1(TY1ψBZ,V )−g1(TY1CZ,BV ) =
1

λ 2 g2((∇ f∗)(Y1,ωBZ), f∗(V ))

− 1
λ 2 g2((∇ f∗)(Y1,CZ), f∗(CV ))

(iv) f is a horizontally homothetic map,

for all X1,X2 ∈ Γ(D1), X ,Y ∈ Γ(D2),Y1 ∈ Γ(ker f∗) and Z,V ∈ Γ(ker f∗)⊥.

Proof. (i) From equation (6), we have

1
λ 2 g2((∇ f∗)(X ,Y ), f∗(Z)) =−g1(∇XY,Z),

for all X ,Y ∈ Γ(D2) and Z ∈ Γ(ker f∗)⊥.

Using equations (1)− (5),(10),(18), (19) and Lemma 2, we have

1
λ 2 g2((∇ f∗)(X ,Y ), f∗(Z))

= −g1(∇X φY,φZ),

= g1(∇X ψ
2Y,Z)+g1(∇X ωψY,Z)−g1(∇X ωY,BZ)−g1(∇X ωY,CZ),

= −cos2
θg1(∇XY,Z)+g1(H ∇X ωψY,Z)−g1(TX ωY,BZ)+

g1(∇ωY ψX ,φCZ)+g1(∇ωY ωX ,φCZ).
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Therefore, we have

sin2
θ

1
λ 2 g2((∇ f∗)(X ,Y ), f∗(Z))

= g1(H ∇ωX ψY,Z)−g1(TX ωY,BZ)+g1(AωY ψX ,φCZ)

+g1(H ∇ωY ωX ,φCZ),

= −g1(TX ωY,BZ)+g1(AωY ψX ,φCZ)− 1
λ 2 g2((∇ f∗)(X ,ωψY ), f∗(Z))+

1
λ 2 g2(∇ωY f∗(ωX), f∗(φCZ))+g1(ωY,ωX)g1(grad lnλ ,φCZ).

(ii) From equation (2.6), we have

1
λ 2 g2((∇ f∗)(X1,X2), f∗(Z)) =−g1(∇X1X2,Z),

for all X1,X2 ∈ Γ(D1) and Z ∈ Γ(ker f∗)⊥.

Using equations (1)− (5),(9) and (19), we have

1
λ 2 g2((∇ f∗)(X1,X2), f∗(Z))

= −g1(V ∇X1φX2,BZ)−g1(TX1φX2,CZ).

(iii) From equation (6), we have

1
λ 2 g2((∇ f∗)(Y1,Z), f∗(V )) =−g1(∇Y1Z,V ),

for all Z,V ∈ Γ(ker f∗)⊥ and Y1 ∈ Γ(ker f∗).

Using equations (2)− (5),(9),(10) and Lemma 2, we get

1
λ 2 g2((∇ f∗)(Y1,Z), f∗(V ))

= −g1(∇Y1φZ,φV ),

= g1(φ∇Y1BZ,V )−g1(∇Y1CZ,BV )−g1(∇Y1CZ,CV ),

= g1(TY1ψBZ,V )+g1(H ∇Y1ωBZ,V )−g1(TY1CZ,BV )−g1(H ∇Y1CZ,CV ),

= g1(TY1ψBZ,V )−g1(TY1CZ,BV )− 1
λ 2 g2((∇ f∗)(Y1,ωBZ), f∗(V ))

+
1

λ 2 g2((∇ f∗)(Y1,CZ), f∗(CV )).
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(iv) For X1,X2 ∈ Γ(µ), from Lemma 2, we get

(∇ f∗)(X1,X2) = X1(lnλ ) f∗(X2)+X2(lnλ ) f∗(X1)−g1(X1,X2) f∗(grad lnλ ).

The above equation taking X2 = φX1, we get

(∇ f∗)(X1,φX1) = X1(lnλ ) f∗(φX1)+φX1(lnλ ) f∗(X1)−g1(X1,φX1) f∗(grad lnλ ),

= X1(lnλ ) f∗(φX1)+φX1(lnλ ) f∗(X1).

If (∇ f∗)(X1,φX1) = 0, then we have

(32) X1(lnλ ) f∗(φX1)+φX1(lnλ ) f∗(X1) = 0.

Taking inner product in equation (32) with f∗(φX1), we get

g1(grad lnλ ,X1)g1( f∗(φX1), f∗(φX1))+g1(grad lnλ ,φX1)g1( f∗X1, f∗φX1) = 0.

From above equation, it follows that λ is a constant on Γ(µ).

In a similar way, for Z1,Z2 ∈ Γ(ker f∗), using Lemma 2, we get

(∇ f∗)(ωZ1,ωZ2) = ωZ1(lnλ ) f∗(ωZ2)+ωZ2(lnλ ) f∗(ωZ1)−g1(ωZ1,ωZ2) f∗(grad lnλ ).

From above equation, taking Z2 = Z1, we obtain

(∇ f∗)(ωZ1,ωZ1) = ωZ1(lnλ ) f∗(ωZ1)+ωZ1(lnλ ) f∗(ωZ1)

−g1(ωZ1,ωZ1) f∗(grad lnλ ),

= 2ωZ1(lnλ ) f∗(ωZ1)−g1(ωZ1,ωZ1) f∗(grad lnλ ).(33)

Taking inner product in (33) with f∗(ωZ1) and since f is conformal submersion, we get

2g1(ωZ1,grad lnλ )g2( f∗(ωZ1), f∗(ωZ1))−g1(ωZ1,ωZ1)g2( f∗(ωZ1), f∗(grad lnλ )) = 0.

From above equation it follows that λ is a constant on Γω(ker f∗). So λ is a constant

on Γ(ker f∗)⊥. On the other hand if f is a horizontally homothetic map it is obvious that

(∇ f∗)(Z1,Z2) = 0. Thus proof is complete. �
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Definition 2. Let f be a conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto Riemannian manifold (M2,g2). Then f is called a (ωD2,µ)−totally geo-

desic map if

(∇ f∗)(ωX1,X2) = 0,

for all X1 ∈ Γ(D2) and X2 ∈ Γ(µ).

Theorem 13. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then f is called a (ωD2,µ)−totally

geodesic map if and only if f is horizontally homothetic map.

Proof. For all X1 ∈ Γ(D2) and X2 ∈ Γ(µ), by Lemma 2, we have

(∇ f∗)(ωX1,X2) = ωX1(lnλ ) f∗(X2)+X2(lnλ ) f∗(ωX1)−g1(ωX1,X2) f∗(grad lnλ ).

If f is a horizontally homothetic, then

(∇ f∗)(ωX1,X2) = 0

Conversely if (∇ f∗)(ωX1,X2) = 0, we have

(34) ωX1(lnλ ) f∗(X2)+X2(lnλ ) f∗(ωX1) = 0.

Since f is conformal submersion and taking inner product in equation (34) with f∗(ωX1),

we have

g1(ωX1,grad lnλ )g2( f∗(X2), f∗(ωX1))+g1(X2,grad lnλ )g2( f∗(ωX1), f∗(ωX1)) = 0.

Above equation implies that λ is a constant on Γ(µ). Besides holding inner product in equa-

tion (34), with f∗X2, we get

g1(grad lnλ ,ωX1)g2( f∗X2, f∗X2)+g1(grad lnλ ,X2)g2( f∗ωX1, f∗X2) = 0.

From above equation it follows that λ is constant on Γ(ωD2).

Thus λ is constant on (Γ(ker f∗)⊥). Therefore proof is complete. �
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Theorem 14. Let f be conformal semi-slant submersion from a Cosymplectic manifold

(M1,φ ,ξ ,η ,g1) onto a Riemannian manifold (M2,g2). Then f is a totally geodesic map if and

only if

(a) ωV ∇X1φX2 +CTX1φX2 = 0, for all X1,X2 ∈ Γ(D1),

(b)C(TX1ψY1+AωY1X1)+ω(V ∇X1ψY1+TX1ωY1) = 0, for all X1 ∈ Γ(D1) and Y1 ∈ Γ(D2),

(c) C(TZ1BZ2 +AZ1CZ2)+ω(V ∇Z1BZ2 +TZ1CZ2) = 0, for all Z1 ∈ Γ(ker f∗) and Z2 ∈

Γ(ker f∗)⊥.

Proof. (a) From equation (6), we have

(∇ f∗)(X1,X2) =− f∗(∇X1X2),

for all X1,X2 ∈ Γ(D1).

Using equations (1),(2),(9),(10),(18) and (19), we have

(∇ f∗)(X1,X2)

= f∗(φ∇X1φX2),

= f∗(ψV ∇X1φX2 +ωV ∇X1φX2 +BTX1φX2 +CTX1φX2).

Since ψV ∇X1φX2 +BTX1φX2 ∈ Γ(ker f∗), we get

(∇ f∗)(X1,X2) = f∗(ωV ∇X1φX2 +CTX1φX2).

Thus, since f is a linear isomorphism between (ker f∗)⊥ and T M1, (∇ f∗)(X1,X2) = 0⇔

ωV ∇X1φX2 +CTX1φX2 = 0.

(b) For X1 ∈ Γ(D1), Y1 ∈ Γ(D2), from equations (1)− (5) and (18), we get

(∇ f∗)(X1,Y1) = f∗(φ∇X1ψY1 +φ∇X1ωY1).

Again using equations (9)− (12),(18) and (19), we get

(∇ f∗)(X1,Y1) = f∗(BTX1ψY1 +CTX1ψY1 +ψV ∇X1ψY1 +ωV ∇X1ψY1

+BAωY1X1 +CAωY1X1 +ψTX1ωY1 +ωTX1ωY1).
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Since BTX1ψY1 +ψV ∇X1ψY1 +BAωY1X1 +ψTX1ωY1 ∈ Γ(ker f∗), we have

(∇ f∗)(X1,Y1)

= f∗(C(TX1ψY1 +AωY1X1)+ω(V ∇X1ψY1 +TX1ωY1)).

Since f is a linear isomorphism between (ker f∗)⊥ and T M2, (∇ f∗)( X1,Y1) = 0⇔C(TX1ψY1+

AωY1X1)+ω(V ∇X1ψY1 +TX1ωY1) = 0.

(c) For Z1 ∈ Γ(ker f∗) and Z2 ∈ Γ(ker f∗)⊥, from equation (1)− (5) and (19), we obtain

(∇ f∗)(Z1,Z2) = f∗(φ(∇Z1BZ2 +∇Z1CZ2)).

Using equations (9)− (12),(18) and (19), we have

(∇ f∗)(Z1,Z2)

= f∗(BTZ1BZ2 +CTZ1BZ2 +ψV ∇Z1BZ2 +ωV ∇Z1BZ2

+ψTZ1CZ2 +ωTZ1CZ2 +BAZ1CZ2 +CAZ1CZ2).

Since BTZ1BZ2 +ψV ∇Z1BZ2 +ψTZ1CZ2 +BAZ1CZ2 ∈ Γ(ker f∗)⊥, we have

(∇ f∗)(Z1,Z2)

= f∗(C(TZ1BZ2 +AZ1CZ2)+ω(V ∇Z1BZ2 +TZ1CZ2)).

Since f is a linear isomorphism between (ker f∗)⊥ and T M2, (∇ f∗)(Z1,Z2)= 0⇔C(TZ1BZ2+

AZ1CZ2)+ω(V ∇Z1BZ2 +TZ1CZ2) = 0.

Therefore proof is complete. �
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