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Abstract: This study attempts to examine the ramped wall temperature and concentration of an unsteady free MHD, 

viscous, incompressible, electrically conducting fluid past a vertical plate through a medium of porous nature under 

thermal radiation. Sets of dimensional governing equations are considered by taking suitable assumptions, which are 

then transformed into non-dimensional forms. Non-dimensional equations are being solved analytically with the 

help of Laplace Transform method. Resultant effects of some parameters concerning the problem on temperature, 

velocity, concentration, coefficient of skin-friction, Nusselt number and Sherwood number are discussed through 

different graphs and are physically interpreted. From the graphs, results are found out and related interpretations are 

made. 
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1. INTRODUCTION 

Magnetohydrodynamics (MHD) is the science dealing with analysis of interaction between 

magnetic fields and electrically conducting fluids in motion. MHD principles are applied in 

engineering, plasma-physics, biotechnology, biomedical science, astrophysics, geophysics, 
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electronics etc. So, many engineers and scientists are interested in its applications in their 

respective fields. MHD flows are important in many fields and due to its importance several 

researchers have put their attention in doing their research works on MHD field. Some notable 

among them are Babu et al. [1], Panezai et al. [2], Rajesh et al. [3], Basha et al. [4], Raju et al. [5] 

etc. 

Convection and radiation are the two important ways of heat transfer. In the process of 

convection heat transfer takes through actual motion of matter, while in radiation transfer of heat 

occurs through electromagnetic waves. The processes of radiation and convections associated 

with fluid flows characterise the radiative convection flows which find suitable applications in 

various energy plants. Effects of radiation on MHD free fluid have also become more important 

in varied industrial activities and research. Due to its ever-growing importance, many researchers 

have carried out their research works on free convective incompressible viscous fluid flow taking 

thermal radiation into account. In this context, significant works are done by Lavanya[6], Ali 

Shah et al.[7],Chiranjibi et al. [8], Sambath et al. [9], Cogley et al. [10], Makinde et al. [11], Vasu 

et al. [12], etc.            

Flow can easily be transmitted through the pores of a medium. Properties and behaviours of 

flow passing through a porous medium have become an important theme used in different fields 

of applied engineering and sciences. Considering the practical utility of research on fluid 

mechanics involving porous medium, volume of works done in this line has been increasing. The 

notable research works relating to this field include those conducted by Mishra et al. [13], 

Siddabasappa[14], Mehta et al.[15], Prasad and Reddy [16], Krishna et al.[17]. It needs to be 

mentioned here that Sinha et al. [18] studied MHD free convective flow through a porous 

medium past a vertical plate with ramped wall temperature. Importantly, the model of Cogley’s et 

al. [10] has been applied by them to analyse radiative heat flux.           

This work is an extension of the investigation carried out by Sinha et al. [18], where the 

effects of concentration have been examined in addition to temperature parameter. Because, it is 

essential to know the effects of concentration level of fluids on the rate of mass transfer.  

 

2. FORMULATION OF THE PROBLEM 

The present study is to investigate an unsteady MHD free convective radiative fluid flow of 

an optically thin viscous incompressible fluid past an infinite vertical plate through a porous 

medium in presence of temperature and concentration. A coordinate system is introduced, where 
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X-axis is considered along vertical direction of the wall and Y-axis is considered along the 

normal to the wall as shown in Figure 1. 

 

 

Figure 1: The problem represented in physical model 

 

Let velocity components u and v be put respectively along X-axis and Y-axis. The flow is set 

in the region y  0 and the plate merges at y=0. Here 0B  is the uniform strength of magnetic 

field applied normal to the plate.  At time t 0 , surrounding fluid and the plate remains at 

same constant temperature wT  and concentration wC . But, at
00 t t  , the temperature and 

concentration of the wall get reduced to  W

0

t
T T T

t 


   and   W

0

t
C C C

t 


   

respectively. Here, fluid is considered as optically thin gray gas with free convection and 

radiation.  

Following assumptions are taken into consideration in the investigation: 

i. Only fluid density varies, but other fluid properties are kept constant. 

ii. As compared to Y direction, radiative heat flux in X direction is minimal.  

O 
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iii. Viscous dissipation of energy is also very minimum. 

iv. In the case of plate being infinite in X-direction, all the physical variables become 

functions of y and t. 

Considering above mentioned assumptions, dimensional governing equations are as follows: 

1.  Momentum Equation: 

         
 

22
0

2

B uu u
g T T u

t y K


 

  
      

 
                        (1) 

2. Energy Equation: 

      
2

r

2
p p

qT T 1

t C C yy

  
 

   
                                            (2) 

3. Concentration Equation: 

          
2

2

C C
D

t y

 


                                         (3) 

 

 Initial and boundary conditions as regards to velocity, temperature and concentration fields are: 

y 0: u 0, T T , C C for t 0      
                                   

(4.1) 

   
0

W W 0

0

y 0: u U , for t 0

t
T T T T , C C C C for 0 t t

t   

  


       
      

             
W W 0T T , C C for t t                     (4.2) 

  y : u 0, T T , C C for t 0                                      (4.3) 

Following Cogley’s model [10], the radiative heat flux rate for a non gray gas in an optically thin 

fluid is as follows: 

    
0

hr

0

eq
4 T T K d

y T


 

  
     

                                         (5) 

Here, 
0

K  
denotes absorption co-efficient,   means wavelength, 

he represents Planck’s 

function. Again subscript 0 means that all physical quantities are found out at temperature T . 

Applying equation (5) in equation (2), the equation (6) is obtained as: 
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     
2

2
p p

T k T 4
T T I

t C Cy


 
  

  
                              (6) 

    
0

h

0 0

e
Where, I K d

T






 
   
   

To normalize dimensional governing equations, following non-dimensional   variables      

and parameters are introduced: 

             1

0 0 0 0 W W

T T C Cy t u
, t , u , , ,

U t t U T T C C
 

 

  
       

 
 

          

   

   2
p0 0

3 3

0 0

Cg T T g C CB t
M , Gr , Gm , Pr ,

U U


       

   
 

 

              

2

0
02 2

0

K U
K , t , Sc

DU

  
  


                           (7) 

Using equation (7) in equations (1), (3) and (6), the following non- dimensional equations are 

derived: 

    
2

1 1 1
12

u u u
Gr Gm Mu

t K

 
    

 
                              (8) 

      

0

2

2

h

2
00 0

1
Ra ,

t Pr

Where,

4 I e
Ra , I K d

TCpU






  
  

 

  
     



                        (9) 

      
2

2

1

t Sc

  


 
                                (10) 

Again, using equation (7) in the boundary conditions defined by equations (4.1), (4.2) and (4.3), 

the following non-dimensional equations of boundary conditions are found out: 

        
10: u 0, 0, 0 , for t 0                             (11.1) 

           
10: u 1, for t 0     
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t , t, for 0 t 1 ,

1 , 1, for t 1 ,

     
    

                          (11.2) 

            
1: u 0, 0 , 0 for t 0                   (11.3) 

 

3. METHOD OF SOLUTION 

Applying Laplace Transform technique in the equations (8) to (10), solutions can be written in 

following way: 

  
2

1
1 1 12

d u 1 MK
s M u Gr Gm , Where M

Kd


      


                 (12)

 
2

12

d
Pr s M 0

d


   

                                                                                                          
2

2

d
Sc . s 0

d


  


                                        

(14) 

The boundary condition equations (11.1) to (11.3) are also transformed to equation (15) by using 

Laplace Transform technique as: 

   

   s s

1 2 2

1

1 1 1
u , 1 e , 1 e at 0

s s s

u 0, 0, 0 as

       

    

             (15) 

Applying Laplace Transform technique in the equations (12) to (14) and considering the 

boundary conditions defined in equation (15), the solutions of the problem are obtained. 

Solutions are written using error function (erf) and complementary error function (erfc) as: 

         1 1, t , t , t 1 H t 1                       (16)   

 
2Sc2

4 t
1

Sc Sc Sc
, t t 1 erfc e

2 t 2 t t


     

               
 

                     S c , , t                           

(13)
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             1 1
,t ,t ,t 1 H t 1                        (17) 

 Where,      

 

   

Pr

1

Pr

Pr Pr
Pr

2 21
,

2 Pr Pr
Pr

2 2

1
Pr, , , Pr, , ,

2



 

     
                                  

     

Ra

Ra

t e erfc t
Ra t

t

t e erfc t
Ra t

L Ra t L Ra t  

   Pr RaPr Pr
L Pr,Ra, , t t e erfc t Pr

2 Ra 2 t

    
         

   
 

   1 1 1 35 2 36u n , t h p h p h                                        (18) 

Where, 
1 2 35 9 25 36 16 34

Gr Gm
p ,p , A Pr 1,G Sc 1, h h h , h h h ,

A G
         

 

 
1

1

1

1 1

1

21
, , ,

2

2





  
   

    
  

  
  

M

M

e erfc M t
t

h f M t

e erfc M t
t  

       1 1Q t Q t

2 1 3 1 1 4 2 1 3 5 12

1

1
h e f , , t , h Q h M , , t , h h h h ,h e f , , t 1 H t 1 ,

Q

               
 

       6 1 7 1 1 8 5 6 7 9 4 82

1

1
h f M , , t 1 H t 1 ,h Q h M , , t 1 H t 1 ,h h h h ,h h h ,

Q
              

 

       2 2Q t Q t

10 2 11 2 1 12 10 1 11 13 2
h e f , , t , h Q h M , , t , h h h h , h e f , , t 1 H t 1 ,            

 

     1Q t

14 2 1 15 13 6 14 16 12 15 17 32

2

1
h Q h M , , t 1 H t 1 ,h h h h ,h h h ,h e f Pr, , , t ,

Q

             
 

       1Q t

18 19 1 20 17 18 19 21 32

1

1
h f Pr,Ra, , t , h Q h Pr,Ra, , t , h h h h ,h e f Pr, , , t 1 H t 1 ,

Q

             
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       22 23 1 24 21 22 23 25 20 242

1

1
h f Pr,Ra, , t 1 H t 1 ,h Q h Pr,Ra, , t 1 H t 1 , h h h h , h h h ,

Q
              

     2Q t

26 2 27 28 2 29 26 27 282

2

1
h e f Sc,Q , , t , h f Sc, , t ,h Q h Sc, , t ,h h h h ,

Q
          

 

           2Q t

30 2 31 32 2h e f Sc,Q , , t 1 H t 1 , h f Sc, , t 1 H t 1 , h Q h Sc, , t 1 H t 1           
 

33 30 31 32 34 29 332

2

1
h h h h ,h h h ,

Q
      

1
1 1 2 1

MB 1 MK
Q ,B Pr Ra M ,Q ,M ,

A G K


    

 

1 1 1 2 1 2 3 1M Q , M Q , Ra Q ,        
0

h

2
00 0

4 I e
Ra , I K d ,

TCpU






  
     


 

Nusselt Number 

 Co-efficient of heat transfer rate considering Nusselt number (Nu) is as follows: 

     
0

2 2

Nu

, t , t 1 H t 1



 
   
                              (19)

 

    tR a

2

1 P r P r t
, t t P r R a e r f tR a e

2 R a


  

              

Sherwood Number 

Now, co-efficient of  mass transfer rate considering Sherwood number (Sh) is as follows: 

 

     
0

2 2

Sh

, t , t 1 H t 1



 
   
       

                        (20) 

 2

S c t
, t 2   

  

Skin-friction co-efficient 

Co-efficient of Skin-friction () is: 
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1

0

u



 
   

  
 

1 1 19 2 3 3
p p                                 (21)

 

Where, 

 1 1 1 1 2

1 M K G r Gm
M , t , M , p , p , G Sc 1 ,

K A G


         

19 9 18 9 4 8 18 13 17A P r 1 , , , ,                  

3 3 2 5 3 2 2 5 2 0 1 2 1 2 2 2 3 2 42

2

3 2 2 6 2 7 2 8 2 9 3 0 3 12

2

1
, ,

Q

1
,

Q

                   

              

 

 

 1

1 1

M t

1 1

M , t

1
e M erf M t

t



  

 
    

 

   

 

1

1

Q t

2 1 3 1 1 1 1 1

M t

1 1 1

1

e , t , Q M , t , M Q ,

1 t
M , t t M e r f M t e ,

2 M





         

  
      
     

 

   1Q t

4 2 1 3 5 1 6 12

1

1
, e , t 1 , M , t 1 ,

Q

                   

     1Q t

7 1 1 8 5 6 7 10 32

1

1
Q M , t 1 , , e Pr, , t ,

Q

              

   3 1 1 1 1 2 1R a Q , P r , R a , t , Q P r , R a , t ,          

 11

R a t

P r , R a , t

P r
e P r R a er R a t ,

t



  

 
   

  
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  R a tP r t1 P r
P r , R a , t t P r R a e r f R a t e ,
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
  
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   

 

1
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1
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   
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Q
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 

 
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1 7 1 4 1 5 1 6 1 8 1 3 1 72
1
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1
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4. RESULTS  

For obtaining physical situations of the problem, necessary calculations of non-dimensional 

velocity, temperature, concentration, co-efficient of skin-friction, co-efficient of rate of heat 

transfer in terms of Nusselt number Nu and co-efficient of mass transfer in terms of Sherwood 

number Sh by assigning some arbitrary values of different parameters, viz. magnetic parameter 

M, Schmidt number Sc, Prandtl number Pr, radiation parameter Ra and time t have been carried 

out. The effects of these values of parameters on flow are examined and illustrated using graphs. 

From the graphs, the results are interpreted physically. Values of Prandtl number Pr are 

considered constant at 0.71 which indicates both air and the values of Schmidt number Sc are 

constant at 0.60 representing H2O (water vapour) mixed with air. Other parameter values are 

arbitrarily chosen. 

Attempt has been made to describe velocity  1u  versus    under the influence of magnetic 
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parameter M and Schmidt number Sc as shown in figures 2-3. In both graphs, it is found that the 

increasing value of magnetic parameter M and Schmidt number Sc tends to reduce the fluid 

velocity. From this phenomenon, it becomes clear that high magnetic intensity M and high value 

of mass diffusivity Sc are compelled the fluid motion to slow down. So, applying high magnetic 

intensity and high mass diffusivity, it is possible to control the fluid motion.  High magnetic 

intensity offers resistance to fluid motion. 

Figures 4-5 depict temperature  versus  under the action of Prandtl number Pr and 

radiation parameter Ra. As seen from the two figures, the fluid temperature drops down under 

the influence of Pr and Ra. Rising values of Pr and Ra are seen to reduce the fluid temperature. 

In figure 5, it appears that using high radiation, the fluid temperature can be controlled. 

The effects of Schmidt number Sc and time t on fluid concentration are demonstrated in 

figures 6-7. Figure 6 indicates that high mass diffusivity, i.e. high value of Sc has forced the 

concentration of fluid to fall down. But in figure 7, an opposite phenomenon has been observed. 

In this case, concentration level of fluid goes up with an increase in the value of time t. When 

time t increases the fluid concentration also increases. 

In figures 8-9, the co-efficient of Skin-friction  against t under the action of magnetic 

parameter M and Schmidt number Sc is depicted. Both the figures show that rising of M and Sc 

diminishes the co-efficient of Skin-friction. So, high magnetic intensity and high mass diffusivity 

tend to minimize the co-efficient of Skin-friction. 

The effect of Prandtl number Pr and radiation parameter Ra against the co-efficient of 

rate of heat transfer in terms of Nusselt number Nu from the plate to the fluid is presented in 

figures 10-11. As evident from the figure 10, the Nusselt number Nu increases for increasing 

value of Pr. But, figure 11 shows opposite behaviour, i.e. Nusselt number Nu tends to fall down 

under the influence of radiation parameter Ra. 

The co-efficient of rate of mass transfer in terms of Sherwood number Sh from the plate 

to the fluid under the effect of Schmidt number Sc has been illustrated in figure 12. This figure 

demonstrates that high mass diffusivity Sc has made an increase in Sherwood number Sh. It 

suggests that the Sherwood number Sh accelerates for any increasing value of Sc, i.e. mass flux 

from the plate to the fluid gets accelerated under the influence of mass diffusivity. 
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Figure 2: Velocity  u  versus   under 

K=0.04, Ra=2, Pr=0.71, Gr=25, Gm=25, 

Sc=0.60, t=0.5 

Figure 3: Velocity u versus   under K=0.04, 

Ra=2, Pr=0.71, Gr=25, Gm=25, M=5, t=0.5 

Figure 4: Temperature   versus   under 

Ra=2, t=0.5 

 

Figure 6: Concentration   versus   under 

t=0.5 

Figure 7: Concentration   versus   under 

Sc=0.60 

Figure 5: Temperature  versus   under 

Pr=0.71, t=0.5 
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Figure 9: Skin friction  versus t under 

K=0.04, Ra=2, Pr=0.71, Gr=25, Gm=25, 

M=5 

Figure 8: Skin friction  versus t under 

K=0.04, Ra=2, Pr=0.71, Gr=25, Gm=25, 

Sc=0.60 

Figure 11: Nusselt number Nu versus t under 

Pr=0.71 

 

Figure 10: Nusselt number Nu versus t under 

Ra=2 

 

Figure 12: Sherwood number Sh versus t  
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5. COMPARISON OF RESULTS  

Work of Sinha et.al. [18] is considered for comparing the results of the present paper. 

Comparing figure 13 with figure 2 of the work done by Sinha et.al. [18], we observe the same 

kind of behaviour due to the implementation of magnetic intensity in velocity profile. i.e. there is 

a significant effect of magnetic parameter on this profile. Thus, there is an excellent agreement 

between the results obtained by Sinha et.al. [18] and those arrived at by the present authors. 

 

 

6. CONCLUSIONS 

1. Fluid motion gets reduced due to action of magnetic parameter M and Schmidt number.       
2. Temperature of fluid falls down for high values of Prandtl number Pr and radiation 

parameter Ra. With high radiation, temperature of fluid can be controlled. 
3. Concentration level of fluid leads to decrease for increasing value of Schmidt number           

Sc, but concentration level of fluid rises for increasing value of time t. 
4. The Skin-friction co-efficient tends to diminish for high value of magnetic intensity M and 

high mass diffusivity Sc. 

Figure 13: Velocity u versus   under 

K=0.04, Ra=2, Pr=0.71, Gr=25, Gm=0, 
Sc=0, t=1 
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5. Nusselt number goes on rising for increasing value of Pr, but it tends to fall down under the 

influence of radiation parameter Ra. 
6. High mass diffusivity Sc is found to enhance the mass flux.  

 

7. NOMENCLATURE 
u: Velocity of fluid,  (X, Y): Cartesian co-ordinates, t  : Dimensional time, g: Acceleration due to gravity, T: 

Dimensional temperature, wT : Dimensional temperature at the plate, T : Dimensional temperature far away from 

the plate, C: Dimensional concentration, wC : Dimensional concentration at the plate, C : Dimensional 

concentration far away from the plate, K : Dimensional porosity number, 

0B : Strength of applied magnetic force, pC : Specific heat at constant pressure, D: Molecular mass diffusivity, 0U : 

Scale of free stream velocity, M: Magnetic parameter, K: Non-dimensional porosity number, rG : Thermal Grashof 

number, mG : Mass Grashof number, rP : Prandtl number, cS : Schmidt number, aR : Radiation parameter, erf: 

Error function, erfc: Complement of error function, H(t-1): Unit step function, 1u : Non-dimensional velocity at the 

plate, 0t : Characteristic time. 

Greek Symbol: : Kinematic viscosity, 
 : Co-efficient of thermal expansion,  : Electrical conductivity,  : 

Density of fluid,  : Thermal conductivity, : Non-dimensional temperature,  : Non-dimensional concentration. 
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