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Abstract. The following Van der Pol and Holling-Tanner equations is analyzed from the qualitative viewpoint by

investigating their vector fields and analyzing the nature of the stationary points of these equations. The winding

numbers (indices) of the stationary points are investigated by calculating the Poincare integrals. This calculation

is performed by a novel method which is based on application of the fast Fourier transform (FFT) formation to the

Poincare integrand.

Keywords: Holling-Tanner; vector field; fast Fourier transform; index/winding number; stationary point; inverse

problem.
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1. INTRODUCTION

The vector field represents vectors with components X = X(x,y) and Y =Y (x,y) in Oxy rectan-

gular coordinated system, where X and Y are right hand sides/parts of the system of equations:

(1)


dx
dt

= X(x,y),

dy
dt

= Y (x,y).
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Stationary points of this system are calculated as solution of the system of equation

(2)


X(x,y) = 0,

Y (x,y) = 0.

Index (winding number) of the stationary points is calculated by the Poincare integral:

(3) I =
1

2π
·
∫

AB

X(x,y) ·Y ′(x,y)−X ′(x,y) ·Y (x,y)
X2(x,y)+Y 2(x,y)

d p,

where d p is a differential along the curve AB in Oxy-coordinate system, surrounding the sta-

tionary point, x = x(p), and y = y(p). According to [1], a Lipschitz continuous function of a

plane vector field F = [X(x,y),Y (x,y)] over a smooth Jordan curve is considered over the inte-

gral (Poincare’s integral).

It is obvious that integrand of the Poincare’s integral

(4) f (p) =
X̄(p) · Ȳ ′(p)− X̄ ′(p) · Ȳ (p)

X̄2(p)+ Ȳ 2(p)
.

is 2π-periodic function, where

(5) X̄(p) = X (x(p),y(p)) ,Ȳ (p) = Y (x(p),y(p)) .

Due to 2π-periodicity of f (p), we can expand it in the Fourier series

(6) f (p) =
a0

2
+

∞

∑
m=1

[am · cos(mp)+bm · sin(mp)] ,

where

am =
1
π
·
∫ 2π

0
f (p) · cos(mp)d p,

and

bm =
1
π
·
∫ 2π

0
f (p) · sin(mp)d p.(7)

In these terms, the Poincare integral

f (p) =
1

2π
·
∫ 2π

0
f (p)d p = a0,(8)

and can be found numerically by any discrete Fourier transformation (DFT). For example, the

FFT, which is calculated from N = 2n (n is positive integer) samples of f (p) which are equidis-

tantly located at p ∈ [0,2π], i.e in Pi =
2π

N · i, i = 0,1, . . . ,N−1. One of the advantages of FFT is
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its speed which it gets by reducing the number of calculations needed to analyze waveform [2].

This is an alternative to DFT, because of the speed the algorithm reduces an n-points of Fourier

transform to about n
2 log2(n). FFT is widely used in many applications in engineering, science,

and mathematics such as speech processing and frequency estimation [3]. The fundamental

idea of the algorithm was firstly derived in 1805 according to [4]. Recently the FFT algorithm

was used to analyzed and detected the frequency with respect to the noise level using the white

Gaussian noise [5]. The FFT algorithm (also known as Cooley-Turkey algorithm) was formu-

lated by James W. Cooley and John W. Tukey in 1965 [6] and it is the most important numerical

algorithm in applications.

Examples of FFT algorithm are 1©Rader’s FFT algorithm, 2©Prime-factor FFT algorithm,
3©Chirp Z-transform, 4©Bruun’s FFT algorithm, 5©Bluestein’s FFT algorithm, 6©Hexagonal

FFT, etc. It is of great importance to numerically investigate the dynamical systems (Van der

pol and Holling-Tanner equation) considered in this study, through software MathCad® and

Mathematica® for the vector plot, equilibrium points, and indices of the stationary points of the

vector fields.

2. PROBLEM STATEMENT

This paper is devoted to the numerical analysis of the vector fields of the Van der Pol and

Holling-Tanner systems by the built-in methods of the Mathematica® by means of numerical

calculations of the indices of these fields by the FFT. The aims of the study were to:

• Obtain the equilibrium points of the Van der Pol and Holling-Tanner systems.

• Investigate the vector fields of the Van der Pol and Holling-Tanner systems by the built-

in functions of Mathematica®.

• Calculate the indices of stationary points of the vector fields of the Van der Pol and

Holling-Tanner models.

3. MODEL EXAMPLE: VECTOR FIELD AND INDEX OF THE STATIONARY POINT OF

VAN DER POL EQUATION

In this section, we consider the well known Van der Pol equation and illustrate our approach to

calculate the index of the stationary point of the vector field of this equation.
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Let us represent Van der Pol equation

ẍ− (1− x2)ẋ+ x = 0,(9)

in the Cauchy form as 
ẋ = y = X(x,y),

ẏ = (1− x2) · y− x = Y (x,y).
(10)

The unique stationary point of this equation is

x = 0, y = 0.(11)

Let us draw the vector field of this equation using the built-in function of the Mathematica®

software. We plot the vector field of the Van der Pol by ListStreamPlot built-in function of the

Mathematica® in the x ∈ [−4,4],y ∈ [−4,4].

Figure (1) illustrates the obtained vector field.

-4 -2 0 2 4
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0
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4

Figure 1. Vector field of Van-Der-Pol equation

Linearization of Equation (10) in vicinity of x = 0, y = 0 gives us the system
ẋ∼= y,

ẏ∼=−x+ y,
(12)
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and hence, the characterization equation is

det

−λ 1

−1 1−λ

= (λ )2− (λ )+1 = 0.

from which it follows that the eigenvalues are

λ1,2 =
1± i
√

3
2

∼= 0.5± i0.8660,(13)

where i is complex unit (i2 =−1).

Hence, the stationary point x = y = 0 is unstable focus (source). In the case of sources and

sinks, the index of the stationary points is equal to +1 and in the core of the sinks, its equal to

−1. To calculate the index numerically, we assume

x = ρ · cosθ ;y = ρ · sinθ ,where ρ is constant(14)

hence

X(θ) = ρ · sinθ , Y (θ) = (1−ρ
2 cos2

θ)ρ · sinθ −ρ cosθ ,(15)

and

f (θ) =
Y (θ) · dX(θ)

dθ
− dY (θ)

dθ
·X(θ)

X2(θ)+Y 2(θ)
.(16)

Let ψ(θ) and κ(θ) be represented in Equation (17)

ψ(θ) =1+ρ
2 · (1

2
sin2θ − 1

4
sin4θ),

κ(θ) =− 3
2
+ sin2θ +

1
2

cos2θ +ρ
2 · (1

4
− 1

2
sin2θ − 1

4
sin4θ − 1

4
cos4θ)(17)

+ρ
4 · (− 1

16
− 1

32
cos2θ +

1
16

cos4θ +
1

32
cos6θ).

Therefore,

(18) f (θ) =
ψ(θ)

κ(θ)
.

Integral

1
2π
·
∫ 2π

0
f (θ)dθ = 1,(19)
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is calculated by Maple® exactly.

For its calculation by the FFT-method,we:

• Discretize interval [0,2π] into N = 2n intervals, where n > 3 is positive integer,

• Calculate function in k = 0,1,2, . . . ,N−1 points, θk =
2π

N ·k, to obtain fk = f (θk) values,

• Calculate FFT (the built-in operation in MathCad®) to obtain factor

a0 =
1

2π
·
∫ 2π

0
f (θ)dθ , and

• Round off the obtained a0 to the nearest integer value.

Example of discretization of function f (θ) for N = 24 = 16 intervals is shown in Figure (2).

Figure 2. Discretization of function for n = 4

Values of a0-factor for ρ = 0.05 differentiation values of n is shown in Table (1).

n a0(FFT) log |a0(FFT )−1| Round (a0(FFT ))

4 0.99731 -2.570 1

5 1.00000 -5.651 1

6 1.00000 -11.118 1

7 1.00000 -15.353 1

Table 1. Values of a0 factor for n > 3
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As we see, it is necessary to have N = 24 points of discretization in this case to achieve the

value of the index of the stationary point. When selecting number of points for the integrand

discretization, it is necessary to keep in mind that the spectrum of the functions contains main

cosine and sine harmonics so that higher harmonics in the spectrum have relatively small am-

plitude. Otherwise value of the index can be substantially deteriorated by the aliasing effect.

This effect is illustrated in the next section.

4. VECTOR FIELD AND INDICES OF STATIONARY POINTS OF HOLLING-TANNER SYS-

TEM

In the Holling-Tanner system of equation, we assume that

X = X(x,y) = b1x−b2x2−b3
xy

b4 + x
,(20)

Y = Y (x,y) = b5y−b6
y2

x
.(21)

Assuming that only non-negative y and positive x are considered, we can find three stationary

points from equations X = Y = 0;

x1 =
b1

b2
,y1 = 0,(22)

x2 =
−b3b5 +b1b6−b2b4b6 +

√
4b1b2b4b2

6 +(−b3b5 +b1b6−b2b4b6)2

2b2b6
,(23)

y2 =

b1b5
b2
−b4b5−

b3b2
5

b2b6
+

b5
√

4b1b2b4b2
6+(−b3b5+b1b6−b2b4b6)2

b2b6

2b6
,(24)

x3 =
−b3b5 +b1b6−b2b4b6−

√
4b1b2b4b2

6 +(−b3b5 +b1b6−b2b4b6)2

2b2b6
,(25)

y3 =

b1b5
b2
−b4b5−

b3b2
5

b2b6
− b5
√

4b1b2b4b2
6+(−b3b5+b1b6−b2b4b6)2

b2b6

2b6
.(26)

In these cases, x1,2,3 > 0 and y1,2,3 ≥ 0, if b1.b2,b3,b5,b6 are positive and b4 < 0. At particular

values of the b-coefficients b1 = 1,b2 = 0.1,b3 = 1,b4 =−0.1,b5 = 1,b6 = 1.5.
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The corresponding roots are

x1 = 10, y1 = 0,(27)

x2 ∼= 0.32134, y2 ∼= 0.21422,(28)

x3 ∼= 3.11200, y3 ∼= 2.07466.(29)

At Equation (27), x1 = 10,y1 = 0, the linearized Holling-Tanner system in the vicinity of x1,y1

is

∆ẋ1 ∼=−∆x1−1.01010 ·∆y1,(30)

∆ẏ1 ∼= ∆y1.(31)

Eigenvalues of the linearized system of Equation (31) are

λ1,2 =±1,(32)

and hence, the stationary point is saddle.

At Equation (28), x2 = 0.32134,y2 = 0.21422, the linearized Holling-Tanner system in the

vicinity of x2,y2 is

∆ẋ2 ∼= 1.37301 ·∆x2−1.45180 ·∆y2,

∆ẏ2 ∼= 0.66667 ·∆x2−∆y2,(33)

with corresponding eigenvalues

λ1 ≈ 0.84978;λ2 =−0.47677,(34)

hence, the stationary point is saddle.

In the third case Equation (29) at x3 ≈ 3.11200,y3 ∼= 2.07466, the linearized Holling-Tanner

system in the vicinity of x3,y3 is

∆ẋ3 ∼= 0.40097∆x3−1.03320∆y2,

∆ẏ3 ∼= 0.66667∆x3−∆y3,(35)
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with corresponding eigenvalues

λ1,2 ≈−0.29977± i0.44550.(36)

and, the stationary point is stable focus.

The vector field of the Holling-Tanner system at the abovementioned parameters is shown in

the x− y plane 3 (x ∈ [−1,12],y ∈ [−1,4]) using that the ListStreamPlot built-in function of

the Mathematica® in Figure (3).
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0

1

2

3

4

Figure 3. Vector field of Holling-Tanner system

To analyze the behaviour of the first stationary point x1 = 10,y1 = 0, we make change of vari-

able.

x = 10+ x1;y = y1,(37)

where x1 = ρ cosθ ,y1 = ρ sinθ and compose the Poincare integral with
X1(θ) = 10+ρ cosθ − (10+ρ cosθ)2

10 − ρ sinθ(10+ρ cosθ)
99

100+ρ cosθ
,

Y1(θ) = ρ sinθ − 3ρ2 sin2
θ

20+2ρ cosθ
.

(38)

The results of discretization of the integrand

f1ρ(θ) =
X1(θ) · dY1(θ)

dθ
− dX1(θ)

dθ
·Y1(θ)

X2
1 (θ)+Y 2

1 (θ)
,(39)
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in N = 25 points with ρ = 1
100 are shown in Figure (4).

Figure 4. Discretization of the integrand for n = 5

Results of the FFT of the discretized function vk = f1(θk), where θk =
2π

k ·k, k = 1,2, . . . ,N−1

and N = 2n are represented in Table (2).

n a0(FFT) log |a0(FFT )+1| Round (a0(FFT ))

3 0.97287 -1.567 -1

4 0.99719 -2.551 -1

5 −1.00000 -5.675 -1

6 −1.00000 -10.909 -1

7 −1.00000 -12.889 -1

Table 2. Discretized Integrand of FFT for different values of n
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As we see the index of the stationary point x1 = 10,y1 = 0 equals to −1, which corresponds to

the saddle, can be obtained with minimum possible points of discretization.

Let us analyze the second stationary point x2 ∼= 0.32134,y2 ∼= 0.21422.

In this case,

X2(θ)∼= 0.32134+ρ cosθ −0.1(ρ cosθ +0.32134)2− (0.32134+ρ cosθ)(0.21422+ρ sinθ)

0.22134+ρ cosθ
,

Y2(θ)∼= 0.21422+ρ sinθ − 3(0.214222+ρ sinθ)2

0.64267+2ρ cosθ
.

(40)

Discretization of the integrand

f2ρ(θ) =
X2(θ) · dY2(θ)

dθ
− dX2(θ)

dθ
·Y2(θ)

X2
2 (θ)+Y 2

2 (θ)
,(41)

in N = 26 points with ρ = 1
100 are shown in Figure (5).

Figure 5. Discretization of the integrand for n = 6

Results of the FFT of the discretized integrand on vk = f1(θk), where θk = 2π

k · k, k =

1,2, . . . ,N−1 and N = 2n are given in Table (3).
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n a0(FFT) log |a0(FFT )+1| Round (a0(FFT ))

4 −0.02600 -0.011 0

5 −0.43861 -0.251 0

6 −0.99874 -2.901 -1

7 −0.99987 -3.889 -1

8 −1.00000 -8.100 -1

Table 3. Discretized Integrand of FFT for different values of n

As we see the results of rounding of coefficient a0(FFT) for n = 4 and n = 5 gives incorrect

value of the index. For n ≥ 6, we obtain satisfactory results. In this case, the index of the sta-

tionary point (x2,y2) is equal to −1, which correspond to the saddle.

This is explained by the fact that the negative spikes in Figure (5) are sharp and hence, the

spectrum of the Fourier transform contains substantial number of harmonics. Hence the incor-

rect results of the index calculation for n = 4 and n = 5 are explained by aliasing effect due to

ignoring of higher frequency components in the Fourier spectrum of the integrand.

In the of third stationary points x3 ∼= 3.11200,y3 ∼= 2.07466, the components of the Poincare

integral are

X3(θ)∼= 3.11200+ρ cosθ −0.1(3.11200+ρ cosθ)2− (ρ cosθ +3.11200)(ρ sinθ +2.07466)
3.11200+ρ cosθ

,

Y3(θ)∼= 2.07466+ρ sinθ +
3(2.07466+ρ sinθ)2

6.22399+2ρ cosθ
.

(42)

Discretizing the Poincare integrand

f3(θ) =
X3(θ) · dY3(θ)

dθ
− dX3(θ)

dθ
·Y3(θ)

X2
3 (θ)+Y 2

3 (θ)
,(43)

in N = 26 points , we obtain graph shown in Figure (6).



7314 ADENIJI, FEDOTOV, SHATALOV, MKOLESIA

Figure 6. Discretization of the integrand for n = 6

Results of the corresponding FFTs for the different and N = 2n are given in Table (4).

n a0(FFT) log |a0(FFT )−1| Round (a0(FFT ))

4 0.48025 -0.284 0

5 0.47048 -0.276 0

6 1.00182 -2.740 1

7 1.00000 -5.752 1

8 1.00000 -11.657 1

Table 4. Discretized integrand of FFT for different values of n

The results of incorrect calculation of the index of stationary points (x3,y3) is explained by

the sharp positive spikes in the graph of the integrand and hence, the aliasing effect due to

insufficient number of harmonics taken into consideration in the spectrum of the integrand. As

we can see, the index of the stationary point (x3,y3) is equal to 1.
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5. CONCLUSION

In this Chapter, two systems of equations (Van der Pol and Holling-Tanner) were investigated

numerically and graphically. A novel algorithm (FFT-method) was proposed to numerically

calculate the index of stationary points of the vector field by discretizing the function into in-

terval, divided by N equal-distance of sub-intervals. The vector fields of the systems (Van der

Pol and Holling-Tanner) were built using Mathematica®. The first term of the Fourier series ex-

pansion of the Poincare integrand is equal to the Poincare integral, hence the value of the index

was numerically (approximately) calculated using the proposed FFT. The corresponding DFT

were performed by using FFT, Figure (2, 4, 5 & 6), which is executed by the built-in functions

in MathCad®. The stationary points were obtained as indicated in Equation (11) and Equation

(27, 28 & 29), linearized in the vicinity of the corresponding roots, we obtain a stable focus for

the Van der Pol equation, two stationary points were saddle and one stable focus for Holling-

Tanner model. The Poincare integrands were calculated for all stationary points of the Van der

Pol and Holling-Tanner systems and discretized in N = 2n points, where n is non-negative in-

teger. After rounding off of the calculated approximate values of the indices, real values were

obtained (see Tables (1, 2, 3 & 4)). It was shown that in accordance with the theory index of

saddle points was equal to −1 and indices of the stable and unstable focus were equal to 1.
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