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Abstract: In this paper, we introduce the fractional order radon diffusion equation and develop explicit finite
difference scheme for time fractional radon diffusion equation (TFRDE). Also, we discuss the stability and
convergence of the scheme, as an application of this scheme, we obtain the numerical solutions of the test problem
and it represented graphically.
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1. INTRODUCTION
Fractional calculus belongs to the field of mathematical analysis which deals with the investigation
and applications of differentiation and integration to arbitrary non-integer order. At present

fractional calculus has been simulated by many applications in physics, engineering, bioscience,
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applied mathematics etc. [1, 2, 6, 17, 18, 19, 20, 21, 22, 23, 24]. The analytical solution of
fractional diffusion equation is very difficult to find hence researchers developed the finite
difference schemes to find numerical solution [3, 4, 7, 8, 9, 10, 11]. Radon is a colorless, odorless,
radioactive gas. It forms naturally from the decay of radioactive elements, such as uranium, which
are found in different amounts in soil and rock throughout the world. Radon gas in the soil and
rock can move into the air and into underground water and surface water. Radon is present outdoors
and indoors. Due to dangerous nature of radon many researchers study the radon transport through
soil, air, concrete, activated charcoal, etc., [5, 12, 13, 14, 15, 16]. The diffusion theory came from
the famous physiologist Adolf Fick. He stated that the flux density J is proportional to the gradient

of concentration. This gives,

oR
J=-D— 1.1
p (1.1)

where J is the radon flux density is diffusion coefficient, 2—? is gradient of radon concentration

and D is diffusivity coefficient of radon. Now the change in concentration to change in time and
position is stated by the Fick’s second law which is the extension of Fick’s first law, that gives,

oR(z,t) _ DaZR(z,t)

- 2 —AR(z,t) (1.2)

where L = 2.1 x 10%s! is the decay constant.
In this paper, we develop the time fractional explicit finite difference method for fractional

order radon diffusion equation. We consider the following time fractional radon diffusion equation

[TFRDE].
o 2
TR@Y _pOREY _R2,1),0<2<L,0<a<1t>0 (1.3)
ot” 0z
initial conditions: R (z,0)=0,0<z<L (1.4)
boundary conditions: R(0,t) =R, and aR;’t) =0,t>0 (1.5)

Definition 1.1  The Caputo time-fractional derivative of order a, (0 < o < 1) is defined by,
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“Rzt) _ 1 j-aR(z,r;) dzy
a*  I'l-a)y on  (t-n)

_ OR(z,1) =1
ot

We organize the paper as follows: In section 2, we develop explicit finite difference scheme for

O<ax<l

time fractional radon diffusion equation (TFRDE). The section 3, is devoted for stability of the
solution of the scheme and the convergence of the approximated finite difference scheme is proved
in section 4. In the last section we solved some text problems and their solutions are represented

graphically by mathematical software Mathematica.

2. FINITE DIFFERENCE SCHEME

We consider the following time fractional radon diffusion equation [TFRDE],

a“gt(j,t) -D azgz(ﬁ’t) _AR(z,1),0<z<L,0<a<Lt>0 2.1

Initial conditions:  R(z,0)=0,0<z<L (2.2)
Boundary conditions: R(0, ) = Ro, t > 0

R(L,t)=0 or %:0,&0 (2.3)

We introduce the finite difference approximation to discretize the time fractional derivative.
We define,

t=kT,k=0,1,2,..., Nand

zi=ih;i=0,1,2,... M

where rzl andh=L
N M

Let (zi, t); 1i=0, 1,2, ..., Mand k=0, 1, 2, ..., N be the exact solution of the TFRDE (2.1)-(2.3) at
the mesh point (z, tx). Let Rik be the numerical approximation of the point R(ih, kt).

In the TFRDE (2.1) — (2.3) time fractional derivative is approximated in the caputo sense by

following scheme,
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6“R(Zi,tk) - 1 tisa 1 aR(Z,,n)d
oA*  T-a) § (tea-n)°  on

_ 1 ZR(Z"tH) R(z.t J)(Hjl)r dry
I'l-a) i3 v i (a—m)”

+0(7)

pPut t,,-n=5=-dn=d¢g
When n=jr=&=t - jr=Kk+Dr—jr=(K+1-]))r
Again,when n=(j+)r=<&=(k—j)r

Rz t5) -R(z ) “ " 0
r(l a,)JZ:(:) r (k—J‘j)f £ +0(7)

! R(Zi’tku—j)—R(Zi'tk-j)(M)Tdf
= r‘(l_a) J; J‘ _a+O(T)

T

o

it

_ 1 R(Zi’tkﬂ—j)_R(Zi'tk—j){(j+1)l_a—Jl_“}1_a
_F(l—a)jzz(:) . a 4 +0(7)

—a -a K

T [R(zte) ~R(z) ] =2 [R(Ztn )~ R(zte ) 1L+ D7 = 17 |+ 0(0)

“T(2-a) re-a)4

=F(2_a)[Rik+1_Rik} oo zb [Rk j+l Rk J:|+O(T)

f 1— -1— .
Where by =(j+1) “—j* j=12,..,N
Now, for approximating the second order space derivative, we adopt a symmetric second order

difference quotient in space at time level t = tk

O*R(z.%) _ R(ziat)—~2R(2z,t) +R(zig )
oz° h?

OR(z:t) _ Ry — 2R +R,
oz° h?

Therefore, substituting in equation (2.1), we get
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ml: RX+L _ k:|_|_ zb I:Rk j+l Rk j:l
o

b R, —2RF+R
- 4

'+1} AR(z;,%)

Where bj =(j+1)1_a— jl_a; j=12,..,N

I:Rik+1 Rk ] N Zk:bj I:Rik—j+1 Rk ]
=1

DIr(2—a)-t* o
_ - [RK, —2RF+RE, |- A (2-2) %R (2,1,

_ (04

Put r=w and u=Ar(2—a)c”
h

We have,

k+1 k X k—j+1 k—j k k k
(R —RK ]+ b, [ R —RIT | =1 RY, ~2RF +RE, |- 4R (2.4)
j=L

After Simplification,

RKH = rRK, +(1-2r — y)RK + rRK, — ij[Ri"—”l—Rik—j]

= RS, +(1-2r — 2)RE + 1R, +by [ RFE R ]+ b, [ RKE2 —RI ]

+by [ R2—RF? |4+ +b [RE=R? +b [RO —R! |

R =R +(1-2r—u—b)R +rR,+1+Z(b —b;.1 )R+ RY (2.5)
=1
Where, rz[)r(zh;za)r,,u=ﬂl“(2—a)r“
b =(j+1)™" - j**;j=12..N, i=01..,Mand  k=0,1..,N

The initial condition is approximated as

R°=0,i=0,1...,M
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For the two boundary points Zy and Zu, the corresponding discretization schemes are

RX =0 and wzo implies
z

k k
RM +1 RM -1

-0=R . =R
2h M +1 M -1

Therefore, from equation (2.4) for k= 0 the fractional approximated initial boundary value problem
is
RI-R=r I:Rio—l —2R’ + Riqu] — uRy

R =rR’, +(1-2r— )R + IR

i+1

Therefore, the complete fractional approximated initial boundary value problem is,

RE=rRY, +(1-2r—u)R? +rR%, fork =0 (2.6)
k-1 )
RI =R +(1-2r — =y ) RE + 1R + 3" (b —bj 0 )RV +bRP, fork >1 2.7)
j=1
With initial conditions: Rio =0;i=0,12,..M (2.8)
Boundary conditions: R =0 and w =0
Z
Ryq =R 1:k=0,1,2,... (2.9)

_Dbr(2-a)c”

Where, 1= 2 =(2-a)c®

b =(j+1)™" —**j=123...k, i=0,12,..,M andk =0,1,2,...
The problem (2.6) — (2.9) is a complete discretization of the problem (2.1) — (2.3)
The fractional approximated initial boundary value problem (2.6) — (2.9) can be written in the
following matrix equation form as follows,

Further more,

for, k=0, R =rR, +(1-2r-u)R’+rR

i+1
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for,i=1, R{=rRJ+(1-2r—u)RY+rR]

for,i=2, Ry=rR)+(1-2r—u)RJ +rRJ

for,i=M, Ry =rRy_;+(1-2r—u)RY +rRY 4

k k
=2rRy 1 +(1-2r - 1) Ry, ( Rv.1=Rw —1)
RU| [1-2r—u r - e - - R R ]
R} r 1-2r—u r — - - RY 0
1 0
RE| | o R
| | | 1 | | |
| | I N HRN
— - - - 2r 1-2r-
Ry L HIRY | L O
R'=AR°+R" for k=0
[1-2r—u r —~ —~ -]
r 1-2r—-pu r - - —
N IR
| | | |
| | | |
| - - - 2r 1-2r—u
RO[RY] RO
R RS 0
| | |
| | |
Ry Ryl Lol

Further more, from equation (2.7)
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k-1 )
for, i =1R™ =R +(1-2r— u—b )R +IR3 + " (b; =bj,1 )R\ + b R
=1

k-1 .
for,i=2Ry™ =R +(1-2r— u—b )RS +IR5 + Y (b; =bj,1 )RS+ R?
j=1

k-1 .
for,i=3R§™ =R +(1-2r— u—b)R§ + IRy + Y (b; =bj,1 )R§ I+ R

=1
k-1 .
for,i=M Rw™ =Ry g +(1—-2r — 1=y )Ry + 1Ry 1 + > (b; —b;.1 )RY T + bRy
j=1

k-1 .
= 2rRyy 4 +(1-2r — =y )R + 1Ry 1 + > (bj —by1 )Ry +B Ry,
j=

[Rf] 1-2r—pu-b r - - - I R
RiH r 1-2r—u-b r - - - RS
| | | | | |
| |= | | . | |
| | | | | |
| | | | | |
_R:\(Aﬂ_ ] - - - 2r 1-2r—u-b _RK/I_
W] R [
Ry~ Ry 0
k-1 | | 0
+>(bj =bj.4) +Dby +
= | | |
| | |
R Lrol Lo

k-1 .
R“M=BR"+)"(b; —bj,1)R“ T +b R +R’
j=1

Where, RX =[R1k, ng---’ Rli\</| ]T
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Therefore using the above equations the fractional approximate initial boundary value problem

(2.6) — (2.9) can be written in the matrix form as follows:

R'=AR’+R"; fork =0 (2.10)
k-1 )

R“M=BR“+Y"(b; —bj,1)R“ T +bR%+R?; fork >1 (2.11)
=1

]
Where R*=[RK,RS,...RE | 1k=012,..,N

(= DL2-a)e" ir(2 gy b = (j+1 -

h2
j=12,...k
[1-2r—u r - = -]
r 1-2r-pu r - - -
Al | o
| | I |
| | . |
| - - - 2r 1-2r—u
1-2r—u—b r - - - ]
r 1-2r—u-b r - - -
a | | | I |
| | o |
| | o |
i - - - 2r 1-2r—pu-b |
rRg
|
R'=0= |
|
|
_O_




1232
SUNIL DATTATRAYA SADEGAONKAR, RAJKUMAR NAMDEVRAO INGLE

Dr(2-a)c”
r =(h—2a)r;y=/‘tr(2—a)r“;

b =(j+1) ™"~ j=12...k, i=012,.,M andk =0,1,2,...,N

The above system of equation is solved by using mathematica software.

3. STABILITY
Theorem 3.1
The solution of the implicit finite difference scheme (2.6) — (2.9) for time fractional Radon

diffusion equation (2.1) — (2.3), is stable, when

r< min{—z_'u,—z_'u
3 4

OS,uSl}

Proof:
Let A be an eigenvalue of matrix A to linear system of equations (2.6) — (2.9) so that,
Az; = Az; for some nonzero vector z; choose i such that

lzi| = max {|z| : j = 1,2,... k-1} then

k-1 k-1 7.
D a;z; =Az; and therefore, 2 =a; + > _a; Z—‘ (3.1)
i1 R

J#1

Substituting the values of ajj in to (3.1), we get

1) When, 1=1
k-1 Zj
j=2 i
J#1

/’L:1—2r—,u+a122—2
1

31—2r—y+rz—2£1—2r—,u+rs1—r—,u£1
4

A<1
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A=1—2r—y+r-ﬁ21—2r—y—rz—221—2r—y—r2—1
4 Al
A>-1
When 1-2r—pu-r>-1

1-3r—pu>-1

3r<2—pu

<2-n

r<——

2) When 2<i<M-1
1=2
k-1 7.
Z«:a22+zaij_1
=1 i
j#2
/1:1—2r—,u+a21i+a232—3
Z; Z;

>1-2r—u—r—r=21-4r—pu>-1

When 1-4r—pu>-1

4r§2—y:r£2;# (v0<u<l)

2—u

—1<A<lfor2<i<M -1whenr<

3) When i=M

k-1 Z;
l:aMM + Z au —
“= Z:
j=1 i
J=M
Z Z Z
_ 1 2 k-1
A=ayy tay, —+tay, =+ taygn -
M Zy Zy

=1-2r—u+0+0+...+2r

<1-u<1

A 21-2r—pu—-2r>-1
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When 1-4r— 4 >-1 implies that
Ar<2—u
2—pu

r<——

Therefore, for 1<i<M, we get

1< <1

When rSmin{z_T'u,z_Tﬂogﬂg }

N
N

—H

As| <1 when rSmin{

”

Implies,

w‘
-h‘

Therefore [|All, = max|4g| <1
1<i<M

Thatis [|Al, <1 when r <min {%Z_Tﬂ}

&

Therefore from equation (2.10), we have
IR, =1AR°l,
<IAl Rl

Thus [R, <IR%[l,, true fork =0

We assume that ||Rn||2 < ||R0 2, when k < M is true so for k= M + 1 we have to prove that

IR™], <[IR%],

for [Bll,, we have for 1 <i < M the eigen values of B are given by

1) when, i=1

k-1
}“:bll"'zblj

2
1

z

oi
Zi

—_—

£
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/1=1—2r—y—bl+blzﬁs1—2r—,u—bl+r£1—r—y—b1£1
4

Also, /”LZl—2|’—,u—bl—blzz—221—2r—,u—bl—rZ—l
4

A>-1 when1-3r—u—b >-1

3r32—y—bl:r:#
2) When 2<i<M-1
k-1

}“:bll""zbij_
.
J#

Z
]
:l—2r—y—bl+b21;—z+b23;—z
<1-2r—u—-b+r+r<l-u-b <1
A<1
Also, A21-2r—pu-b—-r—-r=21-4r—u—-b>-1

A>-1 when 1-4r—pu—b >-1

Ar<2—pu-b
rS—Z_ﬂ_bl
4

lAl<ifor2<i<M wherers#
3) when i=M

k-1 Zj

ﬂa = bMM + z blj —
it &
j=M

—1-2r— g —by +0+..+ 2r 2k
Zm

<1-2r—pu—b+2r<l—-pu—-b <1

1235
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A<1
Also, A =1-2r—p—b —2r>-1
A>-1 when 1-4r—pu—b >-1
Ar<2—pu-b
<2-ph

4

Therefore, for 1 <i < M we get

r

—-1<A<1

When rSmin{Z_’lé_bl,z_Z_bl|O£y£l;

Therefore  [Bll, = max [As|<1
1<i<M -1
= |Bl, <1

k-1 _
BR“+" (bj —bj,1 )R +B,R°
j=1

Hence, IRk, =

2

< ”B"2 ”Rk”2 +(b.l. _bz +b2 _bg +---+bk_1_bk)”Rk_j”2 +bk ”ROHZ
<(1-by +by —b, +b, —by +...+b,_; —b +b )[R,
<[r°[,

That is, result is true for k =n + 1, Hence by induction ”Rk ”2 < ||R0||2

Therefore, this shows that the scheme is stable when

r <min z_ﬂ_bl,z_ﬁ_blmsﬂﬂ.

4. CONVERGENCE

Theorem 4.1:

Let R¥ be the exact solution of the TFRDE and R* be the approximate solution of the TFRDE
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then R¥ converges to R as (h, 1) > (0, 0) when

rSmin{z_g_bl,z_Z_bﬂOs;zﬂ}

Proof: Let, R¥ =[R1k,R§,...,R,i\<,| ]T
R =[RERS, . Ry |
then EX = RX —R¥
let us assume that,
lef|= max |ek|=lEX], for1=12,..
1<isM -1
and T = max ‘Tik‘: h?o(z+h?)

kisM-1

for k=1, we have

let|=|rel, +(1—2r — u)e +rel|

< ‘reio_l‘ +(1-2r— y)‘eio‘ + ‘reioﬂ‘ + ‘Til‘

when, rSmin{z_g_bl,z_Z_bl|OSyﬁl}

ef] < rlef |+ (1—2r - p)le?]+ e + T
<(r+1-2r—p+r)ed|+ T
<[ef|+ T

This implies,

I, <lE°ll., +rfmY
=[E°ll, +rh%o(z+h?)

S”EOHOO +7°T(2—a) oz + hz)

That is, the result hold forn =1

For, n =k, we assume,

1237
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[EX]L, <lE°l, +kn?o(z+h?)

For,n=k + 1, we have,

k-1

|EfY < refs +(1—2r— =y )ef +refl; + " (b; —by,; )& +byef +[m|
i1

When r < min {Z_Z_bl,z_’:_bﬂog,uél}

el < rlef |+ (1-2r — i1~y )[ef |+ ref]
+(by =y +by +...+ b5 —by )|ek|+ by [ef |+ r[T]
<(r+1-2r—u—b +r+b —b +by )[ef|+r[T¥]
<[ef|+rr¥]
[E< ] <[, +rimk]
<[E°lL, +Kkrh?0 (7 +h?)+r[T¥]
<lel, +kr*T(2-a)o(z +h?)+z°T (2—-a)

e, <I€°L. +(k+De T (2-@)o(r +1?)

Therefore, we conclude that if we assume

then ”Ek”oo —0

as T — 0, h - 0 which result in the convergence of Rik to R(z, tk)

Hence the proof is complete.

5. NUMERICAL SOLUTION
In this section, we obtain the approximated solution of time fractional radon diffusion equation

with initial and boundary conditions. To obtain the numerical solution of the time fractional radon
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diffusion equation (TFRDE) by the finite difference scheme, it is important to use some analytical
model. Therefore, we present an example to demonstrate that TFRDE can be applied to simulate
behavior of a fractional diffusion equation by using Mathematica Software.

We consider the following, dimensionless time fractional radon diffusion equation with
suitable initial and boundary conditions,

a“R(zJ)_I)aZR(
ot” 0z

fi)—ﬂR(Lt)

O<z<L,0<a<1t=0
Initial conditions:  R(z,0)=0,0<z<L
Boundary conditions: R(0, t) =Ro, t >0

OR(L,t)

R(L,t)=0o0r =0,t>0

with the radon diffusion coefficient

D = 1.43 x 10° Bg/m>. The numerical solutions obtained at t = 0.05.
By considering the parameters L = 1.7278 cm

A=2.1x10%s" 1=0.05 k=4 m%’kg

P=0.5 g/cm?, Ro = 200 Bg/m’

R(0,t) =40 x 10>, =0.9, = 0.8

is simulated in the following figure.

Concentration(y) 1 Concentration(y) 1
0.00cosH
0.00005 \
0.00004
0.00004 \
0.00003
0.00003 \
| 0.00C02
0.00002 \
0.00000f—\ 0.00001. \
ok, . ; Ok, ——
0 0.25 0.5 075 1 1.25 1.8 178 0 0.23 0.5 0.79 1 1.23 1.3 1.73
— length(z) — length(x)
Figure 1: The approximate solution of Figure 2: The approximate solution of

radon diffusion equation a = 0.8 radon diffusion equation a = 0.9



1240
SUNIL DATTATRAYA SADEGAONKAR, RAJKUMAR NAMDEVRAO INGLE

6. CONCLUSION

We successfully developed fractional order explicit finite difference scheme for time fractional
radon diffusion equation. Furthermore, we discuss its stability and convergence of the scheme. As
an application of this method we obtain the numerical solution of text problems and its solutions

is simulated graphically by mathematical software Mathematica.
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