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Abstract. In this paper, we are dedicated to acquire, for the first time, an analytically continuous result of the

nonlinear Klein-Gordon equations (NKGE) with cubic nonlinearity via Adomian decomposition method (ADM)

using multivariate Taylor’s theorem. These class of equations are nonlinear partial differential equations with

initial or boundary conditions being hyperbolic or trigonometric functions. Thus leading to large solution series

on application of ADM during the invertible process in the integral equations. Which is often analysed at finite

discrete points. To overcome this, we extend the series solution by traditional ADM with the multivariate Taylor’s

theorem. The process resulted to a simple solution series that was easier to understand and analysed continuously

guaranteeing excellent convergence rate. We demonstrate our findings using four examples that were further

depicted pictorially using Maple symbolic software.
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1. INTRODUCTION

The NKGEs are partial differential equations that are of great applications in nonlinear optics,

solid state physics, quantum field theory and many more other field of applications. Its general

form is given as

(1) utt(~x, t)−αO2u(~x, t)+βu(~x, t)+N(u(~x, t)) = f (~x, t)

u(~x,0) = b0~x, ut(~x,0) = b1~x,

where u = u(~x, t) is the wave displacement, t is the time, O2u(~x, t) = u(~x, t)xx + u(~x, t)yy +

u(~x, t)zz and ~x = x+ y+ z. α , β ∈ R and N(u(~x, t)) is a given nonlinear force which comes in

several nonlinear forms that specifies the actual name of NKGE.

Recently, [16] applied Laplace transform and ADM on inhomogeneous NKGE of at most

quadratic nonlinearity to obtain analytically exact solutions; [9] adjusted the ADM to obtained

exact solutions to NKGE with quadratic nonlinearity where the main stream ADM gave approx-

imate results. [20] studied the Fuzzy fractional Klein-Gordon-Fock equation using variational

iteration, Adomian decomposition and new iteration methods in fluid mechanics. [24] presented

an auxiliary equation method on the nonlinear space-time fractional Klein-Gordon equation to

obtain analytically exact solution. [21] followed suit by modifying the iteration method to ob-

tain exact solutions to the linear and quadratic nonlinearity. [5] presented a multi-step modified

reduced differential transform method with strictly quadratic nonlinearity and Adomian poly-

nomials were applied on the examples considered to obtain approximate result. Similar studies

were undertaken using iterative scheme and group preserving scheme with method of lines by

[29] and [17] respectively.

Similar investigation has also been carried out in this class of equation. [26] presented a com-

posite numerical method base on finite difference scheme and fixed point iteration method on

coupled Klein-Gordon equations. Their findings resulted to approximate solutions with error

analysed. [22] presented the variational homotopy perturbation method and compare his numer-

ical result with those of the traditional ADM and variational iteration method. [27] adapted the

Galerkin method, logarithmic Sobolev inequality and compactness theorem to the NKGE with

logarithmic nonlinearity to obtain week solutions. [25] modified an existing iteration method to
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solve linear and NKGE of integer and fractional order. The study was based on manipulating the

source term into integral representation of the nonlinear term which yielded interesting result.

[7] presented a semi-analytical solution based on Jacobi-Gauss-Lobatto collocation method on

NKGE other than cubic nonlinearities. Tanh method has also been used by [13] while [14]

studied the recurrence and resonance on the NKGE with cubic nonlinearity. [8] investigated

the reliability of fully implicit finite difference method over exponential finite difference on a

single cubic nonlinearity problem; similar investigations was done on cubic and quadratic non-

linearity by [23]. [2] presented a numerical scheme to solve the time fractional NKGE using

Sinc-Chebyshev collocation method.

Several other reported studies include [32]; where the author presented the modified exp-

function method to seek a generalised solution on cubic nonlinearity problems. [4] studied

theoretically the Dirac and the Klein-Gordon oscillators in non-commutative space, with similar

studies using Hilbert space structures in conjunction with the Pseudo-Hermitian operators by

[1]. Some other sophisticated numerical approximate methods has also been deplored to obtain

results at discrete points from the defined domains. Some available in literature are ADM

reported by [6] and [12]; Homotopy perturbation method studied by [11] and [19]. B-Spline

Collocation method reported by [2] and [18]. Finite difference method studied by [28] and [30].

However, investigations on NKGE with cubic nonlinearity are quite scanty in existing liter-

atures and the existing studies has mostly resulted to approximate results analysed at discrete

point in the given domains. The goal of this paper is to extend the potentials of ADM by slight

extension on the solution series using the multivariate Taylor’s theorem. The solution procedure

in the models considered is to apply the adjustment made after applying ADM. The remaining

organisational structure of this paper will be by first stating the theoretical background of ADM

and its adjustment on how it can be implemented on the generalised NKGE and its models of

cubic nonlinearity. We then take examples to justify our findings and we conclude.

2. THEORY OF ADM AND THE PROPOSED EXTENSION

2.1. Theory of ADM. The ADM in [15] writes equation (1) using the linear operator L as

(2) L(u(~x, t)) = f (~x, t)+αO2u(~x, t)−βu(~x, t)−N(u(~x, t))
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Since the method is a constructive scheme, we assume that L−1 exist, resulting to the integral

equation

(3) u(~x, t) = φ +L−1 [ f (~x, t)+αO2u(~x, t)−βu(~x, t)−N(u(~x, t))
]

φ is a terms resulting from the initial or boundary conditions. Where the method dictate that we

write the solution of equation (1) as

(4) u(~x, t) =
∞

∑
n=0

un(~x, t)

with N(u(~x, t)) = ∑
∞
n=0 Anu(~x, t) and Anu(~x, t) are the Adomian polynomials which can be gen-

erated easily with

Anu(~x, t) =
1
n!

∂ n

∂λ n

[
f

(
∞

∑
k=0

uk(~x, t)λ k

)]
λ=0

n ∈
[
0∪Z+

]
λ is as a stabilising parameter. The An(~x, t) are functionally defined explicitly as

A0u(~x, t) = A(u0(~x, t)

A1u(~x, t) = A(u0(~x, t),u1(~x, t))

A2u(~x, t) = A(u0(~x, t),u1(~x, t),u2(~x, t))

A3u(~x, t) = A(u0(~x, t),u1(~x, t),u2(~x, t),u3(~x, t))

A4u(~x, t) = A(u0(~x, t),u1(~x, t),u2(~x, t),u3(~x, t),u4(~x, t))

A5u(~x, t) = A(u0(~x, t),u1(~x, t),u2(~x, t),u3(~x, t),u4(~x, t),u5(~x, t))

...

Anu(~x, t) = A(u0(~x, t),u1(~x, t),u2(~x, t), ...,un−2(~x, t),un−1(~x, t),un(~x, t))

See [10] and [9] for in-depth definition of hyperbolic N(u) and trigonometric N(u) respectively

and more in [11]. The components in equation (4) are determined recursively as

u0(~x, t) = φ +L−1 [ f (~x, t)]

un+1(~x, t) = L−1 [
αO2un(~x, t)−βun(~x, t)−An(un(~x, t))

]
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The term

(5) ϕq(~x, t) =
q

∑
n=0

un(~x, t)

converges to u(~x, t) as q→ ∞ and q ∈ Z+.

2.2. The Extension. From equation (5), ϕq(~x, t) is a series of partial sum. We assume that

ϕq(~x, t) has a continuous partial derivative up through order n+ 1, for a self specified order

in the neighbourhood of the point (x0,y0,z0, t0). We consider Oϕq(~x, t) : Rn −→ R. Where

Oϕq(~x, t) is the partial derivatives of ϕq(~x, t). This assumption is predicated on the existing

literatures on ADM for a one space-variable function reported in [9], that the series solution of

equation (1) is a Taylor series expansion about (~x0, t0).

In accordance with Taylor’s theorem, let ϕq(~x, t) = ϕq(~w) be finitely differentiable around

(x0,y0,z0, t0) = ~w0, then the theorem says that

(6) ϕq(~w+~w0) =
∞

∑
n=0

1
n!

Dn
ϕq(~w)

Where D = ~w0O and now O = ∂

∂x +
∂

∂y +
∂

∂ z +
∂

∂ t . Writing out equation (6) through quadratic

terms approximation more elaborately gives a second order Taylor expansion of ϕq(~w) about

~w0 of the form

(7) ϕq(~w)≈ ϕq(~w0)+(~w−~w0) �Oϕq(~w0)+
1
2!
(~w−~w0)

T Hϕq(~w0)(~w−~w0)

Where (~w− ~w0)
T is a matrix transpose of 4-dimensional row vector with component (~w−

~w0)
T = (x− x0,y− y0,z− z0, t− t0) and Hϕq(~w0) is a symmetric Hessian matrix given as

Hϕq(~w0) =



∂ 2ϕq(~w0)

∂x2
∂ 2ϕq(~w0)

∂x∂y
∂ 2ϕq(~w0)

∂x∂ z
∂ 2ϕq(~w0)

∂x∂ t
∂ 2ϕq(~w0)

∂y∂x
∂ 2ϕq(~w0)

∂y2
∂ 2ϕq(~w0)

∂y∂ z
∂ 2ϕq(~w0)

∂y∂ t
∂ 2ϕq(~w0)

∂ z∂x
∂ 2ϕq(~w0)

∂ z∂y
∂ 2ϕq(~w0)

∂ z2
∂ 2ϕq(~w0)

∂ z∂ t
∂ 2ϕq(~w0)

∂ t∂x
∂ 2ϕq(~w0)

∂ t∂y
∂ 2ϕq(~w0)

∂ t∂ z
∂ 2ϕq(~w0)

∂ t2


From the multivariate Taylor’s theorem, the n-th order Taylor polynomial Tnϕq(~w) of ϕq(~w)

about (~w0) closely approximate ϕq(~w) to the n-th degree near (~w0) in the sense that

(8) Tnϕq(~w0)≈ ϕq(~w0)
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and

lim
~w→~w0

ϕq(~w)−Tnϕq(~w)(√
~w2
)n = 0

Also, the exact solution u(~w) has

(9) Tnu(~w0)≈ u(~w0)

and

lim
~w→~w0

u(~w)−Tnu(~w)(√
~u2
)n = 0

Where ~w2 = x2 + y2 + z2 + t2 =~u2. Finally, we see that

Tnϕq(~w)u Tnu(~w)

Where the Tn of both functions are choices of approximating polynomials ranging from linear,

quadratic, cubic, quartic, quintic, to any order as desired by the investigator.

Theorem 1. If there exist ~w∈Rn with positive components, then Tnϕq(~w) is a unique analytical

solution of (1)

Proof. The proof can be found in [3] �

3. PRACTICAL NUMERICAL EXAMPLES

Example 1. Consider the one-dimensional NKGE with cubic nonlinearity reported in [23]

without a continuous closed form solution and also reported in [28].

(10) utt−uxx +u+u3 = 0

u(x,0) = A
[

1+ cos
(

2π

1.28
x
)]

,ut(x,0) = 0. Where x ∈ [0,1.28] , t > 0 and A ∈ [0.1,100] is the

amplitude. Following the exposition in equations (2) - (8) we have

ϕ5(x, t) = Aθ − 1
2
(
β

2 cosβx+Aθ +A3
θ

3) t2− 1
4
(A3

θβ
2 sin2

βx

− 1
2
(
A3

θ
2
β

2 cosβx+A3
θ

2(Aβ
2 cosβx+Aθ +A3

θ
3)
)

− 1
3

Aβ
2 cosβx− 1

6
(
Aθ +A3

θ
3 +Aβ

4 cosβx
)
)t4−·· ·
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FIGURE 1. Space-time graph of Example 1: A = 0.1

FIGURE 2. Space-time graph of Example 1: A = 1

with ϕ5(x, t) about (0,0) of quintic approximation, T5ϕ5(x, t) given as

T5ϕ5(x, t) = 2A− 1
2

Aβ
2x2 +

1
24

Aβ
4x4− 1

2
(
8A3 +Aβ

2 +2A
)

t2

+
1
4
(
12A3

β
2 +Aβ

4 +Aβ
2)x2t2

+
1

24

(
96A5 +24A3

β
2 +Aβ

4 +32A3 +2Aβ
2 +2A

)
t4 + · · ·

Where β =
2π

1.28
and θ = 1+ cosβx. See more results in figures 1, 2 and 3 at varying am-

plitudes. Where ϕ5xt(x, t) =
∂ 2

∂x∂ t
ϕ5(x, t) and we noticed that higher amplitudes are replica of

figure 3.

Example 2. Consider also the one-dimensional NKGE with cubic nonlinearity reported in [23]

and [18].

(11) utt−uxx +u+u3 = f (x, t)
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FIGURE 3. Space-time graph of Example 1: A = 10

FIGURE 4. Space-time graph of Example 2

u(x,0) = x2 coshx,ut(x,0) = x2 coshx. Where f (x, t) = (x2− 2)cosh(x+ t)− 4xsinh(x+ t)+

x6 cosh3(x+ t), x∈ [−1,1] and t > 0. The exact solution is u(x, t) = x2 cosh(x+ t). Nonethe-

less, following the exposition in equations (2) - (8) we have ϕ2(x, t) about (0,0) of septic ap-

proximation T7ϕ2(x, t), given as

T7ϕ2(x, t) = x2 +
1
2

x2t2 + x2t +
1
2

x4 +
1
4

x4t2 + · · ·

and that of the exact solution u(x, t) about (0,0) of the same approximation is given as

T7u(x, t) = x2 +
1
2

x2t2 + x3t ++
1
2

x4 +
1
4

x4t2 + · · ·

More results are further depicted in figures 4 and 5
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FIGURE 5. Space-time graph of Example 2

Example 3. Consider also the one-dimensional NKGE with cubic nonlinearity reported in [23]

and [6].

(12) utt−
5
2

uxx +u+
3
2

u3 = f (x, t)

u(x,0) = B tan(kx),ut(x,0) = Bck sec2(kx). Where f (x, t) = 0, B =
√

6
3 , k =

√
− 1

2c2−5
x ∈ [0,1] and t > 0. The exact solution is u(x, t) = B tan(k(x+ ct)). We also consider c = 1

2 ,
1

20

as studied by [23]. Nevertheless, following also the exposition in equations (2) - (8) we have

ϕ4(x, t) about (0,0) of septic approximation T7ϕ4(x, t) given as

T7ϕ4(x, t) = tBck+Bkx+
1
3

Bk3x3 + tBck3x2 +
2

15
Bk5x5 +

2
3

tBck5x4 + tBck3x2 + · · ·

and

T7u(x, t) = tBck+Bkx+
1
3

Bk3x3 + tBck3x2 +
2

15
Bk5x5 +

2
3

tBck5x4 + tBck3x2 + · · ·

The extended space-time graphs beyond what has already been studied in literature are as pre-

sented in figures 6, 7, 8 and 9 with c = 0.5 and c = 0.05.

Example 4. Consider also the one-dimensional NKGE with cubic nonlinearity reported in [12]

and [31].

(13) utt−uxx +
3
4

u− 3
2

u3 = 0

u(x,0) = −sechx,ut(x,0) = 1
2sechx tanhx, t > 0. The exact solution is u(x, t) = −sech(x+ 1

2t).

Nonetheless, following the exposition in equations (2) - (8) we have ϕ5(x, t) about (0,0) of



ANALYTICAL SOLUTION OF NKGE WITH CUBIC NONLINEARITY BY EXTENDED ADM 1579

FIGURE 6. Space-time graph of Example 3

FIGURE 7. Space-time graph of Example 3

FIGURE 8. Space-time graph of Example 3

nonic approximation T9ϕ5(x, t) given as

T9ϕ5(x, t) =−1+
1
3

tx+
1
2

x2 +
1
8

t2− 5
48

x3t− 5
384

t4− 5
16

x2t2− 5
24

x4− 5
12

tx3 + · · ·
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FIGURE 9. Space-time graph of Example 3

FIGURE 10. Space-time graph of Example 4

FIGURE 11. Space-time graph of Example 4

and that of the exact solution u(x, t) about (0,0) of the same approximation given as

T9u(x, t) =−1+
1
3

tx+
1
2

x2 +
1
8

t2− 5
48

x3t− 5
384

t4− 5
16

x2t2− 5
24

x4− 5
12

tx3 + · · ·

More results are further depicted in figures 10 and 11
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CONCLUSION

We have, in this study, been able to extend the series solution by ADM on the NKGE using

the multivariate Taylor’s theorem to get simple analytically continuous result. The extension

became necessary to obviate the troublesome proliferation of terms in an excessively large ex-

pression by the main stream ADM in the integral equation during the invertible process. Which

in exiting literatures are only analysed at discrete and finite number of points. Although, the

resulting outcome in this study did not come without alternating terms that cancelled out and/or

fused up in pairs during the computational process.
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