
Available online at http://scik.org

J. Math. Comput. Sci. 11 (2021), No. 2, 1312-1322

https://doi.org/10.28919/jmcs/5334

ISSN: 1927-5307

DECOMPOSITION OF GENERALIZED PETERSEN GRAPHS INTO CLAWS,
CYCLES AND PATHS

M. SUBBULAKSHMI1, I. VALLIAMMAL2,†,∗

1Department of Mathematics, G.V.N. College, Kovilpatti, Thoothukudi, Tamil Nadu-628502, India

2Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-12, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let G = (V,E) be a finite graph with n vertices. Let n and k be positive integers where n ≥ 3 and 1 ≤

k < n
2 . The Generalized Petersen Graph GP(n,k) is a graph with vertex set {u0,u1,u2, ...,un−1, v0,v1,v2, ...,vn−1}

and edge-set consisting of all edges of the form uiui+1,uivi and vivi+k where 0 ≤ i ≤ n− 1, the subscripts being

reduced modulo n. Obviously GP(n,k) is always a cubic graph and GP(5,2) is the well-known Petersen graph.

In this paper, we show that GP(n,1),n ≥ 3 can be decomposed into n copies of S3 if n is even and P4 and (n−1)

copies of S3 if n is odd. Also, we show that GP(n,2),n ≥ 5 can be decomposed into n
2 copies of S3, 2 copies

of C n
2

and n
2 copies of P2 if n is even and Cn, P4 ,

⌊ n
2

⌋
copies of S3 and

(⌊ n
2

⌋
−1
)

copies of P2 if n is odd.

GP(n,2),n≥ 5 and n = 3d,d = 2,3, ... can be decomposed into 2d copies of S3 and d copies of P4. GP(n,2),n≥ 5

and n = 4d,d = 2,3, ... can be decomposed into 3d copies of S3 and d copies of P4. GP(n,3),n ≥ 8 can be

decomposed into n copies of S3 if n is even and P6, P2 and (n−2) copies of S3 if n is odd.
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1. INTRODUCTION

The origin of graph decomposition is from the combinatorial problems most of which

emerged in the 19th century. The first one was the prize question for the year in the Lady’s and

Gentlemen’s Diary of 1844 stated by W.S.B.Woolhouse: Determine the number of combinations

that can be made out of n symbols, p symbols in each such that no combination of q symbols

which may appear in any one of them may appear in any other. When every q symbols appear

in exactly one of the p subsets, such a configuration is known as a Steiner system. When q = 2

and p = 3, the configuration is known as Steiner Triple system. In 1847, T.P.Kirkman settled

the existence question for the Steiner Triple system. It is equivalent to the decomposition of Kn

into triangles.

The other best problems are Kirkman’s problem of 15 strolling school girls, Dudeney prob-

lem of 9 handcuffed prisoners, Euler’s problem of 36 army officers, Kirkman’s problem of

knights, Lucas’ dance around problem and the four color problem. However, the earliest works

in the direction are not explicitly related to graph decompositions. The paper dealing directly

with graph decomposition appeared after the turn of the 19th century. Since then, the interest

in graph decomposition has been on increase and a real up surge is witnessed after 1950. Now

a days, graph decomposition rank among the most prominent areas of graph theory and combi-

natorics. Many types of decomposition have been well studied in the literature. There are lot of

applications of decomposition of graph which include group testings, DNA library screening,

scheduling problems, sharing scheme and synchronous optical networks.

All graphs considered here are finite and undirected, unless otherwise noted. For the stan-

dard graph-theoretic terminology the reader is referred to [8] and to study about the decompo-

sition of graphs into paths, stars and cycles is referred to [1], [2], [3] and [4].

As usual Cn denotes the cycle of length n, Pn+1 denotes the path of length n and S3 denotes

the claw.
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2. BASIC DEFINITIONS AND EXAMPLES OF GENERALIZED PETERSEN GRAPHS

In this section, we see some basic definitions of graph decomposition, Generalized Petersen

Graph and examples of Generalized Petersen Graph.

Let L = {H1,H2, ...,Hr} be a family of subgraphs of G. An L−decomposition of G is an

edge- disjoint decomposition of G into positive integer αi copies of Hi, where i ∈ {1,2, ...,r}.

Furthermore, if each Hi (i ∈ {1,2, ...,r}) is isomorphic to a graph H, we say that G has an

H−decomposition. It is easily seen that ∑
r
i=1 αi e(Hi) = e(G) is one of the obvious necessary

conditions for the existence of a {H1,H2, ...,Hr}− decomposition of G. For convenience, we

call the equation, ∑
r
i=1 αi e(Hi) = e(G), a necessary sum condition.

Let n and k be positive integers, n ≥ 3 and 1 ≤ k < n
2 . The Generalized Petersen Graph

GP(n,k) is a graph with vertex set {u0,u1,u2, ...,un−1,v0,v1,v2, ...,vn−1} and edge-set consist-

ing of all egdes of the form uiui+1,uivi and vivi+k where 0 ≤ i ≤ n− 1, the subscripts being

reduced modulo n.

Obviously GP(n,k) is always a cubic graph and GP(5,2) is the well-known Petersen graph.

Thus GP(5,2) is the Petersen graph and is represented in Figure 1(d).

Also GP(3,1), GP(4,1), GP(5,1) and G(10,4) are represented in Figure 1(a), Figure 1(b),

Figure 1(c) and Figure 1(e).

3. DECOMPOSITION OF GENERALIZED PETERSEN GRAPH GP(n,1) INTO CLAWS AND

PATH

In this section, we characterize the theorem of decomposition of Generalized Petersen Graph

GP(n,1) into claws and paths.

Theorem 3.1. GP(n,1),n ≥ 3 can be decomposed into n copies of S3 if n is even and P4 and

(n−1) copies of S3 if n is odd.
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FIGURE 1. Examples of Generalized Peterson Graphs

Proof. Let V (GP(n,1)) = {u0,u1, ...,un−1,v0,v1, ...,vn−1}

and E(GP(n,1)) =
{

e0,e1, ...,en−1,e
′
0,e

′
1, ...,e

′
n−1,e

′′
0,e

′′
1, ...,e

′′
n−1

}
where ei and e

′
i, 0 ≤ i ≤

n−1 are edges in outer and inner cycles and e
′′
i , 0≤ i≤ n−1 are intermediate edges in the two

cycles.

Case 1. If n is even. That is n = 2d,d = 2,3, ....

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, ...,2d− 2 and E j =

{
e
′
j,e
′′
j+1,e

′
j+1

}
where j =

1,3.5, ...,2d−1.
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Then each edge induced subgraph < Ei > and < E j > forms d disjoint claws. Therefore

GP(n,1) can be decomposed into d + d = 2d = n disjoint claws. Hence GP(n,1) can be de-

composed into n distinct claws.

Case 2. If n is odd. That is n = 2d−1,d = 2,3,4, ....

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, ...,2d− 4 and E j =

{
e
′
j,e
′′
j+1,e

′
j+1

}
where j =

1,3.5, ...,2d−3 and Ek =
{

e2d−2,e
′′
0,e

′
0

}
.

Then each edge induced subgraph < Ei > and < E j > forms d disjoint claws and the edge

induced subgraph < Ek > forms a path of length 4 (i.e, P4). Therefore GP(n,1) can be decom-

posed into d +d = 2d = n−1 disjoint claws and P4. Hence GP(n,1) can be decomposed into

n−1 disjoint claws and P4. �

Illustration: The above theorem can be explained through the following Figure 2.

FIGURE 2

The above two figures represents decomposition of GP(8,1) into 8 claws and decomposition

of GP(9,1) into 8 claws and a path P4 respectively.

All edges of the claws and path differentiated in the above Figure 2.
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4. DECOMPOSITION OF GENERALIZED PETERSEN GRAPH GP(n,2) INTO CLAWS AND

PATHS

In this section, we characterize the theorem of decomposition of Generalized Petersen Graph

GP(n,2) into claws, cycles and paths when n is a multiple of 2,3 and 4 respectively.

Theorem 4.1. GP(n,2),n ≥ 5 can be decomposed into n
2 copies of S3, 2 copies of Cn

2
and n

2

copies of P2 if n is even and Cn, P4 ,
⌊n

2

⌋
copies of S3 and

(⌊n
2

⌋
−1
)

copies of P2 if n is odd.

Proof. Let V (GP(n,1)) = {u0,u1, ...,un−1,v0,v1, ...,vn−1} and

E(GP(n,2)) = {uiui+1,uivi,vivi+2 / 0≤ i≤ n−1} with indices taken modulo n.

Now, E(GP(n,2)) =
{

e0,e1, ...,en−1,e
′
0,e

′
1, ...,e

′
n−1,e

′′
0,e

′′
1, ...,e

′′
n−1

}
where ei and e

′
i, 0 ≤ i ≤

n−1 are edges in outer and inner cycles and e
′′
i , 0≤ i≤ n−1 are intermediate edges in the two

cycles.

Case 1. If n is even. That is n = 2d, d = 3,4, ....

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, ...,2d−2, E j =

{
e
′
0,e

′
2,e

′
4, ...,e

′
2d−2

}
,

Ek =
{

e
′
1,e

′
3,e

′
5, ...,e

′
2d−1

}
and El =

{
e
′′
0,e

′′
2,e

′′
4, ...,e

′′
2d−2

}
.

Then, the edge induced subgraph < Ei > forms d = n
2 disjoint claws, each edge induced sub-

graph < E j > and < Ek > forms two disjoint cycles of length d = n
2 and the edge induced

subgraph < El > forms d = n
2 disjoint path of length one (i.e, P2). Hence GP(n,2) can be

decomposed into n
2S3,2Cn

2
and n

2P2.

Case 2. If n is odd. That is n = 2d−1, d = 3,4, ....

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, ...,2d−4 ,

E j =
{

e
′
0,e

′
2,e

′
4, ...,e

′
2d−2,e

′
1,e

′
3,e

′
5, ...,e

′
2d−3

}
, Ek =

{
e
′′
2d−2,e2d−2,e

′′
0

}
and

El =
{

e
′′
2,e

′′
4,e

′′
6, ...,e

′′
2d−4

}
.

Then, the edge induced subgraph < Ei > forms
⌊n

2

⌋
disjoint claws, the edge induced subgraph

< E j > forms a cycle of length n, the edge induced subgraph < Ek > forms a path of length

three (i.e, P4) and the edge induced subgraph < El > forms (
⌊n

2

⌋
− 1) disjoint path of length

one (i.e, P2). Hence GP(n,2) can be decomposed into
⌊n

2

⌋
claws, Cn,P4 and (

⌊n
2

⌋
−1)P2. �

Theorem 4.2. GP(n,2),n≥ 5 and n = 3d,d = 2,3, ... can be decomposed into 2d copies of S3

and d copies of P4.
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Proof. Let V (GP(n,1)) = {u0,u1, ...,un−1,v0,v1, ...,vn−1} and

E(GP(n,2)) = {uiui+1,uivi,vivi+2 / 0≤ i≤ n−1} with indices taken modulo n.

Now, E(GP(n,2)) =
{

e0,e1, ...,en−1,e
′
0,e

′
1, ...,e

′
n−1,e

′′
0,e

′′
1, ...,e

′′
n−1

}
where ei and e

′
i, 0 ≤ i ≤

n−1 are edges in outer and inner cycles and e
′′
i , 0≤ i≤ n−1 are intermediate edges in the two

cycles.

Given n≥ 5 and n = 3d, d = 2,3, ....

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i= 0,3,6, ...,3d−3 , E j =

{
e
′
j,e
′′
j+2,e

′
j+2

}
where j = 1,4,7, ...,3d−

2, and Ek =
{

ek,e
′′
k,e

′
k

}
where k = 2,5,8, ...,3d−1.

Then each edge induced subgraph < Ei > and < E j > forms d disjoint claws and the edge

induced subgraph < Ek > forms d disjoint paths of length 3 (i.e, P4). Hence GP(n,2),(n ≥

5,n = 3d) can be decomposed into 2d claws and dP4. �

Theorem 4.3. GP(n,2),n≥ 5 and n = 4d,d = 2,3, ... can be decomposed into 3d copies of S3

and d copies of P4.

Proof. Let V (GP(n,1)) = {u0,u1, ...,un−1,v0,v1, ...,vn−1} and

E(GP(n,2)) = {uiui+1,uivi,vivi+2 / 0≤ i≤ n−1} with indices taken modulo n.

Now, E(GP(n,2)) =
{

e0,e1, ...,en−1,e
′
0,e

′
1, ...,e

′
n−1,e

′′
0,e

′′
1, ...,e

′′
n−1

}
where ei and e

′
i, 0 ≤ i ≤

n−1 are edges in outer and inner cycles and e
′′
i , 0≤ i≤ n−1 are intermediate edges in the two

cycles.

Given n≥ 5 and n = 4d, d = 2,3, ....

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i= 0,4,8, ...,4d−4 , E j =

{
e
′
j,e
′′
j+2,e

′
j+2

}
where j = 1,4,7, ...,3d−

2, and Ek =
{

e
′′
k−1,ek−1,ek

}
where k = 3,7, ...,4d−1.

Then, the edge induced subgraph < Ei > forms d disjoint claws, the edge induced subgraph

< E j > forms 2d disjoint claws and the edge induced subgraph < Ek > forms d disjoint path

of length three (i.e, P4). Hence GP(n,2),(n≥ 5,n = 4d) can be decomposed into 3d claws and

dP4. �
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5. DECOMPOSITION OF GENERALIZED PETERSEN GRAPH GP(n,3) INTO CLAWS AND

PATHS

In this section, we characterize the theorem of decomposition of Generalized Petersen Graph

GP(n,3) into claws and paths.

Theorem 5.1. GP(n,3),n≥ 8 can be decomposed into n copies of S3 if n is even and P6, P2 and

(n−2) copies of S3 if n is odd.

Proof. Let V (GP(n,1)) = {u0,u1, ...,un−1,v0,v1, ...,vn−1} and

E(GP(n,2)) = {uiui+1,uivi,vivi+3 / 0≤ i≤ n−1} with indices taken modulo n.

Now, E(GP(n,2)) =
{

e0,e1, ...,en−1,e
′
0,e

′
1, ...,e

′
n−1,e

′′
0,e

′′
1, ...,e

′′
n−1

}
where ei and e

′
i, 0 ≤ i ≤

n−1 are edges in outer and inner cycles and e
′′
i , 0≤ i≤ n−1 are intermediate edges in the two

cycles.

Case 1. If n is even and n≥ 8.

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, ...,n−2 ,

and E j =
{

e
′
j,e
′′
j+3,e

′
j+3

}
where j = 1,3,5, ...,n−1.

Then each edge induced subgraph < Ei > and < E j > forms n
2 disjoint claws. Hence

GP(n,3),n≥ 8 can be decomposed into nS3 if n is even.

Case 2. If n is odd and n≥ 8.

Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, ...,n− 3, E j =

{
e
′
j,e
′′
j+3,e

′
j+3

}
∪
{

e
′
n−1,e

′′
2,e2

}
where j = 1,3,5, ...,n−6, Ek =

{
e
′
n−4,e

′′
n−1,en−1,e

′′
0,e

′
0

}
and El =

{
e
′
n−2

}
.

Then, the edge induced subgraph <Ei > forms
⌊n

2

⌋
disjoint claws, the edge induced subgraph

< E j > forms
⌊n

2

⌋
−1 disjoint claws, the edge induced subgraph < Ek > forms a path of length

five (i.e, P6) and the edge induced subgraph < El > forms a path of length one (i.e, P2). Hence

GP(n,3),n≥ 8 can be decomposed into and (n−2) disjoint claws, P6 and P2 if n is odd. �

Illustration: The above theorem can be explained through the following Figure 3.

All edges of the claws and path differentiated in Figure 3.

Remark 5.2. This construction does not work with GP(7,3).

GP(7,3) can be decomposed into 5S3,C5 and P2.
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FIGURE 3

The above two figures represents decomposition of GP(8,3) into 8 claws and decomposition

of GP(9,1) into 7 claws, a path P6 and a path P2 respectively.

Proof. Let Ei =
{

ei,e
′′
i+1,ei+1

}
where i = 0,2,4, E j =

{
e
′
j,e
′′
j+3,e

′
j+3

}
∪
{

e
′
n−1,e

′′
2,e2

}
where

j = 1, Ek =
{

e
′
n−4,e

′′
n−1,en−1,e

′′
0,e

′
0

}
and El =

{
e
′
n−2

}
.

Then the edge induced subgraph < Ei > forms
⌊n

2

⌋
= 3 disjoint claws, the edge induced

subgraph < E j > forms
⌊n

2

⌋
−1 = 2 disjoint claws, the edge induced subgraph < Ek > forms a

cycle of length five (i.e, C5) and the edge induced subgraph < El > forms a path of length one

(i.e, P2). Hence GP(7,3) can be decomposed into 5S3,C5 and P2.

�

Illustration: The above remark-5.2 can be explained through the following Figure 4.
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FIGURE 4. GP(9,3)

The above figure represents decomposition of GP(7,3) into 5 claws, a cycle C5 and a path P2

respectively.

All edges of the claws, cycle and path differentiated in the above Figure 4.
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