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function and using this weak contraction, we prove common fixed point theorems for compatible mappings and its
variants.
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1. INTRODUCTION AND PRELIMINARIES

The Banach Contraction Principle is popularly known as the Banach fixed point theorem
which states that every contraction map on a complete metric space has a unique fixed point, i.e.,
Let (X, d) be a complete metric space. Let T:X — X be a map satisfying d(T(x),T(y)) <
k(d(x,}/))’O <k< 1, for all x,y € X. Then T has a unique fixed point. This principle is

widely used as a basic tool in solving existence problems in pure and applied sciences that
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include various areas such as numerical analysis, approximation theory, game theory, economics,
physics, chemistry and computer science etc. It plays a very crucial role in nonlinear analysis.
There has been significant interest of researchers to generalize this result for a pair/pairs of
mappings satisfying various types of contractive/contraction conditions in various abstract metric
spaces. Moreover, this fixed point can be explicitly obtained as a limit of repeated iteration of the
mapping, initiating at any point of the underlying space. Obviously, every contraction is a
continuous function but not conversely. Many mathematicians proved several fixed point
theorems to explore some new contraction-type mappings in order to generalize the classical
Banach Contraction Principle.

In 1969, Boyd and Wong [1] replaced the constant k in Banach contractive condition by
an upper semi-continuous function as follows:

Let (X,d) be a complete metric space and iy : [0,©) — [0,00) be upper semi
continuous from the right such that 0 < y(t) <t for al t>0 . If T: X -
X satisfies d(T'(x),T(y)) < y(d(x,y))for all x,y € X, then it has a unique fixed point x €
X and {T™x} converges to x forall x € X.

Fixed point theorems basically involve sufficient conditions for the existence of fixed
points. Therefore, the central concerns in fixed point theory are to find a minimal set of sufficient
conditions which ensures the guarantee of fixed points or common fixed points. It was a turning
point in the fixed point theory literature when the notion of commutativity mappings was used by
Jungck [2] to obtain a common fixed point theorem for a pair of mappings.

A common fixed point result generally involves conditions on commutativity, continuity,
and contraction along with a suitable condition on the containment of range of one mapping into
the range of the other. One is always required to improve one or more of these conditions in
order to prove a new common fixed point theorem.

The first ever attempt to relax the commutativity of mappings to a smaller subset of the
domain of mappings was initiated by Sessa [11] who in 1982 gave the notion of weak

commutativity. One can notice that the notion of weak commutativity is a point property, while
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the notion of compatibility is an iterate of sequence. Two self mappings f and g of a metric space
(X, d) are said to be weakly commuting if d(fgx,gfx) < d(gx, fx) forall x in X.

In 1986, Jungck [3] introduced the notion of compatible mappings as follows:
Definition 1.1. Two self maps f and g of a metric space (X, d) are called compatible

if limd(fgx,,gfx,) =0 , whenever {x,} is a sequence in X such that lim fx, =
n—oo

n—oo

lim gx, =t forsomet € X.
n—->oo

In 1993, Jungck et al. [5] introduced the concept of compatible mappings of type (A) as
follows:
Definition 1.2. Two self mappings f and g on a metric space (X, d) are called compatible of type
(A)if
lim d(ffx,,9fx,) =0and lim d(ggx,,fgx,) =0,
n—->oo n—->oo
whenever {x,} is a sequence in X such thatlim fx, = lim gx, =t forsomet € X.
In 1995, Pathak and Khan [7] introduced the notion of compatible mappings of type (B) as
follows:

Definition 1.3. Two self mappings f and g on a metric space (X, d) are called compatible of
type (B) if
lim d( £ g%, 99%:) < 5 [ Im d( £, 1) + lim d(ft, ff,)]
and
1
lim d(gfxn 99%) < 5| limd(gfxp gt) + limd( g, ggx,)]
whenever {x,} is a sequence in X such that rlgg fx, = r{ljrgo gx, = tforsomet e X.

In 1998, Pathak et al. [9] introduced the notion of compatible mappings of type (C) as
follows:

Definition 1.4. Two self mappings f and g on a metric space (X, d) are called compatible of

type (C) if

1
lim d(£ g%, 9g%a) < 5 |limd(fgsa, 6) + imd(ft, ffx,) + lim d(ft, gg,)]
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and

lim d(gf % ff5) <5 [1im (g5 g8) + limd(gt, gg,) + limd(gt, 1)
whenever {x,} is a sequence in X such that rlll_r)rolo fx, = &1_{?0 gx, = tforsomet e X.
In 1995, Pathak et al. [8] introduced the notion of compatible mappings of type (P) as
follows:
Definition 1.5. Two self mappings f and g on a metric space (X, d) are called compatible of
type (P) if
lim d(ffxn, g9%n) =0,
whenever {x,} is a sequence in X such that I{l_r){)lo fxp, = I{l_r)lgo gx, = tforsomete X,

Now we highlight the properties of compatible mappings and its variants.
Proposition 1.6. [3] Let S and T be compatible mappings of a metric space (X, d) into itself. If
St = Tt for some t € X, then STt = SSt = TTt = TSt.
Proposition 1.7. [3] Let S and T be compatible mappings of a metric space (X, d) into itself.

Suppose that lim Sx,, = lim Tx, =t for some t € X. Then
n—->oo n—-oo
(i) lim TSx, = St if Sis continuous at t.
n—->oo
(if) lim STx,, = Tt if T is continuous at t.
n—-oo
(iii) STt = TSt and St = Tt if Sand T are continuous at t.
Proposition 1.8. [5] Let S and T be compatible mappings of type (A) of a metric space (X, d)
into itself. If one of Sand T is continuous, then S and T are compatible.
Proposition 1.9.[7] Let S and T be compatible mappings of type (B) of a metric space (X, d)
into itself. If St = Tt for some t € X,then STt = SSt = TTt = TSt.
Proposition 1.10. [7] Let S and T be compatible mappings of type (B) of a metric space (X, d)
into itself. Suppose that lim Sx, = lim Tx,, = t for some t € X. Then
n—-oo n—»,oo
(1) lim TTx, = St if S is continuous at t;
n—»oo

(i) lim S$Sx, = Tt if T is continuous at t;
n—oo
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(iii) STt = TSt and St = Tt if S and T are continuous at t.
Remark 1.11. In Proposition 1.9, if one assumes that S and T be compatible mappings of type
(C) or of type (P) instead of type (B), the conclusion of the Proposition 1.9 remains true.
Remark 1.12. In Proposition 1.10, if one assumes that S and T be compatible mappings of type
(C) or of type (P) instead of type (B), the conclusion of the proposition 1.10 remains true.
Let (X, d) be a metric space. A self map T on X is said to be weak contraction if for each
X, Y € X, there exists a function ¢: [0, ) — [0, ) such that
d(Tx, Ty) < d(x, y) — &(d(x, y)) with ¢(t) > 0 and ¢(0) = 0.
In this paper, we introduce a new weak contraction that involves cubic terms of distance
function:
Let f, g, S and T be four mappings of a complete metric space (X, d) into itself satisfying the
following condition:
(C1D) d*(fx, gy) < p max{[d*(Sx, fx)d(Ty, gy) + d(Sx, fx)d*(Ty, gy)1/2,
d(Sx, fx)d(Sx, gy)d(Ty, fx),d(Sx, gy)d(Ty, fx)d(Ty, gy)}
—¢(m(Sx, Ty)),
for all x,y € X, where
m(Sx, Ty) = max {d*(Sx,Ty), d(Sx, fx)d(Ty, gy),d(Sx, gy)d(Ty, fx),
[d(Sx, fx)d(Sx, gy) + d(Ty, fx)d(Ty, gy)1/2}
and p is a real number satisfying 0 < p < 1. Further, ¢:[0,) — [0, ) is a continuous function

with ¢(t) =0 ifft = 0and ¢(t) > 0 for each t > 0.

2. FIXED POINTS FOR COMPATIBLE MAPPINGS AND ITS VARIANTS

First we prove the following theorem for compatible mappings.

Theorem 2.1. Let f, g, S and T be four mappings of a complete metric space (X, d) into itself
satisfying (C1) and the following:

(€2) f(X) e T(X), g(X) = S(X)

(€C3) One of f,g,S and T is continuous.



X 1927
FIXED POINTS FOR WEAK CONTRACTION

Assume that the pairs (f, S) and (g, T) are compatible, then f, g, S and T have a unique
common fixed point in X.
Proof. Let x, € X be an arbitrary point and using (€2), we can find f(x,) = T(x;) = y,, for
this x; we can find x, € X such that g(x;) = S(x;) = y,. Proceeding in this fashion, we can
construct a sequence {y,,} in X such that
Yan = f(X2n) = T(X2n41), Y2n+1 = 9(Xzns1) = S(Xzns2) for eachn = 0. (2.1)
Let B2 = d(Van, Yane1)- First, we prove that {$,,} is non increasing sequence and converges to
zero.
Case I: If nis even, on putting x = x,, and y = x,,,4+1 in (C1), we get
d*(fXzn, 9X2ns1) < p max{[d*(Sxzn, fx20)A(TX2n41, GX2n+1)
+d(Sxom, fX20)d* (TX2n 41, GX2n+1)1/2,
d(Sxan, f2%20)d(Sx2n, gXon+1)d(TX2n41, [X2n),
d(Sxan, 9Xan+1)d(TX2n41, [X20) A(TX 2041, GX2n+1)}
—(,‘b(m(szn, Tx2n+1)),
where
M(SXon, TXope1) = Max {d*(Sxzn, TXone1), A(SXon, fX20)d(TX2n41, GXane1),
d(Sxzn, 9Xan+1)d(T X211, fX2n),
[d(Sxan, fx2n)A(SX2n, gXo2ns1) + A(Txons1, fX20)A(TX2n41, GX2n41)1/2}-
Using (2.1), we have
d* (Vo Yon+1) < 0 max{[d* YVon-1, Y2n)dVan Yon+1)
+d(V2n-1,Y2n) 4> W2n, Yon+1)1/2,
d(Van-1,Y2n)d(V2n-1, Y2n+1)dYVan Y2n),
d(Vzn-1,Y2n+1)4Van Y2r) A(V2n Yans1)}
_¢(m(J’2n—1:J’2n)); (2.2)
where
MYz2n-1,¥2n) = max {d* Wan-1,Y2n), dWan-1,Y2n)dYV2n, Yan+1),
d(V2n-1,Y2n+1)2Y2n Y2n),
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[d(Von-1,Y2r)AVon—1, Yon+1) + AWan Y2r) AYan, Yan+1)1/2}-

On using By, = d(Van, Vans1) 1IN (2.2), we get
B3n < p max {[B3_1Ban + Ban—1B31/2,0,0} = (M(Yan-1, ¥2n))
where m(yzn_1, ¥2n) = max {B3n_1, Ban-1P2n 0, [Ban-1dVan—1, Y2ns+1) + 01/2}.
By using triangular inequality and property of ¢, we get
d(Yzn-1Y2n+1) < dWan-1,Y2n) + dV2n Yan+1) = Ban-1+ Ban

and m(Yzn—1,Y2n) < max {.Bzzn—p Ban-1P2n, 0, [Ban—1(Ban-1 + B2n)1/2}.
If Bop—1 < Ban, then (2.3) reduces to

B3, < pPi, — ¢(B2,), which is a contradiction, since 0< p < 1.

Hence By, < Bon—-1-

In a similar way, if n is odd, then we can obtain f,,.1 < San-
It follows that the sequence {f,,} is decreasing.

Let lim B,, = r, for some r = 0.
n—oo

Suppose r > 0; then from inequality (C1), we have
d°(fXn, GXans1) < p max{[d?(Sxzn, fx2n)d(TXon11, 9X2n41)
+d(Sxan, fX2n)A*(TX2n41, 9X2n+1)1/2,
d(Sx2n, fx20)d(SXx2n, 9X2n+1)A(T X201, fX2n),
d(Sx2n, 9%2n+1)d(TXon41, fX2n)d(T X041, 9X2n+1)}
—qb(m(SxZn, Tx2n+1))'
where
M (8%, TXant1) = max {d?(Sxan, TXan41), A(SXon, fX2n)A(TX2n11, G¥2ns1),

d(Sx2n, 9Xon+1)A(T X241, fX2n),

[d(stnr fon)d(SxZn' gx2n+1) + d(Tx2n+1' fon)d(Tx2n+1' gx2n+1)]/2}-

(2.3)

Now by using (2.1), triangular inequality and property of ¢ and proceed limit asn — oo, we get

r3<pr3—¢@?) <prd,ie,p>1,

which is a contradiction, therefore, we get r = 0. Thus
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7{1_{{)10 Bon = 7111_{?0 d(Yzn Yon-1) =17 =0.
Now we show that {y,,} is a Cauchy sequence.
If possible, let {y,} is not a Cauchy sequence. Then there exist € > 0, for which we can find two
sequences of positive integers {m(k)} and {n(k)} such that for all positive integers k with
n(k) > m(k) = k, we have
d(Ym(r) Yn()) 2 €,

Further corresponding to m(k), we can choose n(k) in such a way that it is the smallest positive
integer with n(k) > m(k) and satisfying d(¥mu), Ynx)) = €, We have

A(Vim(ky Yn()-1) < €
Now, € < d(Ym@iy Ynt)) < d(Ymey Yno-1) + AdWniio-1 Yno)-
Letting k — oo, we get %er}od(ym(k),yn(k)) =€
Now from the triangular inequality, we have,
|d (Ym0, Ym@+1) = AVma0, Yuo)| < AV Ymoo+1).
Taking limits as k — oo we have
Illlglod(Yn(k)'Ym(k)+1) = €.
Again, using triangular inequality, we have
|d(Vimay Yo +1) = AYmao Ynwo)| S d(Wnaoy Ynao+1)-
Proceeding limits as k — oo we get
Illlglod(Ym(k)'Yn(k)+1) = €.
Similarly, we have
|d(Vimaoy+1 Yno+1) = AVmaer Ynio)| < d(Vmey Ymao+1) + d(Wniey Ynao+1)-
Taking limit as k — oo in the above inequality, we have
]li_)rgd(yn(k)+IJYm(k)+1) = €.
On putting x = Xy aNd ¥ = Xy in (C1), we get

&3 (f Xm(icy GXnciy) < P Max{[d?(Sximcicy, fXmi)) (T Xnicy GXniy)
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+d(Sxmo, fXm) A (T X0, 9%nie)1/2,
d(S%me), f2Xm10) A (SXmaiy 9% d(Txnoy fXmi) )
d(S%m i), 9%n (i) A (T iy, Fme)) A (T iy GXnie))}
—¢ (m(Sxmm Txn(k)))'
where
M(SxXm(i), Tnry) = Max {d*(Sxmeiy, Tniy)» A(SXmiy £ Xm0 ) AT Xnhys G%nic) )
d(Sxmaiy 9% 00 )A(TXn gy, fXmi )

[d(SXmaey, fXmaa)) A(SXmiy I¥n)) + A(Txn o), £ Xmaue) ) AT Xniy, 9%n)) /23

1.e.,
& Vmay Ynwy) < p max {{d*(Ym-1 Ym) )dVnto-1 Ynw)
+d(Ym@o-1, Ym0 ) 8% (Yngoy-1, Yn (i )1/2
d(Yim()-1 Ym(o))d(Ymio-1, Yn00)d(Vnw-1, Ymao )
d(Ym(-1Yn0)d(Vn0o-1, Ym) (Voo -1, Ynoo )}
=@ (M (Sxm@icy, Txn (i),
where

M(SXimeiy Txngry) = Max {d? (Ymgo -1, Yno-1) d(Vmao-1, Ym0 )V -1, Ynwo),
d(Yim()-1 Yn0) (V0o -1, Yma ).
[d(Vim@-1. Ym0 )d(Ymao -1, Yn0) + d(Vnw-1 Ym0 )d(Vnw-1, Ynw) /23

Letting k — oo, we get
€3 < pmax {% [0+ 0], 0,0} — ¢(e?)
= —¢(e?), a contradiction.
Thus {y, } is a Cauchy sequence in X. Since (X, d) is a complete metric space, {y,} converges to
a point z as n — oo. Consequently, the subsequences {fx,,}, {Sx2n}, {9X2n+1}

and {Tx,,41} oOf the sequence {y,} also converges to z.
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Now suppose that S is continuous. Then {SSx,,}, {Sfx,,} converges to Sz as n — .
Since (f,S) are compatible on X, it follows from Proposition 1.7 that {fSx,,} converges to Sz
asn — oo.

We claim that z = Sz. For this put x = Sx,, and y = x,,,, in condition (C1), we have
d®(fSxan, 9X2n+1) < p Max {[d*(SSxzn, fSX2n)A(TXpn11, GX2n+1)
+d (SSxon, [Sx20)d* (TXon11, 9X2n41)1/2,
d(SS5x2n, fSx2n)A(SSX2n, 9X2n41)A(TXxon11, fSX20),
d(SS5x2n, 9Xan+1)A(T X201, fSX2n) A(TXzn11, 9X2n11)}
—p(M(SSx2n, Tx2n41)),

where
M(SSxyn, TXons1) = Max {d?(SSx2n, TXon41), A(SSXom, [SX2n)A(TX2n41, GXons1),
d(8S5%2n, 9%an+1)A(TXzn41, fSx2n),
[d(SSxan, fSx2n)A(SSX2n, GX2n+1) + A(Txon11, fSXon)A(TX2n 41, GX2n+1)1/2}.
Letting n — oo, we get
d3(Sz,z) < p max {[d*(Sz,52)d(z, z) + d(5z,5z)d*(z,2)]/2,
d(Sz,52)d(Sz,z)d(z,5z2),d(Sz,2z)d(z,Sz)d(z,z)}
—(,b(m(Sz, Z)),
where
m(Sz,z) = max {d?*(Sz,z),d(Sz,52)d(z,z),d(Sz,z)d(z,Sz),
[d(Sz,52)d(Sz,z) + d(z,5z)d(z,2)]/2}
= d?(Sz,z).
Hence, we have
d3(Sz,z) < p max{0,0,0} — ¢(d?(Sz, 2)).
Thus, we get d(Sz,z) = 0 and hence Sz = z.
Next, we will show that fz = z. For thisput x =z and y = x5, in (C1),
d*>(f2, 9xzn+1) < p max {[d*(Sz, f2)d(Txzn+1, GX2n+1)
+d(Sz, f2)d*(Txzn41, 9X2n+1)1/2,
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d(Sz, f2)d(5z, gxon+1)A(TX2n41, f2),
d(Sz, gxon+1)d(Tx2p41, f2)A(TX 2041, 9X2n+1)}
—p(M(Sz, Txzn41)),

where
m(Sz, Txypy1) = max{d?(Sz, Txyn4+1),d(Sz, f2)d(TX2mi1, 9X2ns1),
d(5z, gxan+1)d(Txon41, f2),
[d(Sz, f2)d(Sz, gxn+1) + d(Txan+1, f2)A(Txop41, 9Xo2n+1)1/2}
Letting n — oo, we have

[d%(Sz, fz)d(z,z) + d(Sz, fz)d?(z,2)]/2,
d3(fz,z) < pmax d(Sz, fz)d(Sz,z)d(z, fz),
d(Sz,z)d(z, fz)d(z, z)

—qb(m(SZ, Z)),
where
m(Sz,z) = max {d?(Sz,z),d(Sz, fz)d(z,z),d(Sz,z)d(z, fz),
[d(Sz,fz)d(Sz,z) + d(z,fz)d(z,2)]/2} = 0.

Hence, we get

d3(fz,z) < pmax {[0 + 0]/2,0,0} — ¢(0).
Thus, we get, d3(fz,z) = 0. This implies that fz = z. Since f(X) c T(X) and hence there
exists pointu € X suchthat z = fz = Tu.
We claim that z = gu. For this, we put x =z and y = u in (C1), we get

[d%(Sz, fz)d(Tu, gu) + d(Sz, fz)d?*(Tu, gu)]/2,
d3(fz, gu) < p max d(Sz, fz)d(Sz, gu)d(Tu, fz),
d(Sz, gu)d(Tu, fz)d(Tu, gu)

—qb(m(Sz, Tu)),
where
d?(Sz, Tu),d(Sz, fz)d(Tu, gu),
m(Sz,Tu) = max d(Sz, gu)d(Tu, fz),
[d(Sz, fz)d(Sz, gu) + d(Tu, fz)d(Tu, gu)]/2

= max {d?(z,z),d(z,z)d(z, gu),d(z, gu)d(z, z),
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[d(z,z)d(z, gu) + d(z,z)d(z, gu)]/2} = 0.
Hence, we have

[d%(z,2)d(z, gu) + d(z,2z)d?(z, gu)]/2,
d(z,z)d(z,gu)d(z, z),d(z,gu)d(z, z)d(z, gu)

which implies that d3(z, gu) = 0 and hence z = gu. Since (g, T) is compatible in X and Tu =

d3(z,gu) <p max{ } — ¢(0),

gu = z, by proposition 1.6, we have Tgu = gTu and hence Tz = Tgu = gTu = gz. Also, from
(C1) we have
d3(z,Tz) = d*(fz,9z) < p max {[d*(Sz, fz)d(Tz,gz) + d(Sz, fz)d*(Tz,gz)]/2
d(Sz,fz)d(Sz,9z)d(Tz, fz),d(Sz,gz)d(Tz, fz)d(Tz, gz)}
—p(m(Sz, Tz),
where
m(Sz,Tz) = max {d?(Sz,Tz),d(Sz, fz)d(Tz, gz),d(Sz,gz)d(Tz, fz),
[d(Sz, fz)d(Sz,gz) + d(Tz, fz)d(Tz, gz)]/2}
= d?(z,Tz).
Hence, we get
d3(z,Tz) < p max {[0 + 0]/2,0,0} — $(d?(z,Tz)),
which implies that z = Tz. Hence, z =Tz = gz = Sz = fz. Therefore, z is a common fixed
point of f,g,S and T.
Similarly, we can also complete the proof when T is continuous.
Next suppose that f is continuous. Then {ffx,,}and {fSx,,} converges to fz asn — .
Since the mappings f and S are compatible on X, it follows from Proposition 1.7 that {Sfx,}
convergesto fzasn — .
Now we claim that z = fz. For this we put x = fx,, and y = x,,,1 in (C1), we get
d>(f fx2n, 9%X2n+1)

< p max {[d*(Sfxzn, f*2n)d(TXan+1, GX2n+1)

+ d(Sfxn, ffX2n)d* (TX2n41, 9Xon+1)1/2,

d(Sfxan, ff220)A(Sf Xon, GX2n41)A(TX2n41, [ 2X20),
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d(SfXom, 9%an+1)A(T Xm0, f [ X20) A(TX2n41, 9Xom+1)}
—p(m(Sfx2m Txzn11),
where
M(Sfxzn, Txon41) = max {d?(Sfxan, Tx2n+1), A(SfX2n, ffX2n)A(TX2n41, GXon 1),
d(Sfxan, 9%on+1)d(Tx2p41, fX20),
[A(Sfxan ffX2n)d(Sf X2n, gX2n41)
+d(Tx2n41, ffx20)A(TX2041, GX2n41)1/2}
Letting n — oo, we get
d*>(fz,2z) < p max {[0 + 0]/2,0,0} — ¢p(m(fz, 2)),
where m(fz, z) = d*(fz, z).
This implies d(fz,z) < —¢(d?(fz, 2)).
Thus, we get d(fz, z) = 0, which implies that fz = z. Since f(X) c T(X), there exists a point
vEXsuchthatz = fz =Tv.
We claim that z = gv. For this, we put x = fx,,and y = v in (C1), we get
d>(ffxzn, gv)
< p max {[d*(Sfxzn, ffx20)d(TV, gv)
+ d(Sfxan, ffx2n)d?*(Tv, gv)]/2,
d(Sfxzn, [ fx2n)A(Sf X0, gv)A(TV, f f230),
d(Sfxzn, gv)A(Tv, ffX0)d(Tv, gv)}
~p(M(Sfxzn, TV)),
where
M(Sfxon, TV) = max {d*(Sfxyn, TV), d(SfXon, ffX2n)d(Tv, gv),
d(Sfxan, gv)A(TV, ffX2n),
[d(SfXan, fX2n)A(Sf X2n, gv) + d(TV, ffx2,)d(Tv, gv)]/2}.
Letting n — oo, we get
d3(z,gv) < pmax {[d?(z,2z)d(z, gv) + d(z,2)d?*(z, gv)]/2,

d(Z, Z)d(Z, gU)d(Z, Z)' d(Z, gv)d(z, Z)d(Z, gv)} - d)(m(z, T'U)),
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where
m(z, Tv) = max {d?*(z,z),d(z, z)d(z, gv),d(z, gv)d(z, z),
d(z,2z)d(z,gv) + d(z,2z)d(z,gv)]/2} = 0.

which implies that d3(z, gv) = 0 and hence z = gv. Since (g, T) is compatible on X and Tv =
gv = z, by proposition 1.6, we have Tgv = gTv and hence Tz = Tgv = gTv = gz.
We claim that z = gz. For this we put x = x,, andy =z in (C1).
d*(fxan, 92) < p max {[d*(Sxzn, fx20)d(TZ, g2) + d(Sxzn, fX2n)d* (T2, 92)]/2,

d(Sxan, fX20)A(SXx2n, 92)d(TZ, f X2n),

d(Sxzn, 92)A(Tz, fx2,,)d(Tz, g2)}

—p(Mm(Sxyn, T2)),
where

m(Sx,p, Tz) = max {d?(Sxyy, TZ), d(Sxpy, fX2,)d(Tz, g2),

d(Sxzn, 92)d(Tz, fx2n),

[d(Sx2n, fX2n)d(SX2n, 92) + d(Tz, fX2,)d(Tz, g2)]/2}.
Letting n — oo, we get

d3(z,9z) < p max {[0 + 0]/2,0,0} — ¢p(m(z, gz)).
where m(z, Tz) = d?(z, gz).
This implies d3(z, gz) < —¢(d?*(z, gz)).
This gives z = gz. Since g(X) c S(X), there exists a point w € X such that z = gz = Sw.
We claim that z = fw. For this, we put x =wand y =z in (C1), we get
d3(fw, gz) < p max {[d*(Sw, fw)d(Tz, gz) + d(Sw, fw)d?*(Tz, gz)]/2,
d(Sw, fw)d(Sw, gz)d(Tz, fw),d(Sw, gz)d(Tz, fw)d(Tz, gz)}
—¢(m(sw,T2)),
where
m(Sw, Tz) = max {d?(Sw, Tz),d(Sw, fw)d(Tz, gz),d(Sw, gz)d(Tz, fw),
[d(Sw, fw)d(Sw, gz) + d(Tz, fw)d(Tz gz)]/2}
= max {d?(z,z),d(z, fw)d(z,z),d(z, z)d(z, fw),
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[d(z, fw)d(z,z) + d(z, fw)d(z,2)]/2}
=0.
Hence we have,
d3(fw,z) < p max {[d?(z, fw)d(z, z) + d(z, fw)d?(z,2)]/2,
d(z, fw)d(z,z)d(z, fw),d(z,z)d(z, fw)d(z,z)} — ¢(0).
which implies that fw = z. Since (f,S) is compatible on X, fw = Sw = z, by Proposition 1.6,
we have fSw =Sfw and hence Sz=Sfw=fSw=fz. That is, z=Sz=fz=Tz = gz.
Therefore, z is a fixed pointof f,g,Sand T.
Similarly, we can complete the proof when g is continuous.
Finally, in order to prove uniqueness, suppose that z and w (z # w) are two common fixed
points of f,g,Sand T.
Putx=zandy=w in (Cl), we have
d3(z,w) = d3(fz, gw) < pmax{0,0,0} — ¢p(m(Sz, Tw))
= —¢(d?(z,w)).
Thus, we have d(z,w) = 0 and hence z = w. Therefore, f,g,S and T have a unique common
fixed point in X. This completes the proof.
Now we give the following theorem for compatible mappings of type (A).
Theorem 2.2. Let f, g,S and T be four mappings of a complete metric space (X, d) into itself
satisfying the conditions (C1)-(C3).
Assume that the pairs (f, S) and (g, T) are compatible of type (A), then f,g,S and T have a
unique common fixed point in X.
Proof. Suppose that S is continuous on X. Since f and S are compatible of type (A). From
Proposition 1.8, f and S are compatible and so the result easily follows from Theorem 2.1.
Similarly, if T is continuous and the pair (g, T) is compatible of type (A), then g and T are
compatible and so the result easily follows from Theorem 2.1.

Also, we can get the same results when f or g is continuous. This completes the proof.
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Next, we prove the following result for a weak contractive mapping satisfying a
compatibility of type (B).
Theorem 2.3. Let f, g, S and T be four mappings of a complete metric space (X, d) into itself
satisfying the conditions (C1)-(C3). Assume that the pairs (f, S) and (g, T) are compatible of
type (B). Then f, g, S and T have a unique common fixed point in X.
Proof. Let x, € X be an arbitrary point and using (€2) we can find f(x,) = T(x;) = y,, for this
x, we can find x, € X such that g(x,) = S(x,) = y;. Proceeding in this way, we can construct a
sequence {y,,} such that
Yan = [ (x2n) = T(X2n41), Yant1 = 9(Xzns1) = S(xzn42) for eachn = 0.
From the proof of Theorem 2.1, {y,,} is a Cauchy sequence in X. Since (X, d) is a complete metric
space, {y,,} converges to a point z as n — oo. Consequently, the subsequences {fx,,}, {Sx2,},
{9x21+1} and {Tx,, .1} also converge to the same point z.
Now suppose that f is continuous. Then {ffx,,} and {fSx,,} converges to fz as n — o. Since
the mappings f and S are compatible of type (B), it follows from the Proposition 1.10 that
{SSx,,} convergesto fz as n — oo.
Now we claim that z = fz. For this put X = Sx,,, and y = x,,,; in (C1), we get
d*(fSxzn, 9Xan+1)
< p max {[d*(SSxzn, fSx20)d(TX2n+1, 9X2n+1)
+ d(SSxpm, fSx20)d* (TXon11, 9X2n+1)1/2,
d(SS5x2n, [SX2n)A(SSX2n, 9X2n11)A(Txan41, fSXx2n),
A (SSxzn, 9X2n+1)Ad(TX2n11, fSX2n)A(TX2n 41, GX2n41)}
—¢(m(SSxzn, TXzn41)),
where
M(SSxan, TXone1) = max {d?(SSxzp, TXon11), A(SSxon, fSXn)A(TX2n41, 9Xons1),
A (SSx2n, 9Xon+1)A(TXon 41, fSX2n),
[d(SSx2n, [Sx20)A(SSX2n, 9Xon+1)
+d(Tx2n41, fS%2n)A(TX2n41, 9X2n+1)1/2}-
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Letting n — oo, we get
d3(fz,2) < p max {[d*(fz, f2)d(z,2) + d(fz, f2)d*(z,2)]/2,
d(fz,fz)d(fz,2)d(z, f2),d(fz,2)d(z, fz)d(z,2)} — p(m(fz 2)).
where
m(fz,z) = max {d*(fz,2),d(fz f2)d(z,2),d(fz,2)d(z, f2),
[d(fz, f2)d(fz,2) + d(z, f2)d(z,2)]/2} = d*(fz, 2).
Hence, we get
d3(fz,z) < pmax{[0+ 0]/2,0,0} — p(d*(fz, 2)).
Thus, we get d(fz, z) = 0, which implies that fz = z. Since f(X) c T(X), there exists a point
u € Xsuchthatz=fz="Tu.
We claim that z = gu. For this, we put X = Sx,,, andy = u in (C1), we get
d3(fSxan, gu) < p max {[d?(SSxp, fSx20)d(Tu, gu)
+d(5Sx2n, fSX2n)d?*(Tu, gu)]/2,
d(SSxn, [Sx20)A(SSx2p, gu)d(Tu, fSx,y),
d(SSx,p, gu)d(Tu, fSx,,)d(Tu, gu)}
~(m(SSxzn, TW)),
where
M(SSxzn, TU) = max {d2(SSxp, TW), d(SSxan, fSxzn)d(Tu, gu),
d(8Sx5,, gu)d(Tu, fSxy,), [A(SSx2p, fSX20)A(SSXy,, gU)
+d(Tu, fSx,,)d(Tu, gu)]/2}.
Letting n — oo, we get
d3(fz, gu) = d3(z, gu) < p max {[d?*(z,z)d(z, gu) + d(z,z)d?*(z, gu)]/2,
d(z,2)d(z, gu)d(z,2),d(z, gu)d(z, z)d(z, gu)} — $(m(z, Tw)),
where
m(z, Tu) = max {d?(z, z),d(z,z)d(z, gu),d(z, gu)d(z, z),
[d(z,z)d(z, gu) + d(z,z)d(z,gu)]/2} = 0.

Hence, we get
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d3(z,gu) < p max {[0 + 0]/2,0,0} — ¢(0).
This implies that d3(z, gu) = 0 and hence z = gu = fz. Since the pair (g, T) is compatible of
type (B) and gu = Tu = z, by Proposition 1.9, we have Tg u = gTu and hence Tz =Tgu =
gTu = gz.
Now we claim that z = gz. For this we putx = x,, andy =z in (C1)
d*(fxzn, 92) < p max {[d*(Sxzn, fX20)d (T2, g2)
+d(Sxzp, fX2)d*(Tz, g2)]/2,
d(Sxan, fx20)d(SX2n, 92)d(TzZ, fX2n),
d(Sxan, 92)Ad(Tz, fx21,)d(Tz, g2)}
—p(Mm(Sxyn, T2)),
where
M(Sxzpn, Tz) = max {d?(Sxyp, T2), d(Sxyp, fX2,)d(Tz, g2),
d(Sxan, 92)A(TZ, fX20), [d(Sxon, fX20)A(SX2n, 92)
+d(Tz, fx,,)d(Tz,gz)]/2}.
Letting n — oo, we get
d3(z,9z) < p max {[0 + 0]/2,0,0} — $(d?(z, gz)).
This implies that gz = z. Since g(X) < S(X) and hence there exists a point v € X such that z =
gz = Sv.
We claim that z = fv. For thiswe putx=vandy =z in (C1) we get
d3(fv,gz) < p max {[d*(Sv, fv)d(Tz, gz) + d(Sv, fv)d*(Tz, gz)]/2,
d(Sv, fv)d(Sv,gz)d(Tz, fv),d(Sv,gz)d(Tz, fv)d(Tz gz)}
—¢(m(5'v, Tz)),
where
m(Sv,Tz) = max {d?(Sv,Tz),d(Sv, fv)d(Tz, gz),d(Sv, gz)d(Tz, fv),
[d(Sv, fv)d(Sv,gz) + d(Tz, fv)d(Tz gz)]/2}
=max {d?(z,2),d(z, fv)d(z,z),d(z z)d(z, fv),
[d(z, fv)d(z,z) + d(z, fv)d(zz)]/2} = 0.
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Hence, we get
d3(fv,z) < pmax {[d*(z, fv)d(z z) + d(z, fv)d?*(z,2)]/2,
d(z, fv)d(z, z)d(z, fv),d(z, 2z)d(z, fv)d(z, 2z)} — $(0).
This implies that d(fv,z) = 0 and hence fv = z. Since the pair (f, S) is compatible of type
(B) and fv = Sv = z, by Proposition 1.9, we have fz = Sfv = fSv = Sz. Hencez = Sz =
fz =Tz = gz. Therefore, z is a common fixed point of f, g, Sand T.

Now suppose that S is continuous. Then {SSx,,} and {Sfx,,} converges to Sz as n — .
Since the mappings f and S are compatible of type (B), it follows from the Proposition 1.10
that {f fx,,} converges to Sz as n — oo.

Now we prove that z = Sz. For this we put x = fx,, and y = x5,,4in (C1) we get
d*(ffX2n, 9X2n+1)
< p max {[d*(Sfxzn, ff*2n)d(TX2n 41, GX2n+1)
+ d(Sfxon, ffx20)d* (TXon11, GX2n+1)1/2,
d(Sfxan, ffx20)A(Sf X2n, 9X2n41)A(TX2p11, fF2X20),
d(Sfxan, 9%2n+1)A(TX2n41, ff220) A(T X241, GX2n41)}
_(l’(m(SfXZn: Tx2n+1))'
where
M(SfXn, Txone1) = Max {d*(Sfxon, TXon41), A(SfXon, fFX2n)A(T X241, GXons1),
d(Sfxzn 9Xan+1)A(Txon 41, [ [X20),
[d(Sfxan, ffx2n)d(Sf X2n, GX2n+1)
+d(Tx2n11, f220)d(T X211, 9X2n4+1)1/2}

Letting n — oo, we get
d3(Sz,z) < p max {[d%(Sz,Sz)d(z,z) + d(Sz,52)d?(z,2)] /2,
d(Sz,S2)d(Sz,z)d(z,Sz),d(Sz,z)d(z,Sz)d(z, 2)}
—p(m(5z,2)),
where

m(Sz,z) = max {d?(Sz,z),d(Sz Sz)d(z, z),d(Sz,z)d(z, Sz),
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[d(Sz,52)d(Sz,z) + d(z,52z)d(z,2)]/2} = d*(Sz, z).
Hence, we get
d3(Sz,z) < pmax{[0 + 0]/2,0,0} — ¢(d?*(Sz, z)).
Thus, we get d(Sz,z) = 0, which implies that Sz = z.

Next we claim that fz = z. For this put x =z and y = x,,,4in (C1) and taking n — oo,

we get
d3(fz,z) < p max {[d?(Sz, f2z)d(z,z) + d(Sz, f2)d*(z,2)]/2,
d(Sz, fz)d(Sz,2)d(z, fz),d(Sz,z)d(z, fz)d(z, z)}
—¢(m(sz,2)),
where

m(Sz,z) = max {d*(Sz,z),d(Sz, fz)d(z,z),d(Sz,z)d(z, [2),
[d(Sz, fz)d(Sz,z) + d(z,fz)d(z,2)]/2} = 0.
Hence, we get
d3(fz,z) < p max {[0 + 0]/2,0,0} — ¢(0).
Thus d(fz,z) = 0. This implies that fz = z. Since f(X) c T(X) and hence there exists a point w
€ Xsuchthatz = fz =Tw.
We claim that z = gw. For thiswe put x =z and y =w in (C1) we get
d*(fz,gw) < p max {[d*(Sz, f2)d(Tw, gw) + d(Sz, fz)d*(Tw, gw)]/2,
d(Sz, fz)d(Sz, gw)d(Tw, fz),d(Sz, gw)d(Tw, fz)d(Tw, gw)}
—¢(m(Sz, Tw)),
where
m(Sz, Tw) = max {d*(Sz,Tw),d(Sz, fz)d(Tw, gw),d(Sz, gw)d(Tw, fz),
[d(Sz, fz)d(Sz, gw) + d(Tw, fz)d(Tw, gw)]/2}
= max {d*(z, 2),d(z,z)d(z, gw),d(z, gw)d(z, z),
[d(z,2)d(z, gw) + d(z,2)d(z,gw)]/2} = 0.

Hence, we get
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d3(z, gw) < p max {[d?(z,z)d(z, gw) + d(z,2)d?*(z, gw)]/2,
d(z,2)d(z, gw)d(z, z),d(z, gw)d(z, z)d(z, gw)} — ¢(0),
which implies that d3(z, gw) = 0 and hence z = gw. Since the pair (g, T) is compatible of type
(B) and Tw = gw = z, by Proposition 1.9, we have Tgw = gTw and hence Tz = Tgw =
gTw = gz.Also, from condition (C1) we have
d3(fz,gz) < pmax {[d*(Sz, fz)d(Tz,gz) + d(Sz, fz)d*(Tz, gz)]/2,
d(Sz,fz)d(Sz,9z)d(Tz, fz),d(Sz,gz)d(Tz, fz)d(Tz gz)}
—qb(m(SZ, Tz)),
where
m(Sz,Tz) = max {d?(Sz,Tz),d(Sz, fz)d(Tz, gz),d(Sz,gz)d(Tz, fz),
[d(Sz, fz)d(Sz,gz) + d(Tz, fz)d(Tz, gz)]/2}
= d?(z,gz)
Hence, we get
d3(z,gz) < p max {[0 + 0]/2,0,0} — ¢(d?(z, gz)).
This implies that z = gz. Hence, z =Tz = gz = Sz = fz. Therefore, z is a common fixed
pointof f, g,S.
Similarly, we can also complete the proof when T or g is continuous.
Finally, in order to prove uniqueness, suppose that z and w (z # w) are two common fixed
points of f, g, Sand T.
Putx=zandy=win (C1).
d3(z,w) = d3(fz,gw) < pmax{0,0,0} — p(m(Sz, Tw)).
= —¢(d*(z,w)).
Thus, we have d(z,w) = 0 and hence z = w. Therefore f, g, S and T have a unique common
fixed point in X. This completes the proof.
Next we give the following theorem for compatible mappings of type (C).
Theorem 2.4. Let f, g, S and T be four mappings of a complete metric space (X, d) into itself

satisfying the conditions (C1)-(C3). Assume that the pairs (f,S) and (g, T) are compatible of
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type (C). Then f, g, S and T have a unique common fixed point in X.

Proof. From the proof of Theorem 2.1, {y,} is a Cauchy sequence in X. Since (X, d) is a
complete metric space, {y,} converges to a point z as n — oo. Consequently, the subsequences
{fx2n}, {Sx2n}, {gx2n41} and {Tx,,,1} also converge to the same point z.

Now suppose that f is continuous. Then {ffx2on} and {fSx2n} convergesto fzas n — oo,
Since the mappings f and S are compatible of type (C), it follows from Remark 1.12 that
{SSx,,} convergesto fz as n — .

Now we claim that z = fz. For this we put X = Sx,, and y = x,,,,1n (C1) we get
d*(fSxan, 9Xan+1)
< p max {[d*(S5%zn, fS¥2n) (T X2n11, 9¥2n+1)
+ d(8Sx2n, fSx0)d* (TX2n41, GX2n+1)1/2,
A (SSxzm, fSx2n)A(SSX2n, gX2n41)A(TXzn 41, fSX20),
d(SS5x2n, 9%an+1)A(TX2n 41, fSX2n) A(TX2n11, GX2n+1)}
_d)(m(sstn' Tx2n+1)):
where
M(SSxp, Txon41) = Max {d2(SSxpn, TXon41), A(SSxm, fSX2n)A(TXon 41, GX2m41))
d(SSxzn, 9Xan+1)d(TX2n11, fSx2n),
[d(SSx2n, [Sx20)A(SSX2n, 9Xan+1)
+d(Txzn41, fSX2n)d(T X241, GX2n+1)1/2}-
Letting n — oo, we get
d*(fz,z) < p max {[d*(fz,f2)d(z z) + d(fz fz)d*(z,2)]/2,
d(fz fz)d(fz 2z)d(z, fz),d(fz,2)d(z, fz)d(z,2)} — p(m(fz, 2)).
where
m(fz,z) = max {d*(fz,z),d(fz fz)d(z,z),d(fz z)d(z fz),
[d(fz f2)d(fz 2) + d(z, f2)d(z,2)]/2} = d*(fz, 2).
Hence, we get

d3(fz,z) < pmax {[0+ 0]/2,0,0} — ¢p(d*(fz, z)).



1944
RAJESH KUMAR, SANJAY KUMAR

Thus, we get d(fz,z) = 0, which implies that fz = z. Since f(X) c T(X), there exists a point
u € Xsuchthatz=fz="Tu.
We claim that z = gu. For this, we put X = Sx,,, and y = u in (C1), we get
d3(fSxyp, gu) < p max {[d?(SSxzy, fSxzn)d(Tu, gu)
+d(SSx3p, fSx2n)d*(Tu, gu)]/2,
d(S5Sxon, fSx2,)A(SSx0,, gu)d(Tu, fSx,,),
d(SSxzm, gu)d(Tu, fSx7n)d(Tu, gu)}
—p(m(SSx3,, TW)),
where
m(SSx,,, Tw) = max {d?(SSxy,, Tw), d(SSxyy, fSx27,)d(Tu, gu),
d(5Sx2p, guw)d(Tu, fSx5,), [A(SSxop, fSX2n)A(SSX5y,, gu)
+d(Tu, fSx,,)d(Tu, gu)]/2}.
Letting n — oo, we get
d3(fz, gu) = d3(z, gu) < p max {[d?(z,2z)d(z, gu) + d(z,2z)d*(z, gu)]/2,
d(z,z)d(z, gu)d(z,z),d(z, gu)d(z, z)d(z, gu)} — $p(m(z,Tw)),
where
m(z, Tu) = max {d?(z, z),d(z,z)d(z, gu),d(z, gu)d(z, z),
d(z,2z)d(z,gu) + d(z,z)d(z, gu)]/2} = 0.
Hence, we get
d3(z,gu) < p max {[0 + 0]/2,0,0} — ¢(0).
This implies that z = gu = fz. Since the pair (g, T) is compatible of type (C) and Tu = gu = z,
by remark 1.11, we have Tgu = gTu and hence Tz = Tgu = gTu = gz.
Next, we claim that gz = z. For this we put x = x,, andy =z in (C1)
d*(fxzn, 92) < p max {[d*(Sxzn, fX20)d(T2, g2)
+d(Sxom, fX20)d*(Tz, g2)1/2,
d(Sxzn, fX2n)d(Sx2n, 92)d(Tz, fx20),
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d(Sxz2n, 92)d(Tz, f x2,)d(Tz, g2)}
—¢(m($x2n,Tz)),
where
m(Sxyp,, Tz) = max {d?(Sxyp, T2), d(Sxpp, fX20,)d(Tz, g2),
d(Sxan, 92)A(T2, f X20), [A(Sxan, fx20)A(SX2n, 92)
+d(Tz, fx,,)d(Tz, g2z)]/2}.
Letting n — oo, we get
d3(z,9z) < p max {[0 + 0]/2,0,0} — ¢(d?(z, g2)).
This implies that gz = z. Since g(X) < S(X) and hence there exists a point v € X such that z =
gz = Sv.
We claim that z = fv. For thiswe putx =vandy =z in (C1) we get
d3(fv,gz) < p max {[d?(Sv, fv)d(Tz gz) + d(Sv, fv)d*(Tz gz)]/2,
d(Sv, fv)d(Sv,gz)d(Tz, fv),d(Sv,gz)d(Tz, fv)d(Tz gz)}
—qb(m(Sv, Tz)),
where
m(Sv,Tz) = max {d*(Sv,Tz),d(Sv, fv)d(Tz, gz),d(Sv, gz)d(Tz, fv),
[d(Sv, fv)d(Sv,gz) + d(Tz, fv)d(Tz gz)]/2}.
=max {d?(z,z),d(z, fv)d(gz, gz),d(z, z)d(z, fv),
[d(z, fv)d(z,z) + d(z, fv)d(gz gz)]/2} = 0.
Hence, we get
d3(fv,z) < pmax {[d?(z, fv)d(z z) + d(z, fv)d?*(z,2)]/2,
d(z, fv)d(z,z)d(z, fv),d(z,2)d(z, fv)d(z,2)} — ¢(0),
which implies that d3(fv,z) = 0 and hence fv = z. Since the pair (f,S) is compatible of
type (C) and fv = Sv =z, by Remark 1.11 that fz = Sfv = fSv = Sz. Hence z = Sz =

fz =Tz = gz. Therefore, z is a common fixed point of f,g,Sand T.
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Now suppose that S is continuous. Then {SSx,,, } and {Sfx,,} converges to Sz as h — .
Since the mappings f and S are compatible of type (C), it follows from the Remark 1.12 that
{ffx,,} converges to Sz as n — .
Now we prove that z = Sz. For this we put x = fx,,, andy = x5, in (C1) we get
d*(ffX2n, 9X2n+1)
< p max {[d*(SfXzn, ff*2n)d(TX2n 41, GX2n+1)
+ d(Sfxan, ff2X2n)d* (TXon 41, GXo2n11)1/2,
d(Sfxan, ffx20)A(Sf X2n, 9X2n41)A(TX2p11, [ F2X20),
d(Sfxan, 9%2n+1)A(TX2n41, ff220) A(T X241, GX2n41)}
—qb(m(Sfon, Tx2n+1)),
where
M(Sfxan Txzns1) = Max {d*(Sfxzn, TX2n41), ASf Xon, fFX2n)d(TX2n11, 9Xon+1),
d(Sfxzn 9xan+1)A(Txon41, f[X20),
[d(Sfxon, ffx2n)d(Sf X2n, 9X2n+1)
+d(Tx2n41, f220)d(T X211, 9X2n4+1)1/2}
Letting n — oo, we get
d3(Sz,z) < p max {[d?(Sz,Sz)d(z, z) + d(Sz,Sz)d*(z,2)]/2,
d(Sz,5z)d(Sz,z)d(z,5z),d(Sz,2z)d(z,5z)d(z,2)}
—¢(m(Sz,2)),
where
m(Sz,z) = max {d?*(Sz,z),d(Sz,5z)d(z,z),d(Sz,z)d(z,S5z),
[d(Sz,Sz)d(Sz,z) + d(z,52)d(z,2)]/2} = d*(Sz, z).
Hence, we get
d3(Sz,z) < pmax {[0 + 0]/2,0,0} — ¢(d?(Sz, z)).
Thus, we get d(Sz, z) = 0, which implies that Sz = z.
Next, we claim that fz = z.

For thisput x =z and y = x,,4+11in (C1) and taking n — oo, we get



where

Hence, we get

X 1947
FIXED POINTS FOR WEAK CONTRACTION

d3(fz,z) < pmax {[d*(Sz, fz)d(z,z) + d(Sz, fz)d?*(z,2)]/2,
d(Sz,fz)d(Sz,2)d(z, [z),d(Sz,z)d(z, fz)d(z, z)}
—¢(m(Sz, Z)).

m(Sz,z) = max {d?*(Sz,z),d(Sz, fz)d(z,z),d(Sz,z)d(z, fz),
[d(Sz, fz)d(Sz,z) + d(z,fz)d(z,2)]/2} = 0.

d*(fz,z) < pmax {[0 + 0]/2,0,0} — ¢(0).

Thus d3(fz,z) = 0. This implies that £z = z. Since f(X) c T(X) and hence there exists a point w

€ Xsuchthatz=fz=Tw.

We claim that z = gw.

For thiswe putx =z and y =w in (C1) we get

where

Hence, we get

d3(fz, gw) < p max {[d*(Sz, fz)d(Tw, gw) + d(Sz, fz)d*(Tw, gw)]/2,
d(Sz, fz)d(Sz, gw)d(Tw, fz),d(Sz,gw)d(Tw, fz)d(Tw, gw)}

—qb(m(Sz, TW)),

m(Sz, Tw) = max {d?(Sz,Tw),d(Sz, fz)d(Tw, gw),d(Sz, gw)d(Tw, [ z),
[d(Sz, fz)d(Sz,gw) + d(Tw, fz)d(Tw, gw)]/2}
= max {d?(z,z),d(z, z)d(z, gw),d(z, gw)d(z, 2),
[d(z,z)d(z, gw) + d(z,2z)d(z, gw)]/2} = 0.

d3(z, gw) < p max {[d?(z,z)d(z, gw) + d(z,z)d?*(z, gw)]/2,
d(z,z)d(z,gw)d(z,z),d(z,gw)d(z,z)d(z, gw)} — ¢(0).

which implies that d3(z, gw) = 0 and hence z = gw. Since the pair (g, T) is compatible of type

(C) and Tw = gw = z, by Remark 1.11, we have Tgw = gTw and hence Tz = Tgw = gTw =

gz.Also, from condition (C1) we have,
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d3(fz,gz) < pmax {[d*(Sz, fz)d(Tz,gz) + d(Sz, fz)d*(Tz, gz)]/2,
d(Sz,fz)d(Sz,gz)d(Tz,fz),d(Sz,gz)d(Tz, fz)d(Tz, gz)}
—qb(m(Sz, TZ)),
where
m(Sz,Tz) = max {d*(Sz,Tz),d(Sz, fz)d(Tz, gz),d(Sz,gz)d(Tz, [ z),
[d(Sz, fz)d(Sz,gz) +d(Tz fz)d(Tz gz)]/2}
= d?(z,gz)
Hence, we get
d3(z,9z) < p max {[0 + 0]/2,0,0} — ¢ (d?(z, g2)).
This implies that z = gz. Hence, z = Tz = gz = Sz = fz. Therefore, z is a common fixed point
of f,g,Sand T.
Similarly, we can also complete the proof when g or T is continuous.
Uniqueness follows easily. This completes the proof.
Finally, we give the following theorem for compatible mappings of type (P).
Theorem 2.5. Let f, g, S and T be four mappings of a complete metric space (X, d) into itself
satisfying the conditions (C1)-(C3). Assume that the pairs (f,S) and (g, T) are compatible of
type (P). Then f, g, S and T have a unique common fixed point in X.
Proof. From the proof of Theorem 2.1, {y,} is a Cauchy sequence in X. Since (X, d) is a
complete metric space, {y,,} converges to a point z as n — co. Consequently, the subsequences
{fxon}, {Sx2n} {gx2n+1} and {Tx,, 1} also converge to the same point z.

Now suppose that f is continuous. Then {f fx,,} and {fSx,,} convergesto fz as n — oo.
Since the mappings f and S are compatible of type (P), it follows from Remark 1.12 that
{SSx,,} convergesto fz asn — oo.

Now we claim that z = fz.

For this put x = Sx,,, and y = x,,,+1in (C1) we get
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d°(fSxzn, 9%2n+1)
< p max{[d*(SSxzn, fSx20)d(TX2n 41, GX2n+1)
+ d(SSxan, fSXan)d* (TXon+1, GXan+1)1/2,
d(SSx2n, [SX20)A(SSXan, 9Xan+1)A(TX2n 41, fSX2n),
d(SS%2n, 9%an+1)A(Txon11, fSXon)A(T X201 41, GXon+1)}
—¢(m(SSx2n, Tx2n+1)),
where
M(SSxpn, Txyns1) = Max {d?(SSxpn, Txon41), A(SSXon, fSX2n)A(TX 241, 9X2ms1),
d(SSx2n, 9%an+1)A(TX2n11, fSX2n),
[d(SSx2n, fSX20)A(SSX2n, GXon+1)
+d(Txan+1, fSX2n)A(TX2p41, 9Xon+1)1/2}-
Letting n — oo, we get
d3(fz,z) < pmax {[d?(fz fz)d(z,z) + d(fz fz)d?*(z,2)]/2,
d(fz fz)d(fz,2)d(z, fz),d(fz,2)d(z fz)d(z,2)} — p(m(fz 2)).
where
m(fz,z) = max {d*(fz z),d(fz fz)d(z, z),d(fzz)d(z, [z),
[d(fz, f2)d(fz 2) + d(z,f2)d(z,2)]/2} = d*(fz,2).
Hence, we get
d3(fz,z) < pmax{[0+ 0]/2,0,0} — ¢p(d*(fz 2)).
Thus we get d(fz, z) = 0, which implies that fz = z. Since f(X) c T(X), there exists a point
u € Xsuchthatz=fz="Tu.
We claim that z = gu. For this, we put X = Sx,, andy = u in (C1), we get
d3(fSxyn, gu) < p max {[d?(SSxyp, fSxyn)d(Tu, gu)
+d(SSxyp, fSx2n)d?(Tu, gu)]/2,

A(SSx2p, fSx2,)A(SSx2,, gu)d(Tu, fSx,y,),
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d(SSxzm, gu)d(Tu, fSx;n)d(Tu, gu)}
—¢(m(SSx2n, Tu)),
where
m(SSxy,, Tw) = max {d?(SSxy,, Tw), d(SSxyy, fSx27,)d(Tu, gu),
d(SSx2m, gWA(Tu, fSx2n), [A(SSxan, fSX2n)A(SSx2p, gu)
+d(Tu, fSx,,)d(Tu, gu)]/2}.
Letting n — oo, we get
d3(z, gu) < p max {[d?(z,2z)d(z, gu) + d(z,z)d*(z, gu)]/2,
d(z,z)d(z, gu)d(z,z),d(z, gu)d(z,z)d(z, gu)} — p(m(z, Tw)),
where
m(z, Tu) = max {d?(z, z),d(z,z)d(z, gu),d(z, gu)d(z, z),
[d(z,2z)d(z,gu) + d(z,z)d(z, gu)]/2} = 0.
Hence, we get
d3(z, gu) < p max {[0 + 0]/2,0,0} — ¢(0).
This implies that z = gu = fz. Since the pair g, T is compatible of type (P) and gu = Tu =z, by
remark 1.11, we have Tgu = gTu and hence Tz = Tgu = gTu = gz.
Now we claim that gz = z.
For this we put x = x,, andy =z in (C1)
d*(fxan, 92) < p max {[d*(Sxzn, fx20)d (T2, g2)
+d(Sxyp, fx20)d?*(Tz, g2)]/2,
d(Sxzn, fX2n)d(Sx2n, 92)d(Tz, fx20),
d(Sxz2n, 92)d(Tz, f x2,)d(Tz, gz)}
—gb(m(SxZn, TZ)),
where

Mm(Sxzp, Tz) = max {d?(Sxyp, T2), d(Sxyp, fX2,)d(Tz, g2),
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d(Sxzn, 92)d(Tz, fx2n), [A(SX2n, fX27)A(SX2n, 92)
+d(Tz, fx,,)d(Tz,gz)]/2}.
Letting n — oo, we get
d3(z,gz) < pmax {[0 + 0]/2,0,0} — ¢(d?(z, gz)).
This implies that gz = z. Since g(X) c S(X) and hence there exists a point
v € X such that z = gz = Sv.
We claim that z = fv. For thiswe putx =vandy =z in (C1) we get
d3(fv,gz) < p max {[d*(Sv, fv)d(Tz, gz) + d(Sv, fv)d*(Tz, gz)]/2,
d(Sv, fv)d(Sv,gz)d(Tz, fv),d(Sv,gz)d(Tz, fv)d(Tz gz)}
—¢p(m(Sv,Tz2)),
where
m(Sv,Tz) = max {d?(Sv,Tz),d(Sv, fv)d(Tz, gz),d(Sv, gz)d(Tz, fv),
[d(Sv, fv)d(Sv,gz) + d(Tz, fv)d(Tz gz)]/2}.
=max {d?(z,z),d(z, fv)d(gz, gz),d(z,z)d(z, fv),
[d(z, fv)d(z,z) + d(z fv)d(gz gz)]/2} = 0.
Hence, we get
d3(fv,z) < pmax {[d?(z, fv)d(z z) + d(z, fv)d?*(z,2)]/2,
d(z, fv)d(z z)d(z, fv),d(z z)d(z fv)d(z z)} — $(0).
This implies that fv = z. Since the pair f, S is compatible of type (P) and fv = Sv = z, by
Remark 1.11, we have ffv = SSv which implies that fz = Sz.Hencez =Sz =fz=Tz =
gz. Therefore, z is a common fixed point of f, g, Sand T.
Similarly, we can complete the proof when S or T or g is continuous. The uniqueness follows
easily. This completes the proof.
Corollary 2.6. Let f and g be two mappings of a complete metric space (X, d) into itself

satisfying the following condition:
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d*(fx, gy) < p max{[d*(x, fx)d(y, gy) + d(x, fx)d*(y, g¥)1/2,
d(x, fx)d(x, gy)d(y, fx),d(x, gy)d(y, fx)d(y, gy)}
—¢p(m(x,y)),
for all x,y € X, where
m(x,y) = max {d*(x,y),d(x, fx)d(y, g¥), d(x, gy)d(y, fx),
[d(x, fx)d(x, gy) + d(y, fx)d(y, g¥)1/2}
and p is a real number satisfying 0 < p < 1. Further, ¢:[0,%) — [0, ) is a continuous function
with ¢(t) =0 iff t = 0 and ¢(t) > 0 for each t > 0. Then f and g have a unique common
fixed point in X.
Proof. Taking S = T = I (Identity map) in theorem 2.1, we get the required result.
Now we give an example in support of our main theorems.
Example 2.7. Let X = [0, 2] and (X, d) be a metric space defined by d(x,y) = |x —y|. We

define f, g, S, T: X—> X by

7
5 Z,XE[O.l]
fx=-,vx €[0,2], gx =
4 E € (1,2
4’x ( 4 ]
1
1,x € [0,1] (Z,x € [0,1]
5
=z 5
Sx = 4,xE(l,Z), Tx=<Z'xe(1'2)
7
—,x=2 3 _
4 Lz’x_z

(i) Clearly, we get f(X) € T(X)and g(X) c S(X).

(i) f is continuous mapping in X and g, S and T are not continuous mappings in X.

(iii) the pairs (f, S) and (g, T) are compatible and they are compatible mappings of type (A),
of type (B), of type (C) and of type (P).

Consider {x,} € (1,2), we have
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5
lim Sx,, = lim fx, =1lim Tx, = limgx, ==-=t€eX
n—oo n—->0oo n—->oo n—->oo 4

Also, we have

lim d(Sfx,, fSx,) =0, lim d(Tgx,, gTx,) =0,
n—o0o n—-oo
lim d(Sfx,, ffx,) =0, lim d(fSx,, SSx,,) =0,
n—-oo n—o0o

lim d(Tgx,, ggx,) =0, lim d(gTx,, TTx,) =0,
n—oo n—oo

(iv) forp = % and ¢(t) = 2 condition (C2) is satisfied.

Therefore, all conditions of main theorems are satisfied and % is a unique common fixed point of

f,g,Sand T.
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