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Abstract. In this paper, we study I K -convergent sequences and observe that various properties of usual con-

vergence are exhibited by I K -convergence in the set of real numbers R. Subsequently, we prove the Sandwich

Theorem for I K -convergent sequences in R. We also introduce I K -convergence field and study its various

properties.
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1. INTRODUCTION

An ideal on a set S is a collection of subsets of S closed under finite unions and subset

inclusion. Two basic ideals are Fin and I0 on N defined as Fin:= collection of all finite subsets

of N and I0:= subsets of N with density 0. For a subset A of N, A ∈I0 if and only if

lim sup
n→∞

|A∩{1,2, ...,n}|
n

= 0.

An ideal I is a P-ideal if it is σ -directed modulo finite sets, i.e., for every sequence (An) of

sets in I there exists A ∈I such that An \A is finite for all n ∈N. For an ideal I in P(N), we

observe two additional subsets of P(N) namely I ?, I + where I ? := {A⊂ N : Ac ∈I }, the

filter dual of I and I +:= collection of all subsets of N which does not belong to I .
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The ideal convergence of a sequence of real numbers was introduced by Kostyrko et al. [8],

as a generalisation of the existing notions of convergence. For an ideal I , two modes of ideal

convergence are denoted by I -convergence and I ∗-convergence.

Definition 1.1. Let X be a topological space. Then a sequence x = {xn}n∈N is said to be I -

convergent to ξ , denoted by xn→I ξ , if {n : xn /∈U} ∈I +, ∀ neighborhoods U of ξ .

Definition 1.2. Let X be a topological space. A sequence x = {xn}n∈N of elements of X is said

to be I ?-convergent to ξ if and only if there exists a set M = {m1 < m2 < ... < mk < ...} ∈I ?

(i.e. N\M ∈I )), such that lim
k→∞

(xmk) = ξ .

It may be observed that these two definitions arose from two equivalent definitions of usual

convergence. Kostyrko et al. [8] showed that I ?-convergence coincide I -convergence for an

admissible P-ideal I , where admissible ideals contain elements in Fin.

In 2011, Macaj and Sleziak [5] defined the I K -convergence of function in a topological

space. Comparisions of I K -convergence with ideal convergence [8] are studied by many

authors [7, 6] in last decade. Some of the definitions and results of [2, 5] are listed below for

further reference. Here X is a topological space and S is a set.

i) [5] A function f : S→X is called I K -convergent to a point x∈X if there exist M ∈I ∗

such that the function g : S→ X such that

g(s) =


f (s), s ∈M

x, s /∈M
is K -convergent to x.

ii) [5] A function f : S → X is called I K ∗
-convergent to a point x ∈ X if there exist

M ∈I ∗ such that the function g : S→ X such that

g(s) =


f (s), s ∈M

x, s /∈M
is K ∗-convergent to x.

Lemma 1.3. [5, Lemma 2.1] If I and K are two ideals on N and f : S→ X is a function such

that K − lim f = x, then I K − lim f = x.

Proposition 1.4. [5, Lemma 2.1] Let I1, I2, K1 and K2 be ideals on a set S such that I1⊆I2

and K1 ⊆K2 and X be a topological space. Then for any function f : S→ X we have
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I K1− limxn = x =⇒ I K2− limyn = x.

I1
K − limxn = x =⇒ I2

K − limyn = x.

A sequence {xn} ∈ X is said to be I -bounded for an ideal I , if there exists M > 0 such that

{k ∈ N : xk > M} ∈I .

Result 1.5. [5, Result 3.3] If a sequence is I -convergent, then it is I -bounded.

Theorem 1.6. [1, Theorem 4.1] If a series ∑xn is I -convergent, then there exists a subset

P = {n1,n2, ...} such that P ∈I and ∑xni is convergent.

Throughout this paper we deal with the ideals I containing Fin and S /∈I .

2. I K -CONVERGENT SEQUENCES

There are certain properties of I K -convergent sequences that can be shown straightway

from usual convergence setup. Following results are obvious, we prefer to skip some of the

proofs.

Theorem 2.1. If a sequence is I K -convergent then it is I ∪K -bounded, provided I ∪K

is an ideal.

Proof. Let a sequence x = {xn} is I K -convergent. Subsequently, we can observe that x is

I ∪K -convergent. That means by Theorem 1.5, x is I ∪K -bounded. �

Result 2.2. Let I and K be two ideals on N. {xn}, {yn} be two sequences such that xn ≤ yn

for all n ∈K . Then

(1) I K − limxn = ∞ =⇒ I K − limyn = ∞.

(2) I K − limyn =−∞ =⇒ I K − limxn =−∞.

Result 2.3. Let I1, I2, K1, K2 be ideals on N such that I1 ⊆I2 and K1 ⊆K2. Also {xn},

{yn} be two sequences such that xn ≤ yn for all n ∈K . Then

(1) I K1− limxn = ∞ =⇒ I K2− limyn = ∞.

(2) I K1− limyn =−∞ =⇒ I K2− limxn =−∞.

(3) I1
K − limxn = ∞ =⇒ I2

K − limyn = ∞.
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(4) I1
K − limyn =−∞ =⇒ I2

K − limxn =−∞.

Proof. Using Proposition 1.4, above results are immediate. �

Theorem 2.4. Let x = {xn}, y = {yn} and z = {zn} be real sequences such that xn ≤ yn ≤ zn for

all n ∈ K, where K ∈K ∗. If I K − limx = L = I K − limz then I K − limy = L.

Proof. For a given ε > 0, Then, for x = {xn}, z = {zn} there exist M1, M2 ∈I ∗ such that the

sets

Bx = {n ∈M1 : |xn−L| ≥ ε},

Bz = {n ∈M2 : |yn−L| ≥ ε}

belong to K . Then, for the set M = M1∩M2 ∈I ∗, we have the sets

Bx
′ = {n ∈M : |xn−L| ≥ ε},

Bz
′ = {n ∈M : |yn−L| ≥ ε}

belong to K . Therefore, for M ∈I ∗, we have By
′ ⊆ (Bx

′∪Bz
′)∩K and hence the set

By
′ = {n ∈M : |zn−L| ≥ ε}

is in K . It follows that {yn} is I K -convergent to L. �

Following results are immediate, so we prefer to omit the proofs.

Result 2.5. Let xn ≥ α for all n ∈ K(⊆ N) with K ∈K . If I K − limxn = L, then L≥ α .

Result 2.6. Let xn ≤ yn, for all n ∈ I(∈I ).

(1) If I K − limxn and I K − limyn exist then I K − limxn ≤I K − limyn.

(2) If I K − limyn ≤ B, then I K − limxn ≤ B.

Result 2.7. Let xn > 0 for all n ∈ K(K ∈K ) and xn 6= 0 for all n ∈ N, then I K − limxn = ∞

if and only if I K − limxn
−1 = 0.

Result 2.8. If I K − limxn = L, then I K − lim |xn|= |L| but the converse is not true.
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3. I K -CONVERGENT SERIES

In this section, we introduce the notion of I K -convergence for series of real or complex

numbers which unifies and generalize different notions of convergence of series.

Definition 3.1. A series ∑
∞
k=1 xk is said to be I K -convergent if the sequence of its partial sums

(sn), where sn = x1 + x2 + ...+ xn is I K -convergent.

Theorem 3.2. If a series ∑xn is I K -convergent, then there exists a subset P = {n1,n2, ...}

such that P ∈I ∪K and ∑xni is convergent provided I ∪K is an ideal.

Proof. We observe that if a series ∑xn is I K -convergent, then it follows that ∑xn is I ∪K -

convergent to the same limit. Then by Theorem 1.6, we have a set P = {n1,n2, ...} ∈ I ∪K

such that ∑xni is convergent. �

Result 3.3. The series ∑zn with complex terms is I K -convergent if and only if the real part

and the imerginary part is I K -convergent.

Result 3.4. If ∑xn and ∑yn be two I K -convergent series then for any complex numbers α

and β , we have the series ∑(αxn +βyn) is I K -convergent to α ∑xn +β ∑yn.

4. I K -CONVERGENCE FIELD

Definition 4.1. A convergence field of I K -convergence is a set defined as

F(I K ) = {x = (xn) ∈ l∞ : there exist I K − limx ∈ R}.

l∞ denote the space of all bounded complex valued sequences with ||.||∞ norm.

Now define a function g : F(I K )→ R such that

g(x) = I K − limx, for all x ∈ F(I K ).

Theorem 4.2. The function g : F(I K )→ R is Lipschitz function and hence uniformly contin-

uous.

Proof. Let x, y ∈ F(I K ) and x 6= y. That means ||x− y|| > 0. So, there exist M1 ∈ I ∗ such

that
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Ax = {n ∈M1 : |xn−g(x)| ≥ ||x− y||} ∈K

and also there exist M2 ∈I ∗ such that

Ay = {n ∈M2 : |yn−g(y)| ≥ ||x− y||} ∈K .

Then for M1∩M2 = M ∈I ∗, the sets

Ax = {n ∈M : |xn−g(x)| ≥ ||x− y||},

Ay = {n ∈M : |yn−g(y)| ≥ ||x− y||}

belong to K . Thus

Ax
′ = {n ∈M : |xn−g(x)|< ||x− y||},

Ay
′ = {n ∈M : |yn−g(y)|< ||x− y||}

belong to K ∗. So, A = Ax
′∩Ay

′ ∈K ∗. Now taking n in A, we have

|g(x)−g(y)| ≤ |g(x)− xn|+ |xn− yn|+ |yn−g(y)| ≤ 3||x− y||.

This implies that g is a Lipchitz function. �

Theorem 4.3. If x,y ∈ F(I K ) then xy ∈ F(I K ) and g(xy) = g(x)g(y).

Proof. Let ε > 0. Then there exist M1,M2 ∈I ∗ such that the sets

Bx = {n ∈M1 : |xn−g(x)|< ε},

By = {n ∈M2 : |yn−g(y)|< ε}

belong to K ∗. Then, for M = M1∩M2 ∈I ∗, the following sets

Bx = {n ∈M : |xn−g(x)|< ε},

By = {n ∈M : |yn−g(y)|< ε}

belong to K ∗. Now,

|xnyn−g(x)g(y)|= |xnyn− xng(y)+ xng(y)−g(x)g(y)|

≤ |xn||yn−g(y)|+ |g(y)||xn−g(x)|.

As F(I K )⊆ l∞, there exist N ∈ R such that |xn|< N and |g(y)|< N. Thus, we get
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|xnyn−g(x)g(y)| ≤ Nε +Nε = 2Nε ,

for all n ∈ Bx∩By ∈K ∗. Hence xy ∈ F(I K ) and g(xy) = g(x)g(y). �
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