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Abstract: A mathematical model to observe the behaviour of blood flow in the presence of externally applied 

transverse magnetic field in a tapered stenosed artery is developed. Blood flow is assumed to follow Bingham plastic 

model. The effect of constant and variable viscosity on blood flow has been studied. To find expressions for important 

flow characteristics; volumetric flow rate, radial velocity and wall shear stress, the system of non-linear differential 

equations is solved by Frobenius method. Matlab 10.7.0 is used to analyze the behavior of blood flow. It is observed 

that these important flow characteristics change their behavior in stenosed tapered artery and externally applied 

transverse magnetic field helps in regulating these changes up to some extent. 
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1. INTRODUCTION 

Cardiovascular diseases are one of the main causes of death in both developed and developing 

countries. Atherosclerosis is a type of arterial disease, which is due to cholesterol plaque in inner 
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wall of the artery. This narrows the artery passage and a loss of elasticity in the artery. Modeling 

and analysis of hemodynamic of human vascular system improve our understanding of vascular 

disease and provide valuable insights, which can help in the development of efficient treatment 

methods. Stenosis is the partial occlusion of blood vessels, which carries blood to heart. Because 

of this partial occlusion, the blood supply to the heart suffers; as a result, there will be changes in 

blood pressure, which causes heart diseases. 

Magnetohydrodynamics is the study of magnetic properties of electrically conducting fluid. In 

1840, an experimental study of flow in capillaries has been conducted by the French physician 

Poiseuille and is well-known as Poiseuille’s flow. Later, in last two decades, lot of research has 

been carried out on blood flow dynamics under the influence of magnetic field. In particular, the 

study of flow of blood in stenosed arteries under the influence of magnetic field has been carried 

out with various perspectives by developing / modifying mathematical models. The first Blood 

Flow Dynamic (BFD) model was developed mathematically by Haik and is further extended by 

Tzirtzilakis and Kafoussias in 2001. Since then, many researchers have developed/modified many 

mathematical models [1–4]. It is reported that the normal flow changes to disturbed flow in 

presence of stenosis, resulting into atherosclerosis [5]. The effect of magnetization on blood flow 

in mild stenosed artery in the presence of erythrocytes through an intended tube is discussed by 

developing a mathematical model using Frobenius method [6, 7]. The stress increases significantly 

with increase in magnetization. Increase in pressure gradient corresponds to the increase in both 

magnetic field and hematocrit but the increase in magnetic field is more substantial than that of 

hematocrit [8, 9]. Around the turn of 20th century, it has been observed that blood exhibits non-

Newtonian behavior and because of complexity of problem, it is concluded that unsteady state 

non-Newtonian blood flow can be modeled only by higher order equations [10–12]. Externally 

applied transverse magnetic field of different intensities on time dependent blood flow model in 

non-tapered artery affects all the flow characteristics in multi stenosed artery. It is also observed 

that, wall shear stress increases, flow pattern changes in non-Newtonian rheology, as compared to 

the results of Newtonian rheology [13]. A pulsatile flow 3D model of human aorta at different 

stages of atherosclerosis is studied by considering 50% and 80% stenosis to the healthy aorta 

geometry, found that the wall shear stress distribution and magnitude are strongly affected by size 

of stenosis, its features and location [14, 15].  

This paper deals with pulsatile flow of blood in presence of externally applied transverse magnetic 

field through a tapered stenosed artery. Two cases are considered, a) blood viscosity is constant 
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and b) blood viscosity varying with shear stress (depends on hematocrit and position). The non-

linear differential equations governing the fluid flow are solved using Frobenius method and the 

expressions for velocity, flow rate and shear stress are obtained. This study is useful to regulate 

blood flow in tapered stenosed artery. 

 

2. PROBLEM FORMULATION 

The schematic diagram of tapered stenosed artery with tapering angle φ is as shown in Fig. 1. If 

φ   0  then the artery is converging, if φ   0  then diverging, and if φ   0=  then the artery is 

non-tapered. 

 

Fig. 1. Schematic representation of stenosed tapered artery with tapering angle φ 

 

The mathematical model of tapered stenosed artery is given by the equation 

( )
( ) ( ) ( )

( )

2

0 2

0

, if 

 otherwise,

h h
R md m z d z d d z d l

R z l l
mz R

    
+ + − − + −   +   =    
+  





                          (1) 

where φ  is the tapering angle, m = tan φ , h = 4x0.4 Ro sec φ  = height of stenosis, Ro is radius 

of non-stenosed part, R(z) is radius of stenosed part, l is length of stenosis d is starting point of 

stenosis and z is axial coordinate [16]. 

The problem is formulated by assuming the blood flow as unsteady, laminar and fully developed 

pulsatile flow, blood is incompressible and transverse magnetic field is applied externally with 

negligible electric field. 

The governing equation satisfying the above conditions is  

( )
1P dH du

r kM
z r r dz dT

 
− +  + = 

 
                                               (2)                                                    
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where P is pressure, z is axial coordinate, r is radial coordinate, k is permeability, M is 

magnetization, τ is shear stress, ρ   is density,  u is axial velocity and T is time parameter.  

Blood is assumed to be non-Newtonian, and it follows Bingham plastic fluid model,  

i.e.: 0

u

r

 
 =  +  − 

 
                                                           (3) 

Here 0τ  is yield stress and μ  is viscosity. 

Boundary conditions are 

0u =  at ( )r R z= and   0
u

r


=


 at 0r =                                            (4) 

The following radial coordinate transformations are used:’ 

0

r
y

R
=  at 

0

 
T

t
t

=                                                             (5) 

where R0 is length and t0 is time scaling parameter. Then (2) becomes 

( )
0 0

1P dH du
y kM

z yR y dz t dt

  
− +  + =

 
                                             (6) 

and (3) becomes  

0

0

u

R r

  
 =  + − 

 
                                                            (7) 

Boundary conditions becomes  

  0u =  at 
( )

0

R z
y

R
=   and  0

u

y


=


  at   0y=                                       (8) 

So using (7), equation (6) becomes 

0
0 0 0

0 0

1
 

Ry u du dH dP
y kMR R

y y R y t dt dz dz

     
 + − = − +  

   
.                               (9) 

In general, viscosity of blood is not constant in diseased condition; it is assumed that viscosity 

varies with radial coordinate and hematocrit. Einstein’s formula is used to find variable viscosity: 

( )0 1 ?  ,?h r  =  +                                                             (10) 

Here β  is a constant whose value is 2.5 for blood, μ  is viscosity of blood, 0μ  is viscosity of 
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plasma and h(r) is given by the formula  

( )
0

1 ?

n

r
h r He

R

  
 = − 
   

= 1 nHe y −                                               (11) 

where He is hematocrit value and n is the parameter determining the shape of flow. 

Using (10) in equation (9), we get,  

( )
2

2 20 0 0
0 0 0

0

1 n R Ru du dH dP
A By y kMR R

y y y t dt dz dz y

     
−  − = − + −  

   
                    (12) 

where A = 1+βHe and B = βHe.  

As the flow is pulsatile, ( ) ( ), jwtu y t U y e=                                                 (13) 

( ) jwtu
U y e

y



=


 and   ( ) jwtu

U y jwe
t


=


                                        (14) 

Using (13) and (14) in (12),  

( )
2 4 2

2 0 0 0 0

0 0 0

1
 n jwtDa MR R RU dH dP

A By y j U e
y y y dz dz y

−    
− +  = − +  

       
                  (15) 

where    1j = −   and 2Da  = 
2

0

k

R
 and 2  = 

2

0

0 0

R
w

t




                             (16) 

The important force for blood to flow is local pressure gradient which depends on heart pressure 

pulse and is periodic in nature. Hence, it is assumed that  
2

0

0

jwtR P
ce

z


=

 
,  where w =2πf, f is 

pulse frequency and c is amplitude of pulsatile flow. Hence (15) becomes 

( ) ( )
2

1 2

2

1
,n n nU U U

A By A By Bny j U RHS
y y y y

−  
− + − − +  =

  
                        (17) 

where 
2 4

0 0 0

0 0

jwt jwtDa MR RdH
RHS e c e

dz y

− − 
= − + 

  
 

Let us denote ( ) ( )
2

1 2

2

1n n nU U U
A By A By Bny j U

y y y y

−  
− + − − + 

  
by LHS. 
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3. SOLUTION USING FROBENIUS METHOD 

Frobenius method is used to solve equation (17) and for this, U must be bounded at y = 0.  

Therefore, the only admissible solution is  

2?

0 04

i i

i i

RHS
U l A y B y

A

 
+= +                                                     (18) 

where Ai and Bi are series constants, l is arbitrary constant to be determined using boundary 

conditions. Here 
0

i

il A y


  is the solution of homogeneous part, and 2?

04

i

i

RHS
B y

A


+

   is the 

solution of non-homogeneous part of (17). 

Using no slip condition U = 0 at 
( )

0

R z
y

R
= , we get    

2

0

0
4

i

i

i

i

B yRHS
l

A A y

 +


= −




                                                         (19) 

 i.e., 

( )

( )

2?

0
0

0
0

4

i

i

i

i

R z
B

RRHS
l

A R z
A

R

+





 
 
 = −
 
 
 





.                                              (20) 

Solution of homogeneous part:  

Using U, 
 

 

dU

dy
 and 

2

2

 
 

d U

dy
  in LHS of (17), we get                                                         

( ) ( )2 2

0 0

1 1i i n

i iA i i A y B i i A y
 

− + −− − − +   

2 2 2 2

0 0 0 0

 0i i n i n i

i i i iA Aiy B Aiy B Ainy j A y
   

− − + + −+ − − + =      .                 (21) 

Comparing the coefficients of yi+1, we get  
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3iA +  = [ ( )( ) ( )
22

3 13 /3 3i n iBA i n i j A A i− + +
 − + + − +                                 (22) 

Solution of non-homogeneous part:   

Using ,U  
 

 

dU

dy
 and 

2

2

 
 

d U

dy
 in (17), we get, 

( ) ( )( ) ( ) ( ) 1

0 0

1
2 1 2

4 4

n i n i

i i

RHS RHS
A By B i i y A By B i y

A y A

 
+ −− + + + − +   

( )1 1 2 2

0 0

2
4 4

n i i

i i

RHS RHS
Bny B i y j B y RHS

A A

 
− + +− + +  =                       (23) 

Comparing the coefficients of yi-1, we get 

( )( ) ( )
22

1 1 31 1 / 1i i n iB BB i n i j B A i− − − −
 = − + + −  +                                   (24) 

Hence,  

1iA + = [ ( )( ) ( )
22

1 11 1 / ,1i n iBA i n i j A A i− + −
 − + + −  +                                  (25) 

( )( ) ( )
22

1 1 1  3 3 / 3i i n iB BB i n i j B A i+ − + −
 = − + + −  +                                   (26) 

with 0 0 1A B= =  and 0m mA B− −= = . 

 

4. RESULTS AND DISCUSSION 

The list of parameters and their corresponding values used for simulation is given in the Table 1. 

As the flow is pulsatile, the flow characteristics are in the form of imaginary numbers. So, to 

observe the profile of these important flow characteristics, only real part is considered. 
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Table 1. Value of parameters for simulation 

Parameter Value Parameter Value 

μ 0.0035 Pa.s R0 0.0025 m 

u0 0.36 m/s k 1 

H0 0.2 Tesla μ0 0.0018 Pa.s 

M 200 amp/m ρ 1060 kg/m3 

f 0.2 Hz l 0.05 m 

d 0.02 m t0 100 s 

0

dp

dz

 
 
 

 3447 P n 2 

 

Axial velocity 

Substituting the value of  l in (18), we get, 

 u =  

( ) ( )

( )

2?

2

0 0 0 0
0 0

0
0

4
 

i i

i i

i i i i

jwt

i

i

R z R zRHS
B A y A B y

A R R
e

R z
A

R

+

    +



     
  −   
       −
  
  

   

   



               (27)                                    

u =  

( ) ( )

( )

2?

2

0 0 0 0
0 0

0
0

2

0

00

4
 

 
8

i i

i i

i i i i

jwt

i

i

R z R zRHS
B A y A B y

A R R
e

R z
A

R

R dp

dz

+

    +



     
  −   
       −
  

  
   

 
−  

 

   



             (28)                     

where 0u =   
2

0

00

 
8

R dp

dz

 
−  

 
 is the average velocity with 

0

dp

dz

 
 
 

  as pressure gradient in non-

stenosed artery in the absence of magnetic field. 
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Fig. 2. Axial velocity for different yield stress at 3z =  in diverging artery. 

Fig. 2 shows the profile of axial velocity at 3z =  in diverging artery for different yield stress by 

keeping remaining parameters constant. Here, angle of tapering is considered as 0.01. Hence the 

radius of artery at z=3 is 0.2159978. It is observed from the figure that rise in yield stress will help 

in elevating axial velocity, but at the same time rate of decrease in axial velocity increases.  

Table 2. Axial velocity for different tapering angles at 4z =  

r  φ =0.02 φ =0.015 φ =0.01 φ =-0.01 φ =-0.015 φ =-0.02 

( )R z  0.2339915 0.2139937 0.1939965 0.1139939 0.0939847 0.0739701 

0.01 

0.03 

0.05 

0.07 

0.09 

0.11 

0.13 

0.15 

0.17 

0.19 

0.21 

0.23 

0.25 

0.0080831 

0.0079976 

0.0078245  

0.0075597   

0.0071966 

0.0067257 

0.0061337 

0.0054021 

0.0045056 

0.0034086 

0.0020599 

0.0003833 

 

0.0065688 

0.006480 

0.0063003 

0.0060255 

0.0056487 

0.0051599 

0.0045454 

0.0037860 

0.0028555 

0.0017169 

0.0003171 

 

 

0.0052689 

0.0051773 

0.0049920 

0.0047086 

0.0043199 

0.0038158 

0.0031820 

0.0023988 

0.0014391 

0.0002648 

 

 

0.0016998 

0.0016005 

0.0013998 

0.0010926 

0.0006715 

0.0001253 

 

 

 

0.0011403 

0.0010399 

0.0008367 

0.0005258 

0.0000996 

 

 

0.0006961 

0.0005947 

0.0003896 

0.0000758 
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The table 2 gives the axial velocity profile for different tapering angles at  4z= . It is observed that 

axial velocity decreases towards the wall of artery. As the artery is getting widened (φ =0.02), 

axial velocity will be more as compared to axial velocity in less tapered artery. Also, axial velocity 

decreases faster as tapering angle decreases. 

Table 3. Axial velocity for different Womersley numbers (
2 )  at 4z =  in converging artery 

 r   
2 1 =   

2 2 =   
2 3 =   

2 4 =  

 ( )R z  0.1139939 0.1139939 0.1139939 0.1139939 

0.01 

0.03 

0.05 

0.07 

0.09 

0.11 

0.0009670 

0.0009100 

0.0007950 

0.0006195 

0.0003798 

0.0000707 

0.0009668 

0.0009099 

0.0007949 

0.0006194 

0.0003798 

0.0000706 

0.0009665 

0.0009096 

0.0007946 

0.0006192 

0.0003797 

0.0000706 

0.0009661 

0.0009092 

0.0007943 

0.0006190 

0.0003796 

0.0000706 

 

Table 4. Axial velocity at different values of z  in diverging artery 

 r   2.5z =   3z =   4z =   5z =   6z =  

 ( )R z  0.238999 0.2159978 0.1939965 0.2039969 0.2459988 

0.01 

0.03 

0.05 

0.07 

0.09 

0.11 

0.13 

0.15 

0.17 

0.19 

0.21 

0.23 

0.0047297 

0.0046796 

0.0045785 

0.0044242 

0.0042136 

0.0039419 

0.0036028 

0.0031877 

0.0026849 

0.0020787 

0.0013476 

0.0004609 

0.0037592 

0.0037073 

0.0036026 

0.0034429 

0.0032248 

0.0029434 

0.0025922 

0.0021623 

0.0016416 

0.0010139 

0.0002567 

0.0029664 

0.0029131 

0.0028054 

0.0026412 

0.0024170 

0.0021277 

0.0017667 

0.0013247 

0.0007894 

0.0001440 

0.0033116 

0.0032589 

0.0031526 

0.0029903 

0.0027687 

0.0024829 

0.0021262 

0.0016894 

0.0011605 

0.0005228 

0.0050577 

0.0050083 

0.0049084 

0.0047560 

0.0045479 

0.0042795 

0.0039445 

0.0035343 

0.0030376 

0.0024387 

0.0017163 

0.0008403 
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From table 3, it is found that axial velocity decreases as r   increases for different values of 

Womersley number (
2 )α   at 4z =   in converging artery (at φ  =-0.01). As the Womersley 

number increases as axial velocity decreases slowly. 

Table 4 presents the profile of axial velocity at different z   in diverging artery keeping the 

remaining parameters constant. It also shows the radii of artery for different z  at φ =0.01 It is 

found that axial velocity decreases as r   increases irrespective of the position. It can also be 

observed that axial velocity decreases as the radius of artery increases. 

Volumetric flow rate   

The volumetric flow rate is                                            

( )

( )0
0

0
2 , ?

R z

RQ R yu y t dy=                                                       (29) 

Average volumetric flow rate is  

3

0
0

00

 
8

R dp
Q

dz





 
= −  

 
                                                           (30)                                           

where 
0

dp

dz

 
 
 

is the pressure gradient of blood in un-constricted uniform artery in the absence of 

magnetic field. 

The volumetric flow rate is 

 

 𝑄
( )

( )

( )

( )

( )

2

2

0

0 00

0 4

0
0 0

0 00

2
2

4

 
4

i

i

i i
jwt

i i

ii

i i

R z

RR z
B A

R iRHS e
R

A R z R z
A

R RR z
A B

R i



+

+
 

+


 

          
   +   = − −                 −  
 +    

 


                (31)

 

The non- dimensional volumetric flow rate is Q
0

Q

Q
=  
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The following discussion will give the profiles of volumetric flow rate for a range of parameters 

of interest. 

Table 5 exhibits the results for volumetric flow rate with axial coordinate for a range of tapering 

angles at 0.1r = . In diverging artery, as tapering angle increases, volumetric flow rate increases 

and in converging artery, as artery gets narrowed, volumetric flow rate decreases.   The 

volumetric flow rate decreases as z increases from 2 to 4 and increases as z  increases from 4 to 

7. Volumetric flow rate is minimum at the throat of stenosis as compared to other parts of stenosis. 

The rate of decrease in the first half is less and rate of increase in the next half is more in diverging 

artery and rate of decrease is more in the first part and is less in the second half in case of 

converging artery. 

 

Table 5. Volumetric flow rate for different tapering angles at 0.1r =  

z  φ =0.02  φ =0.01  φ =-0.01  φ =-0.02 

2 

3 

4 

5 

6 

7 

15.402649 

5.8628728 

4.4289456 

7.0329677 

21.594366 

79711.132 

10.024225 

2.8513274 

1.5977180 

2.0919986 

5.8633579 

29.036045 

4.0255912 

0.5071757 

0.1010036 

0.0632892 

0.1684850 

1.0734561 

2.4464638 

0.1683781 

0.0112945 

0.0023129 

0.0063469 

0.0841437 

 

A comparison of flow rate profiles for different magnetic field gradients at 0.2r =  in diverging 

artery is shown in Fig. 3. It is observed that volumetric flow rate increases with increase in 

magnetic field gradient. Rate of change in volumetric flow rate is less in the beginning and is more 

in the later part of stenosis. There is no major change in the profile of volumetric flow rate in the 

middle of stenosis. Hence it can be concluded that by increasing magnetic field gradient, flow rate 

can be increased. 
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Fig. 3. Volumetric flow rate for different Womersley numbers at 0.1r =  in diverging 

artery. 

 

It is observed from table 6 that as Womersley number ( 2 )α  increases, axial velocity decreases 

slowly. This phenomenon is observed in diverging artery at 0.1r =  whereas the radius of non-

stenosed part of artery is 0.25. It is observed that in all four cases, volumetric flow rate is in its 

minimum at the throat. The rate of change is less for higher values of Womersley number. 

 

Table 6. Volumetric flow rate for different Womersley numbers at 0.1r =  in diverging 

artery 

z 
 

2 0.01 =   
2 0.02 =   

2 0.03 =   
2 0.06 =  

2 

3 

4 

5 

6 

7 

10.024223 

2.8513273 

1.5977180 

 2.0919985 

5.8633573 

29.036030 

10.024216 

2.8513267 

1.5977178 

2.0919981 

5.8633548 

29.035975 

10.024205 

2.8513256 

1.5977174 

2.0919975 

5.8633508 

29.035882 

10.024144 

2.8513200 

1.5977155 

2.0919944 

5.8633288 

29.035380 

 

Volumetric flow rate at different Darcy numbers is shown in Fig. 4. It can be observed that as  z  

increases from 2 to 5, flow rate decreases drastically and then as z  increases from 5 to 7, flow 
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rate increases slowly. Volumetric flow rate is almost same in the middle of stenosis and attains its 

minimum at  5z=  in converging artery. The profile of flow rate depends on position of stenosis 

and type of artery as well. It is possible to increase flow rate in the beginning and end of stenosis 

by increasing Darcy number.  

 

 

Fig. 4. Volumetric flow rate for different Darcy numbers at 0.0r = 1 in converging artery. 

 

Wall shear stress   

The wall shear stress is given by  

( )
( )

0 w

r R z

u
r

r
  

=

 
= + −  
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    (33)                                                                                       

If 0 w is the wall shear stress in non-stenosed non-tapered part of artery in the absence of magnetic 

field, then  

0w  = 0

0

 
2

R dp

dz

 
−  

 
                                                          (34) 



1918 

B. S. VEENA, ARUNDHATI WARKE 

So, non-dimensional form of wall shear stress is 
0

 
 

 

w

w





= . 

Fig. 5 shows the influence of magnetic field intensity on wall shear stress for fixed value of other 

parameters. As z  increases from 2 to 4, wall shear stress increases slowly and as z  increases 

from 4 to 7, wall shear stress decreases drastically in diverging artery. As magnetic field intensity 

increases, wall shear stress decreases. 

The variation in wall shear stress with z  for different values of pressure gradient in converging 

artery is given in table 7. Wall shear increases drastically in the first part of stenosis and then 

decreases slowly. The same phenomena is observed for all values of pressure gradient, however 

the rate of change may be different.  It is also observed that as pressure gradient increases, shear 

stress increases.  

It is noticed from table 8 that as z  increases from 2 to 5, wall shear stress increases and then it 

decreases in the converging artery in all cases of Womersley number.  No considerable change in 

wall shear stress with respect to Womersley number is observed, however as Womersley number 

increases, wall shear stress decreases slightly at z = 2 and increases slightly for z >=3. 

 

                                      

 

Fig. 5. Wall shear stress for different values of magnetic intensity in diverging artery. 
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Table 7. Wall shear stress for different pressure gradients in converging artery 

Z  10
p

z


=


  20

p

z


=


  30

p

z


=


  40

p

z


=


 

2 

3 

4 

5 

6 

7 

1.6702300 

1.9258975 

1.9777741 

1.9842354 

1.9674780 

1.8710529 

1.6815612 

1.9284148 

1.9785033 

1.9847419 

1.9685621 

1.8754609 

1.6928924 

1.9309322 

1.9792325 

1.9852484 

1.9696462 

1.8798688 

1.7042236 

1.9334496 

1.9799617 

1.9857549 

1.9707302 

1.8842768 

 

Table 8. Wall shear stress for different Womersley numbers in converging artery 

Z 2 1 =  
2 2 =  

2 3 =  
2 4 =  

2 

3 

4 

5 

6 

7 

1.3302811 

1.8503775 

1.9558988 

1.9690409 

1.9349563 

1.7388144 

1.3302418 

1.8503805 

1.9558996 

1.9690414 

1.9349575 

1.7388175 

1.3301758 

1.8503855 

1.9559009 

1.9690423 

1.9349597 

1.7388225 

1.3300823 

1.8503925 

1.9559028 

1.9690434 

1.9349627 

1.7388294 

 

5. CONCLUSION 

A pulsatile flow of blood is studied in tapered stenosed artery in the presence of externally applied 

transverse magnetic field with variable viscosity by assuming blood follow non-Newtonian path. 

In this time dependent model, Bingham plastic model – a non-Newtonian model is used to relate 

shear stress and shear rate. Blood viscosity is allowed to vary with radial coordinate and hematocrit.  

The expressions for wall shear stress, volumetric flow rate and axial velocity are obtained using 

Frobenius method and are found to be affected by externally magnetic field. Various combinations 

of parameters are used to analyze the profile of important flow characteristics. Based on the 

exhaustive analysis, it is found that tapering angle, viscosity and hematocrit are the important 

factors influencing the major characteristics of blood. Graphs are plotted to highlight the influence 

of different parameters on flow rate, shear stress and axial velocity. It is found that these important 

flow characteristics change their behavior in stenosed artery and the flow is mainly controlled by 
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tapering angle and significantly influenced by the strength and gradient of magnetic field. It is 

found that axial velocity decreases faster as tapering angle decreases and the rise in yield stress 

will help in elevating axial velocity.The decrease in the magnitude of velocity and wall shear stress 

with the increased magnetic field intensity has been observed. The effect of stenosis and yield 

stress reduces wall shear stress and flow rate in the presence of magnetic field. Change in the flow 

pattern and increase in wall shear stress are observed by treating blood as Non-Newtonian.  

It is also noticed that both Darcy number and Womersley number plays important role in assessing 

the effect of magnetic field on important flow characteristics. As the Womersley number increases, 

axial velocity decreases slowly. The rate of change in volumetric flow rate is less for higher values 

of Womersley number. Also, it is possible to increase the flow rate in the beginning and end of 

stenosis by increasing Darcy number, but no considerable change in wall shear stress with respect 

to Womersley number is observed. 

It is observed from graphs and tables that the flow can be regulated up to some extent with the help 

of proper combination of fluid parameters in tapered arteries and application of external transverse 

magnetic field with suitable pressure gradient and hematocrit level.  

This study has a potential to examine the complex flow behavior of blood, under the simultaneous 

influence of the shape/size of stenosis and strength of externally applied magnetic field. Hence it 

provides a powerful tool to probe biomechanical behavior of arteries which in turn would be useful 

in medical field and further research. 
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