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Abstract. We introduce the notion of screen Cauchy Riemann (SCR) lightlike submersions from an indefinite

Kähler manifold onto a lightlike manifold. We prove that SCR-lightlike submersions include complex (invariant)

and screen real (anti-invariant) lightlike submersions. We study some properties of proper SCR-lightlike submer-

sions, their invariant and anti-invariant subcases. We also study the geometry of complex lightlike submersions

and show that the radical distribution defines a totally geodesic foliation.
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1. INTRODUCTION

A Riemannian submersion between Riemannian manifolds M and B is the mapping f

from M onto B such that f has maximal rank and the derivative map f∗ preserves the length

of horizontal vectors. The idea of Riemannian submersion between Riemannian manifolds was

introduced by O’ Neill [9] and Gray [7]. Almost Hermitian submersions between almost Her-

mitian manifolds were introduced by B. Watson [14]. In this class, Riemannian submersion is

also an almost complex mapping. Later, different classes of almost Hermitian submersions have

been studied between different subclasses of almost Hermitian manifolds [5] and [6]. On the
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other hand, lightlike submanifolds of semi-Riemannian manifolds were introduced by Duggal

and Bejancu in [1]. In [3], Duggal and Sahin introduced screen Cauchy-Riemannian (SCR)-

lightlike submanifolds of an indefinite Kähler manifold. In [10], O’ Neill introduced the notion

of semi-Riemannian submersions. If M and B are Riemannian manifolds then the fibres are

always Riemannian manifolds. However, if M and B are semi-Riemannian manifolds, then the

fibres may not be semi-Riemannian manifolds. Sahin introduced the notion of screen lightlike

submersions from lightlike manifolds onto semi Riemannian manifolds in [12]. Later, Sahin

and Gündüzalp introduced lightlike submersions from semi-Riemannian manifolds onto light-

like manifolds in [13]. This motivated us to study screen Cauchy Riemann (SCR)-lightlike

submersions. The paper is organized as follows:

In section 2, we give basic definitions related to this paper. In section 3, we introduce the

notion of screen Cauchy Riemann (SCR)-lightlike submersions giving examples and prove two

existence theorems. We prove that this class contains complex (invariant) and screen real (anti-

invariant) subcases and obtain the integrability conditions of distributions involved in the def-

inition of such submersions. In section 4, we study proper SCR-lightlike submersions with

totally umbilical fibres and prove an existence theorem. In section 5, we study the geometry

of complex lightlike submersions and prove that radical distribution defines totally geodesic

foliation. In last section, we study screen real lightlike submersions with irrotational fibres and

prove some results related to it.

2. PRELIMINARIES

Let (M,J) be a 2m-dimensional almost complex manifold with an almost complex structure

J and g be a semi-Riemannian metric of index 0 < r ≤ 2m. Then, the pair (J,g) is said to be an

indefinite almost Hermitian structure on M, and M an indefinite almost Hermitian manifold, if

(2.1) g(JX ,JY ) = g(X ,Y ), ∀X ,Y ∈ Γ(T M).

Further, if J defines a complex structure on M, then (J,g) and M are called indefinite Hermitian

structure and indefinite Hermitian manifold respectively. Let (M,J,g) be an indefinite almost

Hermitian manifold and ∇ be the Levi-Civita connection on M with respect to g. Then M is
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said to be an indefinite Kähler manifold if

(2.2) (∇X J)Y = 0, ∀X ,Y ∈ Γ(T M).

A connected indefinite Kähler manifold M with a constant holomorphic sectional curvature c is

called an indefinite complex space form and is denoted by M(c). The curvature tensor field of

M(c) is given by

(2.3) R(X ,Y )Z =
c
4
{g(Y,Z)X−g(X ,Z)Y +g(JY,Z)JX

−g(JX ,Z)JY +2g(X ,JY )JZ}, ∀X ,Y,Z ∈ Γ(T M).

The fundamental 2-form Ω of M is given by

(2.4) Ω(X ,Y ) = g(X ,JY ), ∀X ,Y ∈ Γ(T M).

For a Kähler manifold M, dΩ = 0, where d is the operator of exterior derivative.

Let (M,g) be a real m-dimensional smooth manifold, where g is a symmetric tensor field of

type (0,2). The radical or null space of TpM, denoted by Rad TpM, is defined as

Rad TpM = {ξ ∈ TpM : g(ξ ,X) = 0, ∀X ∈ TpM}.

The dimension of Rad TpM is said to be nullity degree of g. Suppose the mapping RadT M : p∈

M→ Rad TpM defines a smooth distribution of rank r > 0 on M. If 0 < r ≤m, then Rad T M is

said to be radical (null) distribution of M and the manifold M is said to be a lightlike manifold

or an r-lightlike manifold.

Let (M,g) be a semi-Riemannian manifold of dimension m and (B,g′) an r-lightlike manifold

of dimension n. If f : M→ B is a smooth submersion, then f−1(x) is a closed submanifold of

M of dimension (m−n), for any x ∈ B. The kernel of f∗ at p ∈M, is defined as

Ker f∗p = {X ∈ TpM : f∗pX = 0},

and (Ker f∗p)
⊥ is defined as

(Ker f∗p)
⊥ = {Y ∈ TpM : g(Y,X) = 0, ∀ X ∈ Ker f∗p}.
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As TpM is a semi-Riemannian vector space, (Ker f∗p)
⊥ may not be a complementary space to

Ker f∗p. Therefore we assume

∆p = Ker f∗p ∩ (Ker f∗p)
⊥ 6= {0}.

Then ∆ : p→ ∆p is a distribution on M, called the radical distribution. Since ∆ is a degenerate

distribution, its orthogonal complementary distribution S(Ker f∗) in Ker f∗ is non-degenerate.

Thus we have the following orthogonal decomposition

(2.5) Ker f∗ = ∆ ⊥ S(Ker f∗).

Similarly

(2.6) (Ker f∗)⊥ = ∆ ⊥ S(Ker f∗)⊥,

where S(Ker f∗)⊥ is the complementary distribution to ∆ in (Ker f∗)⊥. Moreover as S(Ker f∗)

is non-degenerate in T M|Ker f∗ , we have

T M|Ker f∗ = S(Ker f∗)⊥ (S(Ker f∗))⊥,

where (S(Ker f∗))⊥ is the complementary orthogonal distribution to S(Ker f∗) in T M. Now,

since S(ker f∗)⊥ is non-degenerate in (S(Ker f∗))⊥, we have

(S(ker f∗))⊥ = S(Ker f∗)⊥ ⊥ (S(Ker f∗)⊥)⊥.

Suppose dim ∆ = r > 0. Since ∆ ⊂ (S(Ker f∗)⊥)⊥ and (S(Ker f∗)⊥)⊥ is non-degenerate, so

there exists null vectors N1,N2...,Nr, such that

g(Ni,N j) = 0, g(ξi,N j) = δi j.

The distribution generated by vector fields N1,N2...,Nr is denoted by ltr(Ker f∗). Then, we take

(2.7) tr(Ker f∗) = ltr(Ker f∗)⊥ S(Ker f∗)⊥

We observe that ltr(Ker f∗) and Ker f∗ are not orthogonal to each other. Moreover

(2.8) T M = Ker f∗⊕ tr(Ker f∗),

where Ker f∗ and tr(Ker f∗) are not orthogonal to each other.

A Riemannian submersion f : M→ B is called
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(a) r-lightlike submersion if

dim ∆ = dim{(Ker f∗)∩ (Ker f∗)⊥}= r, 0 < r < min{dim(Ker f∗),dim(Ker f∗)⊥},

(b) co-isotropic submersion if dim ∆ = dim(Ker f∗)⊥ < dim(Ker f∗),

(c) isotropic submersion if dim ∆ = dim(Ker f∗)< dim(Ker f∗)⊥,

(d) totally lightlike submersion if dim ∆ = dim(Ker f∗)⊥ = dim(Ker f∗).

From (2.5), (2.7) and (2.18) we have

(2.9) T M = (Ker f∗)⊕ tr(Ker f∗) = ∆⊕ (ltr(Ker f∗))⊕S(Ker f∗)⊕S(Ker f∗)⊥.

Now we assume the following local quasi-orthogonal field of frames of M along Ker f∗

(2.10) {ξ1, ... , ξr, N1, ... , Nr, Xr+1, ... ,Xm, Wr+1, ... ,Wn},

where {ξ1, ... ,ξr} and {N1, ... , Nr} are lightlike basis of Γ(∆) and Γ(ltr(Ker f∗)) respec-

tively. Also, {Xr+1, ... ,Xm} and {Wr+1, ... ,Wn} are orthonormal basis of Γ(S(Ker f∗)) and

Γ(S(Ker f∗)⊥) respectively.

The geometry of Riemannian and semi-Riemannian submersions is characterized by O’

Neill’s tensors T and A, defined as

(2.11) TXY = h∇νX νY +ν∇νX hY,

(2.12) AXY = ν∇hX hY +h∇hX νY.

Tensor fields T and A are skew symmetric in Riemannian submersions but it is not generally

valid for lightlike submersions. Moreover T and A both reverse the vertical and horizontal

subspaces and are vertical and horizontal tensors respectively, that is,

(2.13) TXY = TνXY, AXY = AhXY

Also, T has symmetric property for vertical vector fields, that is,

(2.14) TXY = TY X , ∀ X ,Y ∈ Γ(Ker f∗)

Now we state the following lemma proved in [13].

Lemma 2.1. Let f : (M,g)→ (B,g′) be an r-lightlike submersion. Then
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(a) g(TV X ,Y ) =−g(TVY,X),

(b) g(AXV,W ) =−g(AXW,V )),

for any V ∈ Γ(Ker f∗), X ,Y ∈ Γ(Ker f∗)⊥ and W ∈ Γ(∆).

3. SCR-LIGHTLIKE SUBMERSIONS

In this section, we introduce screen Cauchy Riemann (SCR) lightlike submersions from an

indefinite Kähler manifold onto a lightlike manifold and give several examples.

Definition. An r-lightlike submersion f : (M,g,J)→ (B,g′) from a 2m-dimensional indefinite

Kähler manifold M onto a lightlike manifold B is called a SCR-lightlike submersion if

(i) ∆ is invariant with respect to J, that is, J∆ = ∆,

(ii) S(Ker f∗) contains a non-null distribution D, such that

S(Ker f∗) = D⊕D⊥, JD⊥ ⊂ S(Ker f∗)⊥, D∩D⊥ = {0},

where D⊥ is the orthogonal complementary distribution to D in S(Ker f∗),

(iii) D is invariant with respect to J, that is, JD = D.

From the definition, it is clear that

(3.1) J∆ = ∆, JD = D, Jltr(Ker f∗) = ltr(Ker f∗)

(3.2) Ker f∗ = D′⊕D⊥, D′ = D⊥ ∆.

Let D0 be the orthogonal complement to JD⊥ in S(Ker f∗)⊥. Then, we have

(3.3) tr(Ker f∗) = ltr(Ker f∗)⊥ JD⊥ ⊥ D0.

If D 6= {0} and D⊥ 6= {0}, then we say that f is a proper SCR-lightlike submersion. Note the

following important features of SCR-lightlike submersions:

(a) Condition (i) implies that dim ∆ = 2k ≥ 2

(b) For a proper SCR-lightlike submersion f , (2.10) and (3.1) imply that dim(D)= 2l≥ 2, dim(D⊥)≥

1 and dim(ltr(Ker f∗)) = dim(∆). It follows that, dim(Ker f∗)≥ 5, dim(M)≥ 8.
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Proposition 3.1. A SCR-lightlike submersion f : (M,g)→ (B,g′) from an indefinite Kähler

manifold M onto a lightlike manifold B is a complex (resp. screen real) lightlike submersion if

and only if D⊥ = {0} (resp. D = {0}).

Proof. Let f be a complex (invariant) lightlike submersion, that is, J(Ker f∗) = Ker f∗. As ∆

and D are invariant with respect to J, it follows that, D⊥ = {0}. Conversely if D⊥ = {0} then

J(S(Ker f∗)) = S(Ker f∗). Moreover, f is a SCR-lightlike submersion implies that J(Ker f∗) =

Ker f∗. In the same way, the other assertion can be proved. �

Proposition 3.2. A SCR co-isotropic or isotropic or totally lightlike submersion f from an

indefinite Kähler manifold M onto a lightlike manifold B is a complex (invariant) lightlike

submersion.

Proof. Let f be a SCR-lightlike submersion. If f is co-isotropic, then, S(Ker f∗)⊥ = {0} which

implies J(Ker f∗) = Ker f∗, that is, f is invariant lightlike submersion. If f is isotropic, then

S(Ker f∗) = {0} which implies f is invariant lightlike submersion. Similarly, if f is totally

lightlike submersion, then ∆ = Ker f∗ = (Ker f∗)⊥ which also implies f is invariant lightlike

submersion. �

From proposition (3.2), we can see that proper SCR and screen real lightlike submersions must

be r-lightlike. Thus we have the following proposition:

Proposition 3.3. There exist no proper SCR co-isotropic or isotropic or totally lightlike sub-

mersions from an indefinite Kähler manifold onto a lightlike manifold.

Now, we give examples of proper-SCR, complex and screen real lightlike submersions.

Denote by Rn
r,q,p the space Rn equipped with the semi-Riemannian metric g defined by

g(ei,e j)r,q,p = (Gr,q,p)i j, i ∈ {1, ...,n}, where ei is the standard basis of Rn, and Gr,q,p is the

diagonal matrix determined by g, that is, Gi j = diagonal(0, ...,0︸ ︷︷ ︸
r-times

,−1, ...,−1︸ ︷︷ ︸
q-times

,1, ...,1︸ ︷︷ ︸
p-times

).

Let
{

∂

∂x1
,

∂

∂y1
, ...,

∂

∂xn
,

∂

∂yn

}
be a canonical basis of R2n. Then we define J as

J
{

∂

∂x1
,

∂

∂y1
, ...,

∂

∂xn
,

∂

∂yn

}
=
{
− ∂

∂y1
,

∂

∂x1
, ...,− ∂

∂yn
,

∂

∂xn

}
.
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Example 3.1. Let R12
0,2,10 and R6

2,0,4 endowed with the semi-Riemannian metric

g =− (dx1)
2 − (dx2)

2 + (dx3)
2 + (dx4)

2 + (dx5)
2 + (dx6)

2

+ (dx7)
2 + (dx8)

2 + (dx9)
2 + (dx10)

2 + (dx11)
2 + (dx12)

2,

and degenerate metric g′ = (dy3)
2 + (dy4)

2 + (dy5)
2 + (dy6)

2, where x1, ... , x12 and

y1, ... , y6 are the canonical coordinates on R12 and R6, respectively. Define the map f :

(R12,g)→ (R6,g′) as

(x1, ...,x12) 7−→
(

x1− x3, x2− x4,
x5− x7√

2
,

x6− x8√
2

, x10, x12

)
.

Then, we have

Ker f∗ = Span
{

V1 =
∂

∂x1
+

∂

∂x3
,V2 =

∂

∂x2
+

∂

∂x4
,V3 =

1√
2

(
∂

∂x5
+

∂

∂x7

)
,

V4 =
1√
2

(
∂

∂x6
+

∂

∂x8

)
,V5 =

∂

∂x9
,V6 =

∂

∂x11

}
,

and

(Ker f∗)⊥ = Span
{

V1,V2,X1 =
1√
2

(
∂

∂x5
− ∂

∂x7

)
,X2 =

1√
2

(
∂

∂x6
− ∂

∂x8

)
,

X3 =
∂

∂x10
,X4 =

∂

∂x12

}
.

Thus f is a 2-lightlike submersion with ∆ = Ker f∗∩ (Ker f∗)⊥ = Span{V1,V2}. Since R12 has

complex structure, we can see easily that JV1 =V2 and JV3 =V4, i.e., D = Span{V3,V4} and ∆

are invariant with respect to J. Moreover, D⊥ = Span{V5,V6} and JD⊥ ⊂ S(Ker f∗)⊥. Hence,

f is a proper SCR-lightlike submersion. Furthermore, we can see that lightlike transversal dis-

tribution ltr(Ker f∗) is spanned by N1 =
1
2

(
− ∂

∂x1
+

∂

∂x3

)
and N2 =

1
2

(
− ∂

∂x2
+

∂

∂x4

)
. It is

easy to see that JN1 = N2. Therefore, ltr(Ker f∗) is invariant with respect to J.

Example 3.2. Let R8
0,2,6 and R4

2,0,2 be endowed with the semi-Riemannian metric

g =− (dx1)
2 − (dx2)

2 + (dx3)
2 + (dx4)

2 + (dx5)
2 + (dx6)

2 + (dx7)
2 + (dx8)

2,



SCREEN CAUCHY RIEMANN LIGHTLIKE SUBMERSIONS 2385

and degenerate metric g′ = (dy3)
2 + (dy4)

2, where x1, ... , x8 and y1, ... , y4 are the canonical

coordinates on R8 and R4, respectively. Define the map f : (R8,g)→ (R4,g′) as

(x1, ...,x8) 7−→
(

x1− x3, x2− x4,x5,x6

)
.

Then

Ker f∗ = Span
{

U1 =
∂

∂x1
+

∂

∂x3
,U2 =

∂

∂x2
+

∂

∂x4
,U3 =

∂

∂x7
,U4 =

∂

∂x8

}
,

and

(Ker f∗)⊥ = Span
{

U1,U2,X1 =
∂

∂x5
,X2 =

∂

∂x6

}
Thus f is a 2-lightlike submersion with ∆ = Ker f∗ ∩ (Ker f∗)⊥ = Span{U1,U2}. It is easy

to see that JU1 = U2, so ∆ is invariant with respect to J. Now, since JU3 = U4, we see that

D = S(Ker f∗) = Span{U3,U4} is invariant under J. Hence, f is complex lightlike submersion.

Further, ltr(Ker f∗) is spanned by N1 =
1
2

(
− ∂

∂x1
+

∂

∂x3

)
and N2 =

1
2

(
− ∂

∂x2
+

∂

∂x4

)
. By easy

calculation we can see that JN1 = N2, which implies ltr(Ker f∗) is also invariant with respect

to J.

Example 3.3. Let R8
0,2,6 and R4

2,0,2 be endowed with the semi-Riemannian metric

g =− (dx1)
2 − (dx2)

2 + (dx3)
2 + (dx4)

2 + (dx5)
2 + (dx6)

2 + (dx7)
2 + (dx8)

2,

and degenerate metric g′ = (dy3)
2 + (dy4)

2, where x1, ... , x8 and y1, ... , y4 are the canonical

coordinates on R8 and R4, respectively. Define the map f : (R8,g)→ (R4,g′) as

(x1, ...,x8) 7−→
(

x1− x5, x2− x6, x3, x7

)
.

Then, we have

Ker f∗ = Span
{

U1 =
∂

∂x1
+

∂

∂x5
,U2 =

∂

∂x2
+

∂

∂x6
,U3 =

∂

∂x4
,U4 =

∂

∂x8

}
,

and

(Ker f∗)⊥ = Span
{

U1,U2,X1 =
∂

∂x3
,X2 =

∂

∂x7

}
.

Therefore, f is a 2-lightlike submersion with ∆ = Ker f∗ ∩ (Ker f∗)⊥ = Span{U1,U2}. Since

JU1 =U2, ∆ is invariant with respect to J. Clearly S(Ker f∗) = Span{U3,U4} and S(Ker f∗)⊥=
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Span{X1,X2}. We can see easily that JU3 = X1 and JU4 = X2. Thus, S(Ker f∗) = D⊥ and

JD⊥ = S(Ker f∗)⊥. Hence f is screen real lightlike submersion. Moreover, we obtain

ltr(Ker f∗) = Span
{

N1 =
1
2

(
− ∂

∂x1
+

∂

∂x5

)
, N2 =

1
2

(
− ∂

∂x2
+

∂

∂x6

)}
,

which is invariant with respect to J.

Theorem 3.1. Let f : (M(c),g)→ (B,g′) be a lightlike submersion, where M(c) is an indefinite

complex space form with c 6= 0 and B an r-lightlike manifold. Then, f is an SCR-lightlike

submersion with D 6= {0} if and only if

(a) The maximal complex subspaces of Ker f∗p, p∈M define a distribution D′=D⊥ ∆, where

D is a holomorphic distribution.

(b) g(R(X ,Y )U,V ) = 0, for any X ,Y ∈ Γ(D′) and U,V ∈ Γ(D⊥), where D⊥ is orthogonal com-

plementary distribution to D in S(Ker f∗).

Proof. Let f be a SCR-lightlike submersion, then D′ = D⊥ ∆. If X ∈ Γ(Ker f∗) and Y ∈ Γ(∆),

then (b) follows from (2.3). If X ∈ Γ(D′) and Y ∈ Γ(D) then, as D⊥ is orthogonal to D in

S(Ker f∗), (b) follows again from (2.3). Conversely, (a) implies that J∆ is a distribution on M

and since D is a holomorphic distribution we have J∆∩D = {0}. Therefore, we have JD′ = D′,

which implies ∆ is invariant with respect to J. From (2.1), (2.3) and (b) we obtain

0 = g(R(JX ,X)U,V ) =
(c

2

)
g(X ,X)g(JU,V ),

for any X ∈ Γ(D) and U,V ∈ Γ(D⊥). Thus JD⊥ is orthogonal to D⊥. Also, as D is holomorphic,

JD⊥ is orthogonal to D. At the end, since ltr(Ker f∗) is invariant with respect to J, we get

JD⊥ ⊂ Γ(S(Ker f∗)⊥). This completes the proof. �

On the existence of a proper SCR-lightlike submersions, we prove the following result.

Theorem 3.2. Let f : (M,g,J)→ (B,g′) be a 2r-lightlike submersion from an indefinite Kähler

manifold M onto a lightlike manifold B and dim(Ker f∗) = m. Let dim(S(Ker f∗)⊥) = 1. If ∆

is invariant with respect to J and 2r < m then f is a proper SCR-lightlike submersion.

Proof. Since dim(S(Ker f∗)⊥) = 1 and g(JW,W ) = 0 for any W ∈ Γ(S(Ker f∗)⊥), we have

J(S(Ker f∗)⊥)∩ S(Ker f∗)⊥ = {0}. The radical distribution ∆ is invariant under J, implies
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invariance of ltr(Ker f∗) under J and since JW is a non-radical vector field, we have JW ∈

S(Ker f∗). Assume that D⊥ = Span{JW} and D be a orthogonal complementary distribution to

D⊥ in S(Ker f∗). Moreover, as ∆ is invariant, we have g(JU,ξ ) =−g(U,Jξ ) = 0, for any U ∈

Γ(D), ξ ∈ Γ(∆). Thus, JD∩∆ = {0}. As D⊥ is anti-invariant, we get g(JU,V ) =−g(U,JV ) =

0, for any U ∈ Γ(D),V ∈ Γ(D⊥). Therefore, JD∩D⊥ = {0}. In the same way, g(JU,W ) =

−g(U,JW ) = 0, for any U ∈ Γ(D), W ∈ Γ(S(Ker f∗)⊥). Now, since D and D⊥ are orthogonal

to each other, we have JD∩ S(Ker f∗)⊥ = {0}. At the end, non-degenerate D and invariant

ltr(Ker f∗) imply that g(JU,N) = −g(U,JN) = 0, for any U ∈ Γ(D), N ∈ Γ(ltr(Ker f∗)).

Thus, we have JD∩ ltr(Ker f∗) = {0}. All the above results imply that D is invariant with

respect to J. This completes the proof. �

Let f be a lightlike submersion from a real (m + n)-dimensional semi-Riemannian manifold

(M,g), where m,n > 1, onto a lightlike manifold (B,g′). Also, assume that Ker f∗ is an m-

dimensional lightlike distribution of M and tr(Ker f∗) is the complementary distribution to

Ker f∗ in M with respect to the pair {S(Ker f∗),S(Ker f∗)⊥}. Also, denote by ∇ the Levi-

Civita connection on M and by ĝ the induced metric on Ker f∗ of g. Then from (2.11), for any

U,V ∈ Γ(Ker f∗) and X ∈ Γ(Ker f∗)⊥, we write

∇UV = ∇̂UV +TUV,(3.4)

∇U X = TU X +∇
⊥
U X ,(3.5)

where ∇̂UV = ν∇UV and ∇⊥U X = h∇U X , {∇̂UV,TU X} and {TUV,∇⊥U X} belong to Γ(Ker f∗)

and Γ(tr(Ker f∗)), respectively. Here ∇̂ is a linear connection on Ker f∗. Let S(Ker f∗)⊥ 6= {0}.

Next, we assume that L and S the projection of tr(Ker f∗) on ltr(Ker f∗) and S(Ker f∗)⊥,

respectively. Then we write

∇UV = ∇̂UV +T l
UV +T s

UV,(3.6)

∇U X = TU X +D⊥l
U X +D⊥s

U X ,(3.7)

where T l
UV = L(TUV ), T s

UV = S(TUV ) and D⊥l
U X = L(D⊥U X),D⊥s

U X = S(D⊥U X). We call T l and

T s lightlike second fundamental form and the screen second fundamental form of f respectively.
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It is important to note that D⊥l and D⊥s do not define linear connections on tr(Ker f∗), although

we can see easily that these are otsuki connections.

By virtue of above otsuki connections, we define the following differential operators

(3.8) ∇
⊥l
U : Γ(ltr(Ker f∗)) −→ Γ(ltr(Ker f∗)); ∇

⊥l
U (LX) = D⊥l

U (LX),

and

(3.9) ∇
⊥s
U : Γ(S(Ker f∗)⊥) −→ Γ(S(Ker f∗)⊥); ∇

⊥s
U (SX) = D⊥s

U (SX),

for any U ∈ Γ(Ker f∗) and X ∈ Γ(tr(Ker f∗)). We can see by easy calculation that both ∇⊥l
U and

∇⊥s
U are linear connections on ltr(Ker f∗) and S(Ker f∗)⊥, respectively. Moreover, we define

the mappings

(3.10) D⊥l : Γ(Ker f∗)×Γ(S(Ker f∗)⊥)−→ Γ(ltr(Ker f∗)); D⊥l(U,SX) = D⊥l
U (SX),

and

(3.11) D⊥s : Γ(Ker f∗)×Γ(ltr(Ker f∗))−→ Γ(S(Ker f∗)⊥); D⊥s(U,LX) = D⊥s
U (LX),

U ∈ Γ(Ker f∗) and X ∈ Γ(tr(Ker f∗)). Using (3.8)-(3.11), (3.7) becomes

(3.12) ∇U X = TU X +∇
⊥l
U (LX)+D⊥l(U,SX)+∇

⊥s
U (SX)+D⊥s(U,LX).

Thus for any U ∈Γ(Ker f∗), N ∈Γ(ltr(Ker f∗)) and W ∈Γ(S(Ker f∗)⊥), from (3.12) we obtain

∇U N = TU N +∇
⊥l
U N +D⊥s(U,N),(3.13)

∇UW = TUW +D⊥l(U,W )+∇
⊥s
U W.(3.14)

By using (3.6), (3.13) and taking into account that ∇ is a metric connection, we get

(3.15) g(T s
UV,W )+g(V,D⊥l(U,W )) =−ĝ(TUW,V ),

and using (3.13) and (3.14), we get

(3.16) g(D⊥s(U,N),W ) =−g(N,TUW )
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If f is a co-isotropic or totally lightlike submersion, then there is no screen transversal part, i.e.,

S(Ker f∗)⊥ = {0}. So equations (3.6) and (3.13) reduced to

(3.17) ∇UV = ∇̂UV +T l
UV,

(3.18) ∇U N = TU N +∇
⊥l
U N,

for any U,V ∈ Γ(Ker f∗) and N ∈ Γ(ltr(Ker f∗)).

Let M be an indefinite Kähler manifold, B an r-lightlike manifold and f : M → B be an

r-lightlike submersion. Then for any U ∈ Γ(Ker f∗) and X ∈ Γ(Ker f∗)⊥, we write

(3.19) JU = φU +ωU,

(3.20) JX = BX +CX ,

where {φU,BX} and {ωU,CX} belong to Γ(Ker f∗) and Γ(Ker f∗)⊥, respectively. If f is a

SCR-lightlike submersion from M onto B, then by using (3.2) and (3.3) we have φU ∈ Γ(D′)

and ωU ∈ Γ(JD⊥). Applying J to (3.19) and (3.20) we get

φ
2 =−I−Bω, ωφ +Cω = 0,

from which we obtain φ 3 +φ = 0, that is, φ is an f -structure of constant rank [15].

Next, we consider a coordinate neighbourhood U of M and define locally the differential

1-forms

(3.21) ηi(U) = g(U,Ni), ∀U ∈ Γ(Ker f∗)|U , Ni ∈ Γ(ltr(Ker f∗)) i ∈ {1, ...,r}.

Then any vector field U ∈ Γ(Ker f∗) can be expressed on U as:

(3.22) U = φU +
r

∑
i=1

ηi(U)ξi,

that is, {η1, ...,ηr} define locally the screen distribution S(Ker f∗).

Now, we define new geometric objects induced by the screen distribution of f . Let f be either

r-lightlike (r < min(m,n)) or co-isotropic submersion. Then, using (3.4), (3.5) and (3.22), we

write

(3.23) ∇̂U φV = ∇̂
∗
U φV +T ∗U φV,
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(3.24) ∇̂U ξ = T ∗U ξ +∇
∗⊥
U ξ ,

∀U,V ∈ Γ(Ker f∗), ξ ∈ Γ∆, where {∇̂∗U φV, T ∗U ξ} and {T ∗U φV, ∇∗⊥U ξ} belong to Γ(S(Ker f∗))

and Γ∆ respectively. Thus, ∇̂∗ and ∇∗⊥ are linear connections on S(Ker f∗) and ∆ respec-

tively. Moreover, T ∗U φV and T ∗U ξ are Γ∆ and Γ(S(Ker f∗))-valued bilinear forms on Γ(Ker f∗)×

Γ(S(Ker f∗)) and Γ(Ker f∗)×Γ(∆) respectively. Using (3.6), (3.24) and taking into account that

∇ is a metric connection, we have

(3.25) g(T l
U ξ ,ξ ) = 0, T ∗

ξ
ξ = 0, ∀U ∈ Γ(Ker f∗), ξ ∈ Γ(∆)

Generally, the induced linear connection ∇̂ on Ker f∗ is not a metric connection. Moreover,

using (3.6) and that ∇ is a metric, we get

(3.26) (∇̂U ĝ)(V,W ) = g(T l
UV,W )+g(T l

UW,V ), ∀U,V,W ∈ Γ(Ker f∗).

Now, we study integrability of distributions involved in the definition of SCR-lightlike submer-

sions.

Theorem 3.3. Let f : (M,g)→ (B,g′) be a SCR-lightlike submersion from an indefinie Kähler

manifold M onto a lightlike manifold B. Then, S(Ker f∗) is integrable if and only if following

conditions are satisfied:

(3.27) g(TV N,JU) = g(TU N,JV ), U,V ∈ Γ(D),

(3.28) g(TV N,JU) = g(D⊥s(U,N),JV ), U ∈ Γ(D), V ∈ Γ(D⊥),

(3.29) g(D⊥s(U,N),JV ) = g(D⊥s(V,N),JU), U,V ∈ Γ(D⊥),

for any N ∈ Γ(ltr(Ker f∗)).

Proof. Let M be an indefinite Kähler manifold and Ω is the fundamental 2-form of M. Then,

we have dΩ(U,V,N) = 0, ∀U,V ∈ Γ(S(Ker f∗)) and N ∈ Γ(ltr(Ker f∗)). It follows that

U(Ω(V,N))+V (Ω(N,U))+N(Ω(U,V ))−

Ω([U,V ],N)−Ω([V,N],U)−Ω([N,U ],V ) = 0.
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Using (2.4), above equation gives

Ng(U,JV )−g([U,V ],JN])−g([V,N],JU)−g([N,U ],JV ) = 0.

By using (2.2), (2.9), (3.13) and torsion free ∇, we obtain

g([U,V ],JN) =−g(∇V N,JU)+g(∇U N,JV )

=−g(TV N,JU)−g(D⊥s(V,N),JU)+g(TU N,JV )+g(D⊥s(U,N),JV ).

Since S(Ker f∗) = D⊕D⊥, for any U,V ∈ Γ(D) we get (3.27), for U ∈ Γ(D) and V ∈ Γ(D⊥)

we get (3.28) and for U,V ∈ Γ(D⊥) we get (3.29). �

Theorem 3.4. Let f : (M,g)→ (B,g′) be a SCR-lightlike submersion from an indefinite Kähler

manifold M onto a lightlike manifold B. Then, the distribution D′ = D⊥ ∆ is integrable if and

only if

TU JV = TV JU, ∀U,V ∈ Γ(D′)

Proof. By using (2.2), (3.6), (3.19) and (3.20) we get

TU JV = ω∇̂UV +CTUV, ∀U,V ∈ Γ(D′)

Then, since ∇ is torsion free, we get

TU JV −TV JU = ω[U,V ].

This completes the proof. �

Theorem 3.5. Let f : (M,g)→ (B,g′) be a SCR-lightlike submersion from an indefinite Kähler

manifold M onto a lightlike manifold B. Then the following conditions are equivalent:

(a) TZJW = TW JZ, for any Z,W ∈ Γ(D⊥),

(b) ĝ(W,TZN) = ĝ(TW N,Z), for any Z,W ∈ Γ(D⊥), N ∈ Γ(ltr(Ker f∗)),

(c) D⊥ is integrable.

Proof. (a) ⇒ (b): Assume that TZJW = TW JZ, ∀ Z,W ∈ Γ(D⊥). Then, by using (3.14), we

have

g(∇ZJW,JN) = g(∇W JZ,JN), ∀ N ∈ Γ(ltr(Ker f∗)).
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From (2.1) and (2.2), it follows that g(∇ZW,N) = g(∇W Z,N). Now, since ∇ is a metric con-

nection, we get g(W,∇ZN) = g(Z,∇W N). Hence, by using (3.13), we obtain (b).

(b) ⇒ (c): The distribution D⊥ is integrable if and only if g([Z,W ],JN) = g([Z,W ],JV ) =

0, ∀ Z,W ∈ Γ(D⊥),V ∈ Γ(D) and N ∈ Γ(ltr(Ker f∗)). Since ∇ is a metric connection, we

obtain g([Z,W ],JN) = g(W,∇ZJN)−g(Z,∇W JN). Since ltr(Ker f∗) is invariant, using (b) and

(3.13), we obtain

g([Z,W ],JN) = ĝ(W,TZJN)− ĝ(Z,TW JN) = 0.

Moreover, from (3.15) we get

(3.30) ĝ(TZJW,V ) =−g(T s
ZV,JW ), ∀ Z,W ∈ Γ(D⊥), V ∈ Γ(D).

Using (3.6) and (3.14) we obtain

(3.31) ĝ(T s
ZV,JW ) =−g(TV JZ,W ).

Then, from (3.30) and (3.31) we obtain

ĝ(TZJW,V ) = ĝ(TV JZ,W ).

Now, using (2.14) and lemma (2.1), above equation gives

ĝ(TZJW,V ) = ĝ(TW JZ,V ), ∀ Z,W ∈ Γ(D⊥),V ∈ Γ(D).

Since ∇ is a metric connection, using (2.35), above equation implies

ĝ([Z,W ],JV ) = ĝ(TW JZ,V )− ĝ(TZJW,V ) = 0.

Hence, D⊥ is integrable.

(c)⇒ (a): Using (2.2), (3.6), (3.7), (3.14), (3.19) and (3.20) we obtain

TZJW = φ ∇̂ZW +BTZW, ∀ Z,W ∈ Γ(D⊥).

Then, using (2.14), we obtain

TZJW −TW JZ = φ [Z,W ].

Then using the integrability of D⊥, we get (a). �
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Theorem 3.6. Let f : (M,g)→ (B,g′) be a SCR-lightlike submersion from an indefinite Kähler

manifold M onto a lightlike manifold B. Then the radical distribution ∆ is integrable if and only

if the following conditions hold:

g(T l
ξ
W,ξ ′) = g(T l

ξ ′W,ξ ),

g(T s
ξ

JZ,Jξ
′) = g(T s

ξ ′JZ,Jξ ),

where ξ ,ξ ′ ∈ Γ(∆),Z ∈ Γ(D⊥) and W ∈ Γ(D).

Proof. From the definition of SCR-lightlike submersion, ∆ is integrable if and only if ĝ([ξ ,ξ ′],Z)=

ĝ([ξ ,ξ ′],W ) = 0, ∀ ξ ,ξ ′ ∈ Γ(∆),W ∈ Γ(D), and Z ∈ Γ(D⊥). Using (2.2), (3.6) and Lemma 2.1

(a), we have

ĝ([ξ ,ξ ′],W ) = g(T l
ξ
W,ξ ′)−g(T l

ξ ′W,ξ ),(3.32)

ĝ([ξ ,ξ ′],Z) = g(T s
ξ

JZ,Jξ
′)−g(T s

ξ ′JZ,Jξ ).(3.33)

From (3.32) and (3.33), the proof follows. �

Theorem 3.7. Let f : (M,g)→ (B,g′) be a SCR-lightlike submersion from an indefinite Kähler

manifold M onto a lightlike manifold B. Then, the following conditions are equivalent

(a) TU JV has no components in D′, for any U,V ∈ Γ(D⊥),

(b) T s
U JZ and D⊥s(U,JN) have no components in JD⊥, for any U ∈ Γ(D⊥), Z ∈ Γ(D) and

N ∈ Γ(ltr(Ker f∗)),

(c) D⊥ defines totally geodesic foliation on Ker f∗.

Proof. (a)⇒ (b): Using (a) and (3.15), we get

0 = ĝ(TU JV,JZ) =−g(T s
U JZ,JV )−g(JZ,D⊥l(U,JV )) =−g(T s

U JZ,JV ),

for any U,V ∈ Γ(D⊥), Z ∈ Γ(D). Thus, T s
U JZ has no components in JD⊥. Also, from (3.16)

we have

0 = g(TU JV,JN) =−g(D⊥s(U,JN),JV ), U,V ∈ Γ(D⊥), N ∈ Γ(ltr(Ker f∗)),

which implies D⊥s(U,JN) has no components in JD⊥.
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(b)⇒ (c): The distribution D⊥ is parallel if and only if ĝ(∇̂UV,Z) = g(∇̂UV,N) = 0, for any

U,V ∈ Γ(D⊥),Z ∈ Γ(D) and N ∈ Γ(ltr(Ker f∗)). From (2.1), (2.2), (3.6) and the fact that ∇

is a metric connection, we obtain ĝ(∇̂UV,Z) = −g(T s
U JZ,JV ) = 0. Moreover, from (3.13) we

have g(∇̂UV,N) =−g(D⊥s(U,JN),JV ) = 0, which implies (c).

(c)⇒ (a): Using (c) it follows that D⊥ is parallel and using (2.1), (2.2), (3.6) and (3.14) we

obtain

0 = ĝ(∇̂UV,Z) = g(TU JV,JZ), U,V ∈ Γ(D⊥), Z ∈ Γ(D).

In the same way

0 = g(∇̂UV,N) = g(TU JV,JN), U,V ∈ Γ(D⊥), N ∈ Γ(ltr(Ker f∗)).

Hence, TU JV has no components in D′. �

4. PROPER SCR-LIGHTLIKE SUBMERSIONS

In this section, we study proper SCR-lightlike submersions with totally umbilical fibres from

an indefinite Kähler manifold M onto a lightlike manifold B.

Definition. Let f : (M,g)→ (B,g′) be a SCR lightlike submersion from an indefinite Kähler

manifold M onto a lightlike manifold B. Then the fibres are totally umbilical if

(4.1) TUV = g(U,V )H

for any U,V ∈Γ(Ker f∗). Here H is the mean curvature vector field belonging to Γ(tr(Ker f∗)).

From (4.6), we can see that fibres are totally umbilical, if and only if on every coordinate

neighborhood U there exist smooth curvature vector fields H l ∈ Γ(ltr(Ker f∗)) and H s ∈

Γ(S(Ker f∗)⊥) and smooth functions H l
i ∈ F (ltr(Ker f∗)) and H s

j ∈ Γ(F (S(Ker f∗)⊥)),



SCREEN CAUCHY RIEMANN LIGHTLIKE SUBMERSIONS 2395

where F (Ker f∗)⊥ denotes the algebra of smooth functions on (Ker f∗)⊥, such that

T l
UV = H lg(U,V ),(4.2)

T s
UV = H sg(U,V ),(4.3)

(T l
U)iV = H l

i g(U,V ),(4.4)

(T s
U) jV = H s

j g(U,V ),(4.5)

for any U,V ∈ Γ(Ker f∗). It is important to note that above definition does not depend on

S(Ker f∗) and S(Ker f∗)⊥.

Theorem 4.1. There exists a Levi-Civita connection on the fibres of a proper SCR-lightlike

submersion f : (M,g)→ (B,g′) with totally umbilical fibres from an indefinite Kähler manifold

M onto a lightlike manifold B.

Proof. Using (2.2) (3.6), (3.14), (3.19) and (3.20), we have

T l
U JV = JT l

UV, U,V ∈ Γ(Ker f∗).

Moreover, as fibres are totally umbilical we obtain H lg(U,JV ) = JH lg(U,V ). Interchanging

U and V we have H lg(V,JU) = JH lg(V,U). Since g is symmetric, using (2.1) we have

H lg(U,JV ) = 0. If U,V ∈ Γ(D) we get H l = 0. Therefore from (4.2), it follows that T l

vanishes identically. Thus, the proof follows from (3.26). �

Theorem 4.2. Let f : (M,g)→ (B,g′) be a SCR-lightlike submersion with totally umbilical

fibres and integrable screen distribution S(Ker f∗) whose leaf is M̃, where M is an indefinite

Kähler manifold and B is a lightlike manifold. If M̃ is a totally geodesic submanifold of M then

Ker f∗ is also a totally geodesic submanifold of M.

Proof. Using (2.42), we have

ĝ(U,V ) = ĝ
(

φU +
r

∑
i=1

ηi(U)ξi, φV +
r

∑
j=1

η j(V )ξ j

)
= ĝ(φU,φV ) = g̃(U,V ),

for any U,V ∈ Γ(Ker f∗), where g̃ is the semi-Riemannian metric of M̃. Since fibres are totally

umbilical, using (4.2) and (4.3), we have T l
U ξ = 0 and T s

U ξ = 0 for any U ∈Γ(Ker f∗),ξ ∈Γ(∆).
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Moreover, from (3.6), we obtain

∇UV = ∇̃UV + T̃UV, ∀U,V ∈ Γ(S(Ker f∗)),(4.6)

where ∇̃ and T̃ are the metric connection and second fundamental form of M̃, respectively.

Hence, from (3.6), (3.23) and (4.6), we obtain

T̃UV = T ∗UV +T s
UV, ∀U,V ∈ Γ(S(Ker f∗)),

which completes the proof. �

Theorem 4.3. Let f : (M,g)→ (B,g′) be a proper SCR-lightlike submersion from an indefinite

Kähler manifold M onto a lightlike manifold B. Then, the fibres are totally umbilical only if

D⊥ is one-dimensional.

Proof. From (2.2), (3.6), (3.19) and (3.20), we obtain

T s
U JU = ω∇̂UU +CT s

UU, U ∈ Γ(D).

Now, since fibres are totally umbilical using (4.3), we have

ω∇̂UU = 0, 0 =CT s
UU =CH sg(U,U) = g(U,U)CH s.

Thus, we have

(4.7) ∇UU ∈ Γ(D′), H s ∈ Γ(JD⊥).

On the other hand, using (2.2), (3.6), (3.14), (3.19) and (3.20), we have

TZJW = φ ∇̂ZW +BT s
ZW,

for Z,W ∈ Γ(D⊥). Using above equation we get

(4.8) ĝ(TZJW,Z) =−ĝ(T s
ZW,JZ).

From (3.15), (4.3) and (4.8), we get

(4.9) ĝ(Z,Z)g(H s,JW ) = ĝ(Z,W )ĝ(H s,JZ).

Interchanging Z and W in (4.9), we have

(4.10) ĝ(W,W )g(H s,JZ) = ĝ(W,Z)ĝ(H s,JW ).
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Using (4.9) and (4.10), we obtain

(4.11) g(H s,JZ) =
ĝ(Z,W )2

ĝ(Z,Z)ĝ(W,W )
g(H s,JZ).

If Z and W are non-null vector fields on D⊥, then from (4.7) and (4.11) we conclude that either

H s = 0 or Z and W are linearly dependent. Hence dim(D⊥) = 1. �

5. COMPLEX LIGHTLIKE SUBMERSIONS

From proposition (3.1), we see that a SCR-lightlike submersion from an indefinite Kähler

manifold (M,g) onto a lightlike manifold (B,g′), is a complex (invariant) lightlike submersion

if and only if D⊥ = {0}, that is, S(Ker f∗) is invariant under J. In fact, isotropic and totally

lightlike submersions are trivial cases of complex lightlike submersions. So we assume that a

complex lightlike submersion is a co-isotropic submersion.

Lemma 5.1. Let f : (M,g)→ (B,g′) be a complex lightlike submersion from an indefinite

Kähler manifold M onto a lightlike manifold B .Then

(5.1) T l
U JV = JT l

UV = T l
JUV, ∀U,V ∈ Γ(Ker f∗).

Proof. Using (3.17), we have

∇U JV = ∇̂U JV +T l
U JV

J∇UV = J∇̂UV + JT l
UV.

Using (2.2), (2.14) and above equations, we get (5.1). �

Let f : (M,g,J)→ (B,g′) be a SCR-lightlike submersion from a (2m + 2)-dimensional indef-

inite Kähler manifold M onto a lightlike manifold and M. Further, suppose that Ker f∗ is a 2m-

dimensional indefinite complex submanifold of M, that is, Ker f∗ is a complex m-dimensional

hypersurface of M, with 1 dimensional null holomorphic subbundle H of the complexified

tangent bundle (Ker f∗)
c, such that

∆ = Re(H +H̄ ) = (Ker f∗)⊥ = Span{ξ ,Jξ}.
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Theorem 5.1. Let f : (M,g)→ (B,g′) be a complex lightlike submersion from an indefinite

Kähler manifold M onto a lightlike manifold B and Ker f∗ be a complex hypersurface of M.

Then the radical distribution ∆ defines a totally geodesic foliation on Ker f∗.

Proof. Since ∆ is spanned by ξ and Jξ , we write

U = p1ξ +q1Jξ , V = p2ξ +q2Jξ ,

for any U,V ∈ Γ(∆). Using the linearity of connection ∇̂, we get

(5.2) ĝ(∇̂UV,φW ) = p1 p2ĝ(∇̂ξ ξ ,φW )+ p1q2ĝ(∇̂ξ Jξ ,φW )

+q1 p2ĝ(∇̂Jξ ξ ,φW )+q1q2ĝ(∇̂Jξ Jξ ,φW ).

Using (3.25), we obtain

ĝ(∇̂UV,φW ) = p1q2ĝ(∇̂ξ Jξ ,φW )+q1 p2ĝ(∇̂Jξ ξ ,φW ).

Therefore, by using (3.6) and taking into account that ∇ is a metric connection, we get

ĝ(∇̂UV,φW ) =−p1q2g(Jξ ,∇ξ φW )−q1 p2g(ξ ,∇Jξ φW )

=−p1q2g(Jξ ,T l
ξ

φW )−q1 p2g(ξ ,T l
Jξ

φW ).

Then, using (2.1) and (5.1) we obtain

ĝ(∇̂UV,φW ) = p1q2g(ξ ,T l
ξ

JφW )−q1 p2g(ξ ,T l
ξ

JφW ) = (p1q2−q1 p2)g(ξ ,T l
ξ

φW ).

Finally, using (2.14) and (3.25) we get

ĝ(∇̂UV,φW ) = 0,

which implies ∇̂UV ∈ ∆, for any U,V ∈ ∆. Hence ∆ defines a totally geodesic foliation on

Ker f∗. �

Let (M,g,J) be an indefinite Kähler manifold, (B,g′) a lightlike manifold and f : M→ B be

a lightlike submersion with integrable screen distribution S(Ker f∗). Let (M̌, ǧ) be an integral

manifold of S(Ker f∗), where ǧ is the induced non-degenerate semi-Riemannian metric on M̌.

We say that f is screen Kähler submersion if (M̌, ǧ, J̌) has Kähler structure induced by the

almost complex operator J̌ on M̌.



SCREEN CAUCHY RIEMANN LIGHTLIKE SUBMERSIONS 2399

Theorem 5.2. Let f : (M,g)→ (B,g′) be a complex lightlike submersion from an indefinite

Kähler manifold M onto a lightlike manifold B, whose screen distribution S(Ker f∗) is inte-

grable. Then f is a screen Kähler submersion.

Proof. Since f is a complex lightlike submersion, therefore S(Ker f∗) and ∆ are invariant with

respect to J. Let (M̌, ǧ) be an integral submanifold of S(Ker f∗), where ǧ is the semi-Riemannian

metric on M̌. Then M̌ is non degenerate manifold. We suppose that J̌ is the induced almost

complex structure on M̌ and immersion f̌ : M̌→M is an almost complex mapping. Then, we

have

(5.3) J f̌∗ = f̌∗J̌.

Since ǧ is a semi Riemannian metric, therefore we have

(5.4) ǧ(U,V ) = f̌∗g(U,V ) = g( f̌∗U, f̌∗V ), ∀U,V ∈ Γ(Ker f̌∗).

Using (2.1) and (5.4), we obtain

(5.5) ǧ(U,V ) = g(J f̌∗U,J f̌∗V ).

Using (5.3) and (5.5), we get

ǧ(U,V ) = ǧ( f̌∗J̌U, f̌∗J̌V ),

Then, from (5.4) we obtain

ǧ(U,V ) = ǧ(J̌U, J̌V ),

which implies ǧ is a Hermitian metric. Next, we assume that Ω and Ω̌ be the fundamental

2-form of M and M̌, respectively. Then, from (5.3) and (5.4) we get

Ω( f̌∗U, f̌∗V ) = Ω̌(U,V ).

Since Ω is closed and ∇̂∗ is a metric connection on M̌, it follows that Ω̌ is also closed. Hence,

M̌ is a Kähler manifold, which completes the proof. �
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6. SCREEN REAL SUBMERSIONS

In this section, we study screen real lightlike submersions from an indefinite Kähler manifold

(M,g) onto a lightlike manifold (B,g′). Our main focus in this section is screen real lightlike

submersions with irrotational fibres, that is, ∇U ξ ∈ Γ(Ker f∗), for any U ∈ Γ(Ker f∗) and ξ ∈ ∆

[8, 11]. Using (3.6), we can see that this condition is equivalent to T l
U ξ = T s

U ξ = 0.

Theorem 6.1. There exists a Levi-Civita connection on the fibres of a screen real lightlike

submersion f : (M,g)→ (B,g′) with irrotational fibres from an indefinite Kähler manifold M

onto a lightlike manifold B.

Proof. Let f be the screen real lightlike submersion with irrotational fibres. Then, we have

T l
U ξ = T s

U ξ = 0,

for any U ∈ Γ(Ker f∗) and ξ ∈ ∆. Using (3.6), we have

g(T l
UV,ξ ) = g(∇UV,ξ ),

for any U,V ∈ Γ(S(Ker f∗)) Then, using (2.1) and (2.2) above relation gives

g(T l
UV,ξ ) = g(∇U JV,Jξ ).

Now, since ∇ is a metric connection we get

g(T l
UV,ξ ) =−g(∇U Jξ ,JV ).

Using (3.6), above equation implies

g(T l
UV,ξ ) =−g(T s

U Jξ ,JV ),

for any U,V ∈ S(Ker f∗). Since ∆ is invariant under J and fibres are irrotational, we get

g(T l
UV,ξ ) = 0.

Thus T l
UV = 0, for any U,V ∈ ΓS((Ker f∗)). Hence, the proof is completed by using (3.26). �

Theorem 6.2. Let f : (M,g)→ (B,g′) be a screen real lightlike submersion with irrotational

fibres from an indefinite Kähler manifold M onto a lightlike manifold B. Then the radical

distribution ∆ defines a totally geodesic foliation on Ker f∗.
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Proof. The radical distribution ∆ defines a totally geodesic foliation on Ker f∗ if and only if

ĝ(∇̂ξ1
ξ2,Z) = 0 for any ξ1,ξ2 ∈ Γ(∆) and Z ∈ Γ(S(Ker f∗)). Using (3.6) and taking account

that ∇ is a metric connection, we obtain

ĝ(∇̂ξ1
ξ2,Z) = g(∇ξ1

ξ2,Z) =−g(ξ2,∇ξ1
Z) =−g(ξ2,T l

ξ1
Z).

Now, since fibres are irrotational using (2.14), we have T l
ξ1

Z = 0, which implies

ĝ(∇̂ξ1
ξ2,Z) = 0.

Thus the proof follows. �

Theorem 6.3. Let f : (M,g)→ (B,g′) be a screen real lightlike submersion from an indefinite

Kähler manifold M onto a lightlike manifold B. Then the following conditions are equivalent

(a) S(Ker f∗) is parallel.

(b) TU JV is S(Ker f∗) valued, ∀U,V ∈ Γ(S(Ker f∗)).

(c) D⊥s(U,N) is D0 valued, ∀U ∈ Γ(Ker f∗) and N ∈ Γ(ltr(Ker f∗)).

Proof. Screen distribution S(Ker f∗) is parallel if and only if g(∇̂UV,N) = 0, for any U,V ∈

Γ(S(Ker f∗)) and N ∈ Γ(ltr(Ker f∗)). Using (3.6), we obtain

g(∇̂UV,N) = g(∇UV,N).

Then, from (2.1) , (2.2 )and (3.14), above equation gives

g(∇̂UV,N) = g(∇U JV,JN) = g(TU JV,JN).

It follows that (a)⇔ (b). Also, using (3.16) we have

(D⊥s(U,N),JV ) =−g(TU JV,N).

Using this we get (b)⇔ (c). �
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