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Abstract: This paper describes an analytical framework for in-depth investigation of a complex system consisting of 

two subsystems (namely L and M) in series configuration. Subsystem-L is composed of three identical units in parallel 

configuration that are working under 1-out-of-3: G policy, while subsystem-M has two non-identical units that are 

working under 1-out-of-2: G: policy. In subsystem-M, priority in operation is given to M1 unit whereas M2 unit put 

into cold standby mode if not in use. Moreover, both the subsystems are connected with controllers that may be perfect 

or imperfect at the time of need. We have considered a catastrophic failure due to frequent change in environmental 

conditions or man-made disruption. Failure rates of units in both the subsystems are constant and assumed to follow 

exponential distribution, but their repair supports two types of distributions namely general distribution and Gumbel-

Hougaard family copula distribution. The system is studied by using the supplementary variable technique, Laplace 

transformation and Gumbel-Hougaard family of copula to derive differential equations and obtain important reliability 
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indexes such as availability of the system, reliability of the system and profit analysis. The results have shown by 

tables and graphs. Conclusive part have been discussed in the last section of this study. 

Keywords: k-out-of-n: G system; availability; catastrophic failure; cost analysis; Gumbel-Hougaard family copula 

distribution. 

2010 AMS Subject Classification: 90B25. 

 

1. INTRODUCTION 

The goal of reliability and availability is to estimate errors in measurement and to suggest ways of 

improving so that errors are minimized. They play substantial roles in product quality and services. 

While reliability is defined as the probability of a system or a component to perform its intended 

functions for a specified period of time, availability is usually concerned with repairable systems 

and is defined as the probability of the system to work at a specific time, apart from the crashes 

and repairs it had before. Redundant systems, which have been widely used in practice, such as 

space shuttles, communication satellites, a dishwasher, a hybrid car, a cargo ship, or a fighter plane 

are frequently discussed in research literature. Redundancy is a technique commonly used to 

improve system reliability and availability. It is used in the form of identical components connected 

in such a way that when one component fails, the others will keep the system functioning. In 

general, there are three types of standbys: (i) Cold standby in which the standby unit is only called 

upon when the primary or operating unit fails. In this inactive components have a zero failure rate 

and cannot fail while in standby state; (ii) Hot standby in which the standby unit has the same 

failure rate as when it is run with the operating unit; (iii) Warm standby in which the standby unit 

runs in the background of operating unit. It can fail in this state, but its failure rate is less than that 

of operating unit. Moreover, redundancy is highly cost effective in achieving a certain reliability 

level of the system. Therefore, in order to enhance reliability k-out-of-n system structure in which 

at least k components out of n must be functioning for the system to be operational play a vital 

role. In this, a series system can be regarded as an n-out-of-n: G system, while a parallel system as 

a 1-out-of-n: G system. k-out-of-n warm standby systems have found application in various fields 
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including medical diagnosis, redundant-system testing, network design, power generation and 

transmission system and so on. Availability of the system, reliability of the system, mean time to 

failure and cost analysis studied by several authors for k-out-of-n: G redundant system under 

various conditions such as repairable system by Kullstam [9], redundancy optimization under 

common cause failure by Bai, Yun and Chung [3], consecutive k-out-of-n using r repairman by 

Wu and Guan [25], two stage weighted with components in common by Chen and Yang [24], warm 

standby system with two category of units by Zhang, Xie and Horigome [15], generalized multi-

state system by Zuo and Tian [6], single unit M|G|1 system model with helping unit by Kumar and 

Gupta [8], exact reliability formula for consecutive system by Liang, Xiong and Li [23], non-

identical components considering shut-off rules using quasi-birth-death process by Moghaddass, 

Zuo and Wang [12], with and without repair with three failure modes by Kumar and Sirohi [7], 

real example of sliding window system by Levitin and Dai [4], generalized block replacement 

policy with respect to a threshold number of failed components and risk costs by Park and Pham 

[5], full system equipped with a single warm standby component by Erylmaz [14] and standby 

with multiple working vacations by Sharma and Kumar [13].  

Initially reliability models were based on the assumption that only one k-out-of-n system, in which 

all units are arranged in parallel, is possible for any complex engineering system. However, there 

are many situations when two or more k-out-of-n type system in series configuration is possible, 

and, when this happen, the results are awesome in case of reliability. In such cases, we can divide 

the complete system into two subsystems in series configuration. Many researchers have 

extensively studied the use of series systems. Bao and Cui [21] studied a series Markov repairable 

system and presented availability indices as measure of reliability using time interval omission 

problem concept. Singh, Ram and Rawal [18] presented a novel method for cost analysis of an 

engineering system, which consists of two subsystems, viz. subsystem-1 and subsystem-2 with 

controllers in series. Subsystem-1 works under the k-out-of-n: good policy and subsystem-2 

consists of three identical units in parallel configuration that connected in series. The controllers 

control both the subsystems and the operator may fail the system deliberately. The system is 
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studied by supplementary variable technique and Laplace transforms. Jia, Shen and Xing [22] 

studied two-unit series multistate Markov repairable systems with repair time omission is 

developed based on a model for single-unit multistate Markov repairable systems. It is worth 

noticing that we may employ general repair if the system is in operation and running under minor 

or major partial failure mode, but whenever the system is in complete failure mode, the system is 

to be repaired using copula distribution. Singh and Rawal [16] evaluated reliability characteristics 

of two subsystems in a series configuration under different failure and repair discipline with 

controllers using Gumbel-Hougaard family copula distribution. Lado and Singh [1] proposed a 

series system with two subsystems operated by human operator. In this, each subsystem has two 

identical units in parallel. The paper has studied via two types of repair viz. copula repair and 

general repair and concluded that copula repair is more reliable compare to general repair. Singh 

and Poonia [17] studied two-non identical unit system by regenerative point technique using 

correlation concept. Singh, Poonia and Abdullahi [19] studied a complex engineering system in 

series using copula repair and catastrophic failure. Singh, Poonia and Rawal [20] analyzed a 

computer network using copula repair under 2-out-of-3: G policy and evaluated various reliability 

physiognomies. Some recently published articles under copula methodology and catastrophic 

failure may be seen in Dhruv et al. [2], Sirohi and Poonia [10], and Poonia, Sirohi and Kumar [11]. 

However, situations in the real world are increasingly complicated, which cannot be covered by 

simple engineering models. Therefore, in this paper, a complex system consisting of two 

subsystems (namely L and M) in series configuration is studied. Subsystem-L is composed of three 

identical units in parallel configuration that are working under 1-out-of-3: G policy, while 

subsystem-M has two non-identical units that are working under 1-out-of-2: G: policy. In 

subsystem-M, priority in operation is given to M1 unit whereas M2 unit put into cold standby 

mode if not in use. Then, based on the behavior of the whole system, all the system states can also 

be classified into three subsets as follows. 

Classification I: The system operates perfectly; in this situation, all the components in both the 

subsystems are in the perfect functioning state. 
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Classification II: The system is partially working; in this situation, at least one component in one 

or both the subsystems is in failure state, and the remainder is perfect functioning. 

Classification III: The system is completely failed; in this situation, either subsystem L or M is in 

the complete failure state. Further, system may be completely failed due to controller (s) or 

catastrophic failure. 

Therefore, the system remains working until one of the subsystems is completely failed. Based on 

all the assumptions above, the system could be modeled by a continuous-time stochastic process. 

Some reliability indexes, for example reliability of the system, availability of the system, and cost 

analysis are obtained using supplementary variable technique, Laplace transforms and copula 

repair. The remainder of this paper is organized as follows. In Section 2, notations, assumptions 

for the model, system configuration, transition diagram and state description of the system is given. 

In section 3, we have developed mathematical modelling using differential equation. In section 4, 

some reliability indexes, such as the availability, reliability, and cost analysis, are obtained for 

systems for various values of failure and repair rates. Finally, the discussions and conclusions are 

given in Section-5. Explicit expressions for reliability, availability, and cost analysis functions are 

obtained with help of Maple-17. Tables and graphs present a comparative analysis of results. The 

system configuration and transition state diagram of the designed model are shown in fig 1(a) and 

1(b) respectively.  

 

2. NOTATION, ASSUMPTION AND DESCRIPTION OF STATES 

2.1 NOTATIONS 

,s t     Laplace transform / Time scale variable 

( )1 1/ x    Failure rate / Repair rate of each unit in subsystem-1. 

2 3,     Failure rate of first / second unit in subsystem-2. 

( ) ( )2 3/x x   Repair rate of first / second unit in subsystem-2. 



2408 

ANU SIROHI, PRAVEEN KUMAR POONIA, DHRUV RAGHAV 

E  Deliberate failure rate when two units in subsystem-1 and first unit in subsystem-

2 failed. 

1 2/S S     Failure rate of control device between units for subsystem-1/subsystem-2. 

C     Failure rate related to catastrophic failure mode. 

( )0P t    The state transition probability that the system is in iS  state at an instant for 0i = . 

( )P s   Laplace transformation of the state transition probability ( )P t . 

( ),iP x t  The Probability that the system is in state iS for 1 to 12i = and the system is 

under repair with elapsed repair time is ,x t . x  is repaired variable and t  

is time variable. 

( )pE t  Expected profit in the interval )0, t . 

1 2,K K     Revenue generated and service cost per unit time respectively. 

( )0 x  An expression of the joint probability from failed state Si to good state S0 

according to Gumbel-Hougaard family copula is given as

( ) ( ) ( ) 0 1 2,x C u x u x = ( ) 
1

exp logx x
   = +

  
where ( ) ( )1u x x=  

and ( )2

xu x e= . Here  is the parameter1   . 

2.2 ASSUMPTION 

The following assumptions have been made throughout the study of the model: 

1. Initially the system is in state 0S , and all the units of subsystem-L and M are in good working 

conditions. 

2. The subsystem-L works successfully if minimum one unit is in good working condition i.e. 

1-out-of-3: G policy. 

3. The subsystem-M having two unit’s namely main unit and cold standby in parallel 

configuration. It works successfully if at least one unit is operating. Main unit is more efficient 
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so preference in operation will be given to it as compared to cold standby unit. The activation 

time for cold standby unit is negligible.   

4. As soon as repair of a unit in subsystem-L completed, it again becomes operational (as good 

as new), while in subsystem-M main unit replaces standby unit. The replaced unit is in cold 

standby again if the system can function normally. No damage reported due to repair of the 

system. 

5. Whenever there is a failure in two units of subsystem-L and main unit in subsystem-M, the 

system goes to perilous state where system has to stop functioning deliberately to avoid further 

failures with emergency failure rate E . 

6. One repairperson is available full time with the system and may be called as soon as the system 

reaches to partially or completely failed state. 

7. All failure rates are constant and follows the exponential distribution. 

8. The failure rate and repair rate of each unit in subsystem-L is same, while in subsystem-M, it 

is different for both the units.  

9. Both the subsystems are connected via controllers, which in the system is unreliable at the time 

of need, and the function of the switch is: “as long as the switch fails, the whole system fails 

immediately”. 

10. The complete failed system needs repair immediately. For this Gumbel-Hougaard, family of 

copula can be employed to restore the system. 

2.3 SYSTEM CONFIGURATION AND STATE TRANSITION DIAGRAM 

System configuration shown in Fig 1 (a) while transition diagram in Fig 1 (b). In transition diagram, 

S0 is perfect state, S1, S2, S3, S4 and S5 partial failed/degraded and S6, S7, S8, S9, S10, S11 and S12 

are complete failed states. Due to failure in any unit in the subsystem 1 and in subsystem 2, the 

transitions approaches to partially failed states S1, S2, S3 S4 and S5 respectively. The state S6, S7 

and S8 are complete failed states due to failure of units in both the subsystems, while S9 is 

completely failed state due to deliberate failure. The states S10 and S11 are complete failed states 

due to controller and S12 due to catastrophic failure. 
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Figure 1 (a) System configuration 

 

Figure 1 (b) State transition diagram of the model 

 

2.4 STATE DESCRIPTION OF THE SYSTEM 

The state description of the model highlights that S0 is a state where both the subsystems are in 

good working condition. S1, S2, S3, S4 and S5 are the states where the system is in partially failure 

mode and the repair is employed. States S6, S7, S8, S9, S10, S11 and S12 are the states where the 
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system is in the totally failure mode. Repair is being applied using Gumbel-Hougaard family 

copula distribution. 

Table 1 State Description 

State Description 

S0 

This is a perfect state and all units of subsystem-1 and subsystem-2 are in good 

working condition. 

S1 

The indicated state is degraded but is in operational mode after the failure of the any 

one unit in subsystem-1 but both units of subsystem-2 are in the good operational 

state. The system is under repair. 

S2 

The indicated state is degraded but is in operational mode after the failure of the any 

two units in subsystem-1 but both units of subsystem-2 are in the good operational 

state. The system is under repair. 

S3 

The indicated state is degraded but is in operational mode after the failure of the first 

unit in subsystem-2 and all units of subsystem-1 are in the good operational state. The 

system is under repair. 

S4 

The indicated state is degraded but is in operational mode after the failure of any one 

unit in subsystem-1 and first unit of subsystem-2. The system is under repair. 

S5 

The indicated state is degraded but is in operational mode after the failure of any two 

units in subsystem-1 and first unit of subsystem-2. The system is under repair. 

S9 

The states represent that the system is in complete failure mode due to deliberate 

failure and the system is under repair using Gumbel-Hougaard family copula 

distribution. 

S6, S7 

S8, S10 

S11, S12 

The states represent that the system is in completely failure mode and the system is 

under repair using Gumbel-Hougaard family copula distribution. 

 

3. FORMULATION OF MATHEMATICAL MODEL 

By probability of considerations and continuity arguments, we can obtain the set of difference-

differential equations associated with the present mathematical model. The state transition 
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probability of the system are calculated under the presumption that the system is in state S0, will 

remain in the state S0 during the time [ , ]t t t+ and it will not move to any other state and if it in 

failed state then after repair it will approach to state S0. If the failure rate to move the state S1, S3, 

S10, S11 and S12 during the time [ , ]t t t+ is
1 21 23 ,  ,  ,   and S S Ct t t t t         , then the rate that 

it will not move to the states will be 1(1 3 ),t− 
1 22(1- ),  (1- ),  (1- ) and (1- )S S Ct t t t       . The 

state transition probability that the system is in state S0 during  and [ ]t t t+  is  

( ) ( )( )( )( )( ) ( ) ( ) ( )
1 20 1 2 0 1 1

0

1 3 1- 1- 1- 1- ,S S CP t t t t t t t P t x P x t dx t     


+  = −      + 

   

   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3 0 6 0 7 0 8

0 0 0 0

0 9 0 10 0 11 0 12

0 0 0 0

, , , ,

, , , ,

x P x t dx t x P x t dx t x P x t dx t x P x t dx t

x P x t dx t x P x t dx t x P x t dx t x P x t dx t

   

   

   

   

+  +  +  + 


+  +  +  +  



   

   

 

( ) ( ) ( )( )  ( )
1 2

2

0 1 2 01 3 Product of two terms ...s s CP t t t t P t    +  = − − − − −  +  + +   

( ) ( ) ( ) ( ) ( )  ( )  
1

1 1 2 3

0 0 0

, , exp log , 6 to 12k
k

x P x t dx t x P x t dx t x x P x t dx k
   

     +  + + =   
    

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2

0 0

1 2 0 1 1 2 3
0

0 0

lim 3 , ,s s C
t

P t t P t
P t x P x t dx x P x t dx

t
      

 

 →

+  − 
+ + + + + = + 

   

( )  ( )  
1

0

exp log , 6,7,8,9,10,11,12k
k

x x P x t dx k
  



 + + =
  

 

( ) ( ) ( ) ( ) ( )
1 21 2 0 1 1 2 3

0 0

3 , ,S S C P t x P x t dx x P x t dx
t

      
  

+ + + + + = +  
             

                ( )  ( )  
1

0

exp log , 6,7,8,9,10,11,12k
k

x x P x t dx k
  



 + + =
  

    (1) 

Similarly, 

( ) ( )
1 21 2 1 12 , 0S S C x P x t

t x
     

  
+ + + + + + + =   

         (2)
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( ) ( )
1 21 2 1 2 , 0S S C x P x t

t x
     

  
+ + + + + + + =   

         (3)

 

( ) ( )
1 21 3 2 33 , 0S S C x P x t

t x
     

  
+ + + + + + + =   

         (4)

 

( ) ( ) ( )
1 21 3 1 2 42 , 0S S C x x P x t

t x
      

  
+ + + + + + + + =   

       (5) 

( ) ( ) ( )
1 2 1 2 5 , 0E S S C x x P x t

t x
     

  
+ + + + + + + =   

        (6)

 

( )  ( )  
1

exp log , 0 6,7,8,9,10,11,12kx x P x t k
t x

  
    + + + = =     

     (7) 

Boundary conditions 

( ) ( )1 1 00, 3P t P t=                  (8) 

( ) ( ) ( )2

2 1 1 1 00, 2 0, 6P t P t P t = =               (9) 

( ) ( )3 2 00,P t P t=                  (10) 

( ) ( ) ( ) ( )4 1 3 2 1 1 2 00, 3 0, 0, 6P t P t P t P t   = + =            (11) 

( ) ( ) ( ) ( )2

5 1 4 2 2 1 2 00, 2 0, 0, 18P t P t P t P t   = + =            (12) 

( ) ( ) ( )3

6 1 2 1 00, 0, 6P t P t P t = =               (13) 

( ) ( ) ( )7 3 3 2 3 00, 0,P t P t P t  = =               (14) 

( ) ( ) ( )8 3 4 1 2 3 00, 0, 6P t P t P t   = =               (15) 

( ) ( ) ( )2

9 5 1 2 00, 0, 18E EP t P t P t   = =              (16) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
110 0 1 2 3 4 50, 0, 0, 0, 0, 0,SP t P t P t P t P t P t P t  = + + + + +        (17) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
211 0 1 2 3 4 50, 0, 0, 0, 0, 0,SP t P t P t P t P t P t P t  = + + + + +        (18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )12 0 1 2 3 4 50, 0, 0, 0, 0, 0,CP t P t P t P t P t P t P t  = + + + + +        (19) 

Initial conditions 
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 ( )0 0 1P = , and other state probabilities are zero at 0t =         (20) 

Solution of the model 

Taking Laplace transformation of equations (1) to (19) and using equation (20), we obtain 

( ) ( ) ( ) ( ) ( )
1 21 2 0 1 1 2 3

0 0

3 1 , ,S S Cs P s x P x s dx x P x s dx      
 

 + + + + + = + +                                                  

                    ( )  ( )  
1

0

exp log , 6,7,8,9,10,11,12k
k

x x P x s dx k
  



 + + =
  

   (21) 

( ) ( )
1 21 2 1 12 , 0S S Cs x P x s

x
     

 
+ + + + + + + =  

         (22)

 

( ) ( )
1 21 2 1 2 , 0S S Cs x P x s

x
     

 
+ + + + + + + =  

         (23)

 

( ) ( )
1 21 3 2 33 , 0S S Cs x P x s

x
     

 
+ + + + + + + =  

         (24)

 

( ) ( ) ( )
1 21 3 1 2 42 , 0S S Cs x x P x s

x
      

 
+ + + + + + + + =  

       (25) 

( ) ( ) ( )
1 2 1 2 5 , 0E S S Cs x x P x s

x
     

 
+ + + + + + + =  

        (26)

 

( )  ( )  
1

exp log , 0 6,7,8,9,10,11,12ks x x P x s k
x

  
   + + + = =    

     (27) 

Boundary conditions 

( ) ( )1 1 00, 3P s P s=                  (28) 

( ) ( ) ( )2

2 1 1 1 00, 2 0, 6P s P s P s = =               (29) 

( ) ( )3 2 00,P s P s=                  (30) 

( ) ( ) ( ) ( )4 1 3 2 1 1 2 00, 3 0, 0, 6P s P s P s P s   = + =            (31) 

( ) ( ) ( ) ( )2

5 1 4 2 2 1 2 00, 2 0, 0, 18P s P s P s P s   = + =           (32) 
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( ) ( ) ( )3

6 1 2 1 00, 0, 6P s P s P s = =               (33) 

( ) ( ) ( )7 3 3 2 3 00, 0,P s P s P s  = =               (34) 

( ) ( ) ( )8 3 4 1 2 3 00, 0, 6P s P s P s   = =              (35) 

( ) ( ) ( )2

9 5 1 2 00, 0, 18E EP s P s P s   = =              (36) 

( ) ( )
1

2 2

10 1 2 1 2 1 1 2 00, 1 3 6 6 18SP s P s        = + + + + +           (37) 

( ) ( )
2

2 2

11 1 2 1 2 1 1 2 00, 1 3 6 6 18SP s P s        = + + + + +           (38) 

( ) ( )2 2

12 1 2 1 2 1 1 2 00, 1 3 6 6 18CP s P s        = + + + + +           (39) 

Laplace transformation of boundary conditions after repair.  

( ) ( ) ( ) ( ) ( ) ( )1 1 0 1 2 2 4

0 0

0, 3 , ,P s P s x P x s dx x P x s dx  
 

= + +          (40) 

( ) ( ) ( ) ( )2 1 1 2 2

0

0, 2 , ,P s P x s x P x s dx 


= +              (41) 

( ) ( ) ( ) ( )3 2 0 1 4

0

0, ,P s P s x P x s dx 


= +               (42) 

( ) ( ) ( ) ( ) ( )4 1 3 2 1 1 5

0

0, 3 , , ,P s P x s P x s x P x s dx  


= + +           (43) 

No change noticed for the rest conditions. 

Now solving all the equations with the boundary conditions, one may get 

( )
( )0

1
P s

D s
=                   (44) 

( )
( )

( )
( ) ( ) ( )

1 1 2

1 2 1 2

1 21 1
1

1 2 1 2

1 23 3 1

2 2

S S C

S S C S S C

S s P
P s

D s D ss s

      

         

− + + + + + −
= =

+ + + + + + + + + +
  (45) 

( )
( )

( )
( )

1 1 2

1 2

2
1 21

2

1 2

16 S S C

S S C

S s
P s

D s s

     

    

− + + + + +
=

+ + + + +
          (46) 
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( )
( )

( )
( )

2 1 2

1 2 1 2

1 32 2
3

1 3 1 3

1 3 1

3 3

S S C

S S C S S C

S s Q
P s

D s s D s s

      

         

− + + + + + −
= =

+ + + + + + + + + +
  (47) 

( )
( )

( )
3 1 2

1 2

1 31 2
4

1 3

1 26

2

S S C

S S C

S s
P s

D s s

      

    

− + + + + +
=

+ + + + +
          (48) 

( )
( )

( )
3 1 2

1 2

2

1 2
5

118 E S S C

E S S C

S s
P s

D s s

     

   

− + + + +
=

+ + + +
           (49) 

( )
( )

( )
0

3

1
6

16 S s
P s

D s s

 −
=                 (50) 

( )
( )

( )
02 3

7

1 S s
P s

D s s

  −
=                 (51)  

( )
( )

( )
01 2 3

8

16 S s
P s

D s s

   −
=                (52)  

( )
( )

( )
0

2

1 2
9

118 E
S s

P s
D s s

   −
=                (53) 

( )
( ) ( )

( )
1 12 2

10 1 2 1 2 1 1 2

11
1 3 6 6 18

S S U RR
P s

D s s D s s

 
      

−−
 = + + + + + =       (54) 

( )
( ) ( )

( )
2 22 2

11 1 2 1 2 1 1 2

11
1 3 6 6 18

S S U RR
P s

D s s D s s

 
      

−−
 = + + + + + =          (55)  

( )
( ) ( )

( )
2 22 2

12 1 2 1 2 1 1 2

11
1 3 6 6 18

S S U RR
P s

D s s D s s

 
      

−−
 = + + + + + =       (56) 

where  ( )
1 21 2 1 23 3S S CD s s P Q RU      = + + + + + − − −                                                       

( )
1 1 2

1 2

1
1 2

1 2 1

2
2

S S C

S S C

P S s
s




    

     
= + + + + + =

+ + + + + +
 

( )
2 1 2

1 2

2
1 3

1 3 2

3
3

S S C

S S C

Q S s
s




    

     
= + + + + + =

+ + + + + +
 

( )
0

0

0

R S s
s






= =

+
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and ( )( )
1 2

3 2 2 2

1 2 3 1 2 3 1 2 1 2 1 2 1 1 26 6 18 1 3 6 6 18E S S CU                   = + + + + + + + + + + +  

Sum of Laplace transformations of the state transitions, where the system is in operational mode 

and failed state at any time, is as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5upP s P s P s P s P s P s P s= + + + + +          (57) 

( ) ( )1down upP s P s= −                  (58) 

 

4. ANALYTICAL STUDY 

4.1 AVAILABILITY ANALYSIS 

When repair follows general and Gumbel-Hougaard family copula distribution, we have 

( )
( ) 

( )
( ) 

( ) 

( )

( )
1

0

1

0

1
exp log 0

exp log

exp log
x x

x x x
S s S s

s x
s x x

 

 


  

 




 +
  

 +
  = = =

+ + +
  

 

setting ( ) , 1,2,3
i

i

i

S s i
s






= =

+
 and ( )S s

s





=

+
 . Taking the values of different parameters as

1 21 2 30.030, 0.035, 0.040, 0.50, 0.021, 0.022, 0.035, 1, 1, 1E S S C ix        = = = = = = = = = =

( )1,2,3i = in (57), then taking inverse Laplace transform, we obtain the availability of the system. 

Here we have considered following particular cases: 

(a) Availability of the system when failure rates follow exponential distribution and repair follows 

two types of distribution general distribution and Gumbel–Hougaard family copula distribution. 

1.1780 2.8150 1.2853 1.1956( ) 0.000401 0.033716 0.025111 0.001537up

t t t tP t e e e e− − − −= + − −     

0.0060 1.1430 1.12800.993857 0.001165 0.000161t t te e e− − −+ −−             (59) 

(b) Availability of the system when failure rates for both the units in subsystem 2 are same and 

follow exponential distribution. 

1.1780 1.1730 2.8219 1.3309( ) 0.000781 0.002097 0.035638 0.035185up

t t t tP t e e e e− − − −= − − + −     

1.2051 0.0089 1.12800.000028 1.002818 0.000364t t te e e− − −− −+             (60) 
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(c) Availability of the system when all types of failure rates are same and follow exponential 

distribution. 

2.8195 1.3161 0.0082 1.1680( ) 0.034954 0.032330 1.000332 0.002654up

t t t tP t e e e e− − − −= − + −     

       
1.1280.000303 te−−                  (61) 

(d) Repair follow two types of distribution but no controller in the subsystem-2. 

2.7883 1.2669 1.1737 0.0069( ) 1.0009170.024749 0.023318 0.001408up

t t t tP t e e e e− − − −= − +−     

1.1560 1.1060 1.12100.000400 0.000136 0.001176t t te e e− − −+ −−              (62) 

(e) Repair follow two types of distribution but no controller in the both the subsystems. 

1.1350 0.0850 1.1000 2.7628( ) 0.000399 0.000165 0.001187 0.015948up

t t t tP t e e e e− − − −= − +−     

1.2495 1.1528 0.007810.021333 0.001289 .007629t t te e e− − −− −+             (63) 

(f) Repair follow two types of distribution, but catastrophic failure is ignored. 

1.0930 1.1080 1.1430 2.7725( ) 0.000164 0.001183 0.000399 0.019329up

t t t tP t e e e e− − − −= − − + +     

1.2561 1.1608 0.007510.022123 0.001334 .005076t t te e e− − −− +−             (64) 

For different values of time variable 0,10,20,30,40,50,60,70,80,90 and 100t = units of time, one 

may get different values of ( )upP t  with the help of (59-64) as shown in table-2 and the 

corresponding figure-2. 

Table 2 Variation of availability with respect to time in various cases 

Time (t) a b c d e f 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

10 0.9358 0.9172 0.9209 0.9337 0.9321 0.9326 

20 0.8812 0.8388 0.8479 0.8710 0.8622 0.8654 

30 0.8298 0.7672 0.7807 0.8125 0.7976 0.8031 

40 0.7814 0.7017 0.7187 0.7579 0.7378 0.7452 

50 0.7358 0.6418 0.6617 0.7071 0.6825 0.6915 

60 0.6929 0.5870 0.6092 0.6596 0.6314 0.6417 

70 0.6525 0.5369 0.5609 0.6153 0.5841 0.5955 

80 0.6144 0.4910 0.5164 0.5740 0.5403 0.5526 

90 0.5786 0.4491 0.4755 0.5354 0.4998 0.5128 

100 0.5448 0.4108 0.4378 0.4995 0.4623 0.4758 
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Figure 2 Availability as a function of time 
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4.2 RELIABILITY ANALYSIS 

Taking all repair rates equal to zero and obtain inverse Laplace transform in (57), we get an 

expression for the reliability of the system after taking the failure rates as

11 2 30.030, 0.035, 0.040, 0.50, 0.021,E S    = = = = =
2

0.022, 0.035S C = =  . Here we have 

considered only two cases as rest cases are giving almost same output: 

(a) Reliability of the system when failure rates follow exponential distribution: 

2.17692 0.1260 0.1100 0.0788( ) 3.6898360.018381 0.519446 1.885541up

t t t tP t e e e e− − − −= − +−     

0.1060 0.0670 0.09000.108105 0.014969 0.210095t t te e e− − −− −+            (65) 

(b) Reliability of the system when all types of failure rates are same and follow exponential 

distribution: 

0.0650 2.7687 0.1250 0.1050( ) 0.015210 0.018218 0.386880 1.992909up

t t t tP t e e e e− − − −= + − −               

      0.0742 0.08503.566179 0.219818t te e− −+ −                 (66) 

For different values of time variable 0,10,20,30,40,50,60,70,80,90 and 100t = units of time, one 
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may get different values of reliability ( )R t with the help of (65-66) as shown in table-3 and the 

corresponding figure-3. 

Table 3 Computed values of reliability corresponding to the different cases 

Time (t) a b 

0 1.0000 1.0000 

10 0.7878 0.8023 

20 0.4686 0.4952 

30 0.2490 0.2744 

40 0.1250 0.1439 

50 0.0607 0.0731 

60 0.0289 0.0364 

70 0.0135 0.0179 

80 0.0063 0.0087 

90 0.0029 0.0042 

100 0.0013 0.0020 

Figure 3 Reliability as a function of time 
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4.3 COST ANALYSIS 

Let the service facility be always available, then expected profit during the interval )0, t is 

( ) ( )1 2

0

t

p upE t K P t dt K t= −                        (67) 

For same set of parameters defined in (57), one can obtain (68). 
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Therefore 

0.0060 1.1956 2.8150 1.2853( ) 165.359942 0.001285 0.011977 0.019536p

t t t tE t e e e e− − − −= − −+ +      

     1.1430 1.1780 1.1280
2165.3502750.001019 0.000340 0.000142t t te e e K t− − −− ++ + −       (68) 

Setting 
1 1K =  and 

2 0.1,0.2,0.3,0.4,0.5,0.6K = respectively and varying 0,10,20,30,40,t =

50,60,70,80,90 and 100units of time, the results for expected profit can be obtain as per table-4 

and figure-4. 

Table 4 Profit computation for different vales of time 

Time (t) 
K2 

0.6 0.5 0.4 0.3 0.2 0.1 

10 3.6361 4.6361 5.6361 6.6361 7.6361 8.6361 

20 6.7192 8.7192 10.7192 12.7192 14.7192 16.7192 

30 9.2725 12.2725 15.2725 18.2725 21.2725 24.2725 

40 11.3269 15.3269 19.3269 23.3269 27.3269 31.3269 

50 12.9114 17.9114 22.9114 27.9114 32.9114 37.9114 

60 14.0535 20.0535 26.0535 32.0535 38.0535 44.0535 

70 14.7790 21.7790 28.7790 35.7790 42.7790 49.7790 

80 15.1122 23.1122 31.1122 39.1122 47.1122 55.1122 

90 15.0760 24.0760 33.0760 42.0760 51.0760 60.0760 

100 14.6919 24.6919 34.6919 44.6919 54.6919 64.6919 

 

Figure 4 Expected profit as a function of time 
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5. CONCLUSION 

This paper studies the reliability characteristics of a complex repairable standby system consisting 

of two subsystems in series configuration with controllers under catastrophic failure. First 

Subsystem-L is composed of three identical units in parallel configuration that are working under 

1-out-of-3: G policy, while second subsystem-M has two non-identical units that are working under 

1-out-of-2: G: policy. In subsystem-M, priority in operation is given to M1 unit whereas M2 unit 

put into cold standby mode if not in use. Explicit expressions have been derived using 

supplementary variable technique. Warm/cold-standby redundancy has been used as an effective 

technique for improving reliability of system design. The following conclusions may be drawn 

based on the study conducted in this paper: 

1. Table-2 and Figure-2 gives the analysis of availability of the system in six different possibilities 

when failure rates are fixed at different values with respect to time. One can clearly observe that 

availability of the system decreases as the value of time t increases.  

2. Table-3 and figure-3 gives information for reliability of the system at different values of time. 

As the reliability in all six cases (discussed for availability) is almost same, so we have 

considered only two cases. The graph showing a steep fall in reliability from top to lowermost 

in a very short period in both the cases based on failure rate of units. 

3. From table-2 and 3, one can observe that corresponding values of availability are greater than 

the values of reliability, which highlights the requirement of systematic repair for any complex 

systems for healthier performance. Additionally, availability is more in case (a) as compared to 

other cases, while reliability is better in case (b).  

4. An acute examination from table 4 and figure 4 reveals that expected profit increases as service 

cost K2 decreases, while the revenue cost per unit time is fixed at K1=1. The calculated expected 

profit is maximum for K2= 0.1 and minimum for K2=0.6. We observe that as service cost 

decreases, profit increase with variation of time. In general, for low service cost, the expected 

profit is high in comparison to high service cost.  

Model developed in this paper found to be highly advantageous in proper maintenance analysis, 
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decision, and evaluation of performances. Another possible future work is to evaluate maximum 

reliability and availability of the investigated system.  
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