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Abstract: In this paper, the Gaussian quadrature method is described for the solution of differential difference
problems having boundary layers. The given problem is replaced by an asymptotically equivalent first order
differential equation with the perturbation parameter as deviating argument. Then, Gaussian two point quadrature is
implemented to solve this first order differential equation with perturbation parameter as deviating parameter.
Several numerical problems are illustrated to demonstrate the layer behaviour. Comparison of maximum errors in
the solution of the problems is made with other methods available in the literature to demonstrate the applicability of

the present method.
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1. INTRODUCTION

Differential-difference equation models have stronger mathematical structure when
associated with ODEs for the analysis of biosystem dynamics and they produce improved
stability with the nature of the underlying processes and analytical results. Delay differential
equations model the problems where there is after effect affecting at least one of the variables

involved in the problem as compared to ordinary differential equations which model the problems
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in which variables react to current conditions. Due to these reasons, differential-difference
equation models are more preferred to ordinary differential equations. The category of
differential-difference equations which have delay/advance and singularly perturbed behaviour is
recognized as singularly perturbed differential- difference equations. In general, a singularly
perturbed differential- difference equation is an ordinary differential equation, where a small
positive parameter multiplies the highest order derivative, including at least one delay and/or
advance parameters. Solutions of these equations exhibit variety of interesting phenomenon like
rapid oscillations, turning point behaviour, boundary and interior layers. These problems possess
the boundary layer characteristics. A boundary layer is an interval or region in which the solution
changes rapidly. In these layers the physical variables change extremely rapidly over small
domains in space or short intervals of time. This type of differential equations occur in the
modelling of numerous practical phenomena in bioscience, engineering, control theory, such as
in variational problems in control theory, in describing the human pupil-light reflex, in a variety
of models for physiological processes or diseases and first exit time problems in the modelling of
the determination of expected time for the generation of action potential in nerve cells by random
synaptic inputs in dendrites. Stein [12] was first to study of bistable devices. Derstin et al [2],
and variational problems in control theory Glizer [5] where they provide the best and in many
cases the only realistic simulation of the observed. Lange and Miura [9, 10] gave an asymptotic
approach for a class of boundary-value problems for linear second-order differential-difference
equations. Kadalbajoo and Sharma [6, 7, 8], presented a numerical approaches to solve
singularly perturbed differential-difference equation, which contains negative shift in the either
in the derivative term or the function but not in the derivative term. Analytical discussion on
these problems ia available in the books O’Malley [11] Elsgolts and Norkin [4] and Driver [3].
In this paper, the Gaussian quadrature method is described for the solution of differential
difference problems having boundary layers. The given problem is replaced by an asymptotically
equivalent first order differential equation with the perturbation parameter as deviating argument.
Then, Gaussian two point quadrature is implemented to solve this first order differential equation
with perturbation parameter as deviating parameter. Several numerical problems are illustrated to
demonstrate the layer behaviour. Comparison of maximum errors in the solution of the problems
is made with other methods available in the literature to demonstrate the applicability of the

present method.
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2. DESCRIPTION OF THE METHOD

Consider the problem:
eW"(S) + p(s)W'(s) + q(s)w(s — &) + r(s)w(s) +t(s)w(s +7) = f (s) 1)
on (0, 1), under the boundary conditions

w(s)=¢(s) on -6<s<0,

wl)=y(s) on 1<s<l+p, ()

where ¢ is small parameter, 0 <& <<1, p(s),q(s),r(s),t(s), f(s),o(s) and y(s) are smooth
functions and 0< o6 =o0(g),0<n=o0(g) are respectively the delay (negative shift) and the

advance (positive shift) parameter.

The solution of Egn. (1)-(2) exhibits; layer at the left end of the interval if
p(s)—aq(s) +nt(s) >0 and layer at the right end of the interval if p(s)-oq(s)+nrt(s) <0. If p(s)
= 0, then one may have oscillatory solution or two layers (one at each end) depending upon the
cases whether qg(s) +r(s) +t(s) is positive or negative. Using, Taylor series, we have,

W(s — &) = W(s) - SW'(s) (32)
W(s +77) = W(s) —n7w'(s) (3b)

Using Eqn. (3) in Eqn. (1), we obtain
eW'(s)+a(s)W'(s) +b(s)y(s) = f(s) (4)

Equation (4) is a second order singular perturbation problem.

Here,
a(s) = p(s)—oq(s) +nt(s) (5a)
b(s) =q(s)+r(s)+t(s) (5b)

We solve the equation (4) subject to the boundary conditions equation (2) by using the Gaussian
two point quadrature.



2817
GAUSSIAN QUADRATURE METHOD

3. NUMERICAL SCHEME
3.1. Problem with Left-end Boundary Layer

Using Taylor’s expansion about the point S, we have

W(s—&)=W(s)—ew'(s)
implies eW'(s)=w'(s)—wW(s—¢) (6)
With these Eqn. (6) and Eqn. (4) we get first order equation with € as deviating argument:

W(s) =w(s—&)—a(s)w'(s) —b(s)y(s) + f (s) (7)

The domain [0, 1] is partitioned into N sub domains of mesh size h= 1-0 so thats, =0+ih, i=

0, 1, ... N are the mesh points. By integrating Eqn. (7) with respect to s from s, to s,,,, we get
j w(s)ds = j (W (s—¢&)—a(s)w(s) ~b(s)w(s) + f (s)) ds
w_-w=["w(s—¢)ds—["a(s)w(s) ds-["b(s)y(s) dx+ [ f(s)ds 8)

Using Gaussian two-point quadrature formula, we have

1 1 -1
F(s)ds = F| = |+F| —=
[rrioyes - #[ )+ ()
For any continuous and differentiable function F(s) in an arbitrary interval [s,, s,,,], the

Gaussian two-point quadrature formula is given by:

[ F(s)ds = 2(F (s, +k)+F (5.4-K) ©)
where
1
. “(ﬂé)
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Using Eqn. (9) in Eqn. (8), we have

W, —W = W(S,,; —&)—W(S, —&)—a(s.)W(s,.)+a(s)w(s,)

D8 (5.—k)W(s0—K)+2' (5, +K)w(s, +K)
—g[b(sm—k)W(Si+1—k)+b(Si+k)W(Si+k)] (10)

+g[f@M;k)+f(g+kﬂ

Using the linear interpolation forw(s,,, —¢), w(s;—¢), w(s, —k) and w(s,,, —k), the Eqn. (10)
reduces to

{%+a’(si+k)g—b(si+k)g}wi1+
{T_a(si)-a'(sm_k)g-a'(si+k)(h—;‘<]+b(si+l_k)g+b(si+k)(%)}wi
#1 2 (5, —K)| o |+ a(s) +b(s +K)| o [, =2 { (S —K)+ F (5, +K))
(et S

(11)
Rearranging this equation, we have
a'(s +k)(j—b(si +k)£kj
%(Wu L~ 2W, +Wi+1)+ 2 Wiy
h h
, k , h+k k h+k
) -a(s;)-a (sm—k)(zj—a(si +k)(Zjer(si+l—k)(2j+b(si +k)(2j L (12)

h

, h—k h-k
—a@H,-m(2j+a@H0+b(&ﬂ—k)(2j {f(s +k)+f(s+k)}
V\/Hl — i+1 !

h 2

Eqgn. (12) can be rewritten in a three term recurrence relation as follows:

AW +Bw +Cw,, =F | i=1,2,...N-1 (13)
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where

A =%+a (s +k)g—b(s +k);

i+1

T O A
¢ ~£-af(5.0-)[ 255 a5 b5 - 15

F :E[f (S —K)+ f(s+Kk)]

The tri-diagonal system is solved efficiently by Thomas Algorithm Angel and Bellman[1].
3.2. Problem with Right - end Boundary Layer

Again by Taylor series expansion we have
W(s+e&)=W(s)+ew'(s)

implies EW'(s) =W (s+&)—W(s) (14)

accordingly the Eqn. (4) is reduced to the first order equation with ¢ as the deviating argument:
W (s)=w(s+&)+a(s)w(s)+b(s)w(s)—f(s) (15)

On integrating Eqn. (15) on [s.;, 5] ; we get

_[ s)ds= I (s+e¢) ds+ ; a(s)w'(s) ds+ S:b( )y(s) ds- L f(s) ds

Sia i1

Using Gaussian quadrature two-point formula for any continuous and differentiable function F(s)

in an arbitrary interval s, ;, S|, we get

J, F(s)ds =Z(F (s, —k)+F (s +k)) (16)
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Using Eqgn. (16), from Egn. (15) we get
W(s)—w(s)=wW(s_,+&)-w(s +&)+a(s)y(ss)—-a(s)w(s)
_g[a'(s,il—k)w(sil—k)+a’(si +k)w(s; +k)]
+E[b (s —K)w(s,—k)+b(s;+k)w(s +k) ]

——[f LK)+ f(s+k)]

7

Using linear interpolation for the terms w(s,_, +¢), w(s, +¢), w(s,_; —k) and w(s, +k) in Eqn.

(17) we get;

(18)
Rearranging this Eqn. (18), we have

—a(s.,)-a'(s,, *k)(hzk]”’(S +k)(hzkj w

%( 2W +\N|+1) h i-1

h+k k h+k k
a(s;) - a(s—k)( ] a'(s,, +k) j+b(si—k)( j+b(sll+k) ]
(hz 2 (2 "

2

We arrange this as the three term recurrence relation:

Aw ,+Bw +Cw  =F fori=12..,N-1 (20)

i
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where
A={% (s +k)h—2k+b( k)%}
i)

h

F :E[f (Si —k)+ f (Si—l+k):|

The system of Eqn. (20) is solved by using Thomas algorithm given in Angel and Bellman [1].

4. NUMERICAL EXPERIMENTS

We have solved several problems from the model problem and solution is compared with
exact or solution by other methods available in literature. The exact solution of the model

boundary value problem
eW'(S)+ p(S)W'(S) +q(s)y(s — ) + r(s)w(s) +t(s)w(s +7) = f(s)
under the boundary conditions

w(s)=¢(s) on-06<s<0,
w(l)=y(s) onl<s<l+n,

is given by w(s) =ce™ +c,e™ +—

where c=Q+r+t

(— f+c+em(f —¢c))’

S

(f —ye+e™ (= f +4)

T )
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[—( p—q5+t77)+\/( p—q5+t77)2 —4&9}

m, =
! 2¢

[—(p—q5+tn)—\/(p—q5+tn)z—405}
2¢

m, =
Problem 1. Consider the problem with layer at left end
eW"(S) +W'(s) +2w(s—6) —3w(s) =0
with w(s)=1, -6<s<0, w(s)=1, 1<s<1l+p
Problem 2. Consider the problem with layer at left end
eW'(S)+W'(s)—3w(s) +2w(s+7) =0
with w(s)=1, -6<s<0, w(s)=1, 1<s<1l+p
Problem 3. Consider the problem with layer at left end
eW'(S)+W'(s) —2w(s— ) —5w(s) +w(s+7)=0
with w(s)=1, -6<s<0, w(s)=1, 1<s<1l+p
Problem 4. Consider the non-homogeneous problem with layer at left end
eW'(s)+wW(s)—2w(s— o) +w(s)—w(s+7)=-1
with w(s)=1, —5<s<0, w(s)=1, 1<s<l+p
Problem 5. Consider the problem with layer at right end
eW'(X) —w'(s) —2w(s—95)+w(s) =0
with w(s)=1, -6<s<0, w(s)=-1, 1<s<l+p
Problem 6. Consider the problem with right end layer

eW'(s)—w'(s)+w(s)—2w(s+7r)=0
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with  w(s)=1 -6<s<0, w(s)=-1, 1<s<l+p

Problem 7. Consider the problem with layer at right end
eW'(S)—wW'(s) —2w(s— ) +w(s) —2w(s+77) =0

with  w(s)=1, -6<s<0, w(s)=-1 1<s<1l+py

5. DISCUSSIONS AND CONCLUSION

The Gaussian quadrature two-point scheme is applied for the solution of differential
difference equations having boundary layers. An equivalent first order differential equation with
the perturbation parameter as deviating argument is deduced from the given boundary value
problem. Then, Gaussian two-point quadrature technique is implemented to solve the first order
equation with deviating parameter. Several numerical problems are illustrated to demonstrate the
method. Comparison of maximum errors in the solution of the problems with other methods is
tabulated to justify the method. From the tables, we noticed that, the proposed scheme produced

accurate results to the given problem.

Table 1. Maximum errors in Problem 1 with £ = 0.1

N — 8 32 128 512

0 |  Proposed method

0.00 1.1834e-02 5537e-03 1770e-04 2.3113e-04
0.05 1.3305e-02 8619e-03 9278e-04 2.4977e-04
0.09 14512e-02 4.1191e-03 1.0557e-03  2.6536e-04

0 |  Results by Kadalbajoo and Sharma [84]

0.00 0.09907804 0.03700736 0.00954678 0.00214501
0.05 0.09659609 0.03640566 0.00924661 0.00202998
0.09 0.09277401 0.03556652 0.00895172 0.00192488
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Table 2. Maximum errors in Problem 2 with £ = 0.1

N — 8 32 128 512

n |  Proposed method
0.00 0037e-03 2.8330e-03  7.4107e-04  1.8720e-04

0.05 8.1037e-03 2.6115e-03 6.8579%e-04 1.7341e-04
0.09 7.4391e-03 2.4443e-03 6.4520e-04  1.6328e-04

n I  Results by Kadalbajoo and Sharma [7-8]

0.00 0.09907804 0.03700736 0.00954678 0.00214501
0.05 0.09977501 0.03727087 0.00979659 0.00224472
0.09 0.10031348 0.03723863 0.00996284 0.00458698

Table 3 Maximum error for Problem 3 with o = = 0.5¢

el N— 8 16 32 64 128 256

Proposed method
107" 6.5260e-02 3179%-02 1.7272e-02  8.7909e-03 4.4321e-03  2.2250e-03
107  45711e-02 2.6776e-02 1.5201e-02  1.0011e-02 5.9380e-03 2104e-03

107%  4.7675¢-02 2.8249e-02 1.5423¢-02  8.0250e-03  4.0492e-03  2.0555e-03
Results by Kadalbajoo and Sharma [7-8]

10" 0.12011566 0.07181396 0.04482982 0.02694612 0.01516093 0.00775036
1072 0.18727108 0.10697821 0.05904116 0.03079689 0.01567964 0.00799076
107 0.20429729 0.11915028 0.06879232 0.03655236 0.01893849 0.00963304




Table 4. Maximum error for Problem 3 with £ = 0.1

GAUSSIAN QUADRATURE METHOD

N — 8 32 128 512
Proposed method
o n = 0.05
0.00 6.403%-02 1.7890e-02  4.5754e-03  1.1494e-03
0.05 6.0475e-02 1.7272e-02  4.4321e-03  1.1147e-03
0.09 5.7591e-02 1.6748e-02 4.3186e-03  1.0870e-03
n i 0= 0.05
0.00 6.2267e-02 1.7587e-02  4.5038e-03  1.1321e-03
0.05 6.0475e-02 1.7272e-02  4.4321e-03  1.1147e-03
0.09 5.9033e-02 1.7013e-02  4.3752e-03  1.1008e-03
Results by Kadalbajoo and Sharma [7-8]
ol n=0.05
0.00 0.09190267 0.03453494 0.01164358 0.00300463
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.11018870 0.04110846 0.01400144 0.00362925
n i 0= 0.05
0.00 0.09720079 0.03640446 0.01229476 0.00317786
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.10632014 0.03965833 0.01348348 0.00349050

Table 5. Maximum error for Problem 4 for 6 = # = 0.5¢

el N— 8 16 32 64 128
Proposed method
107 1.2449e-02  7.0229e-03  6934e-03 1.8905e-03  5553e-04
1072 6.9143e-03  4230e-03 0039e-03 2.0620e-03  1.1975e-03
10~°  6498e-03 5.0433e-03  2.4786e-03  1.1279e-03  4.3665e-04
Results by Kadalbajoo and Sharma [7-8]
107 0.08579690 0.05129568 0.03202130 0.01924723 0.01098354
1072 0.13376506 0.07641301 0.04217226 0.02199778 0.01119974
107 0.14592663 0.08510734 0.04913737 0.02610883 0.01352749
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Table 6. Maximum errors for Problem 5 with & = 0.1

N — 8 32 128 512

Proposed method

o
0.00 4573e-02 3435e-03 2.4536e-03  6.2174e-04
0.05 7012e-02 1.0039e-02  2.6180e-03  6.6231e-04
0.09 8931e-02 1.0571e-02  2.7569e-03  6.9686e-04

Results by Kadalbajoo and Sharma [7-8]
0.00 0.07847490 0.04678972 0.01727912 0.00443086
0.05 0.09222560 0.03828329 0.01487799 0.00380679
0.09 0.10509460 0.03149275 0.01299340 0.00331935

Table 7. Maximum errors in Problem 6 with & = 0.1

N — 8 32 128 512

n 1 Proposed method
0.00 4573e-02 3435e-03 2.4536e-03  6.2174e-04
0.05 2177e-02 8.7029e-03  2.3021e-03  5.8424e-04
0.09 0332e-02 8.2900e-03  2.1895e-03  5.5647e-04
Results by Kadalbajoo and Sharma [7-8]
0.00 0.07847490 0.04678972 0.01727912 0.00443086
0.05 0.06834579 0.05516436 0.01972508 0.00506769
0.09 0.08328237 0.06168267 0.02169662 0.00558451
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Table 8. Maximum errors in Problem 7 with £ = 0.1

N — 8 32 128 512

ol
0.00

0.05
0.09

n
0.00
0.05
0.09

o
0.00
0.05
0.09

n i
0.00
0.05
0.09

n = 0.05 proposed method
6.1682e-02  1.6643e-02  4.3793e-03  1.1118e-03
6.3459e-02  1.6949e-02 4.4649e-03  1.1320e-03
6.4697e-02  1.7233e-02  4.5266e-03  1.1463e-03

0= 0.05

6.4977e-02  1.7317e-02  4.5402e-03  1.1496e-03
6.3459e-02  1.6949e-02  4.4649e-03  1.1320e-03
6.2055e-02 1.6711e-02 4.3982e-03  1.1160e-03

Results by Kadalbajoo and Sharma [7-8]
n = 0.05

0.09930002 0.03685072 0.01331683 0.00342882
0.09997296 0.03218424 0.01167102 0.00299572
0.10044578 0.02850398 0.01038902 0.00266379

0= 0.05

0.10055269 0.02759534 0.01007834 0.00258299
0.09997296 0.03218424 0.01167102 0.00299572
0.09944067 0.03591410 0.01297367 0.00334044

0.95

0.9

0.85

0.8

> 0.75

0.7

0.65

0.6

0.55

0.5

Fig. 1. Numerical solution of Problem 1 with o —=0.1.
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Fig. 3. Numerical solution of Problem 3 with £ =0.1 and 7 =0.05.
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Fig. 5. Numerical solution of Problem 4 with £ =0.1 and 7 =0.05.
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Fig. 6. Numerical solution of Problem 4 with £ =0.1 and 6 =0.05.

Fig. 7. Numerical solution of Problem 5 with £ =0.1 and 7 =0.



2831

GAUSSIAN QUADRATURE METHOD
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Fig. 8. Numerical solution of Problem 6 with £ =0.1 and 6 =0.
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Fig. 9. Numerical solution of Problem 7 with £ =0.1 and r =0.05.
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Fig. 10. Numerical solution of Problem 7 with £ =0.1 and 6 = 0.05.
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