

*Corresponding author

E-mail address: wamustafa@yahoo.com

Received February 5, 2021

2058

 Available online at http://scik.org

 J. Math. Comput. Sci. 11 (2021), No. 2, 2058-2074

https://doi.org/10.28919/jmcs/5513

ISSN: 1927-5307

HYBRIDIZATION OF PARTICLE SWARM OPTIMIZATION AND SIMULATED

ANNEALING FOR MAXIMUM PARTITION PROBLEM

WAEL MUSTAFA*

Department of Computer Science, An-Najah National University, 97300 Nablus, Palestine

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The maximum partition problem (MPP) is to divide the set of nodes in directed weighted graph into two

disjoint subsets such that the sum of weights of edges crossing from one subset of the partition to the other is

maximized. The MPP is NP-hard. Hence, this paper presents a hybrid discrete particle swarm optimization (DPSO)

simulated annealing (SA) algorithm to solve MPP. The proposed algorithm first applies DPSO to the problem until

improvement in fitness slows down (stagnates). Then, the algorithm uses SA augmented with a heuristic method to

improve the fitness of the solution obtained from DPSO. Experiments on randomly generated graphs of different size

show that the proposed algorithm produces better partitions than conventional DPSO. Additionally, the proposed

algorithm converges to near optimal solutions faster than conventional DPSO.

Keywords: maximum partition problem; discrete particle swarm optimization; simulated annealing; combinatorial

optimization.

2010 AMS Subject Classification: 65Y04.

2059

MAXIMUM PARTITION PROBLEM

1. INTRODUCTION

The maximum partition problem (MPP) of a directed weighted graph with a set of nodes N and

a set of edges E is to divide the set of nodes N into two nonempty disjoint subsets N0 and N1 such

that the sum of the weights of edges that connect a node in N0 to a node in N1 is maximized. As an

example, Fig. 1 shows a weighted directed graph (a) and its maximum partition (b). This partition

can be expressed as a pair (N0={c, d}, N1={e, f}). The sum of the weights of edges that cross from

N0 to N1 in this example is 22.

Figure 1. A weighted directed graph and its maximum partition. (a) Weighted directed graph, (b)

maximum partition.

MPP applications include data clustering where a set of objects needs to be separated into

classes such that the distance (dissimilarity) between objects in different classes is maximized [1-

3]. Another application of MPP is in text compression that supports direct search in compressed

data [4]. In this application, nodes in the graph represent characters and the weight of an edge from

character x to character y represents the number of occurrences of the string xy in the text that is

being compressed. The maximum partition of the set of characters is used to find the pairs of

characters that occur consecutively the most in the text. Compression is achieved by coding such

pairs using single unused characters in the text.

The MPP problem is NP-hard problem with a large search space. For a directed graph with

n nodes, the number of possible partitions is

∑ (𝑛
𝑘

) =
𝑛−1

𝑖=1
 2n – 2.

This is the number of subsets of the set of n nodes excluding the empty set and the set itself.

These two subsets are excluded from possible partitions because they assign all nodes to one side

of the partition and result in no edge crossing between the two sides of the partition; the total

weight of crossing edges is zero.

2060

WAEL MUSTAFA

Existing methods [6-8] to solve the MPP, known as heuristic or approximate methods, are often

efficient with respect to execution time, but they do not guarantee an optimal solution. These

methods suffer from the local maximum problem where a good solution is reached that is better

than the neighboring solutions, but is not better than a global optimal solution. Discrete particle

swarm optimization (DPSO) have been widely used to solve combinatorial problems effectively

[9-12].

DPSO converges to a good solution for MPP in a relatively short time. However, solutions

obtained from DPSO alone are often not optimal and these solutions can be improved further using

simulated annealing (SA) which has the ability to escape a local maximum solution. This is

achieved by accepting moves that result in slightly worse solutions. After accepting a bad move,

SA often recovers from the move and has a good chance of reaching better solutions later. This

paper presents a hybrid DPSO-SA algorithm to solve the MPP. The proposed algorithm consists

of two phases. First, DPSO executes until improvement in fitness slows down. Then, SA starts and

continue on improving the solution produced by DPSO. The SA phase in the proposed algorithm

is augmented with a heuristic method that moves nodes between two sides of the partition to

improve fitness further.

The remaining sections of this paper proceed as follows. Section two reviews algorithms

related to the proposed algorithm. Section three formulates the MPP problem and discuses

concepts and parameters needed to solve MPP using DPSO and SA. Section four presents the

proposed algorithm and section five discuss the results of the algorithm. Finally, section six

concludes the paper and suggests future work.

2. BACKGROUND

This section describes the algorithms that are used in the proposed hybrid algorithm.

2.1 Particle Swarm Optimization

The basic particle swarm optimization (PSO) mimics the collective behavior of a group of

birds searching for food location [13-15]. To solve a particular problem, a population of random

2061

MAXIMUM PARTITION PROBLEM

solutions, called particles, is first created. The set of all particles is called swarm. The algorithm

searches for a high-quality solution by updating particles over generations. In PSO, each particle

has current location, fitness, velocity, local best location, and global best location. Fitness of a

particle, which represents the quality of solution, is computed using certain objective function that

is usually problem dependent. The local best of a particle is the best location the particle

encountered so far during execution while global best is the best location found by the entire swarm

so far.

In basic PSO, each particle X at iteration i has a location vector Xi= (x1i, x2i,…, xni), and also

has a velocity vector Vi=(v1i, v2i, ..,vni), where n is usually the number of variables of the continuous

function being optimized. The velocity vector components are real numbers within a limited range.

The velocity vector determines the movement of the particle in the next iteration of the algorithm.

At each iteration, velocity is updated and used to update the position of the particle using the two

equations:

Vi+1 = Vi+ c1r1 (local_best - Xi) + c2 r2 (global_best - Xi)

Xi = Xi + Vi+1

Where r1 and r2 are two random variables in the range of zero to one, c1 and c2 are positive

constants that control how how much the particle moves in the direction of local best and global

best, respectively. The component c1r1 (local_best - Xi) is known as personal influence which

moves the particle in the direction of local best, while c2r2 (global_best - Xi) is known as social

influence which moves the particle in the direction of global best solution.

2.2 Discrete Particle Swarm Optimization

The basic PSO has been found to be efficient in optimizing continuous functions in various

domains. However, many practical problems, such as MPP, travelling salesman, and N-queens are

combinatorial optimization problems that involve optimizing discrete functions. The work in [16]

presented a discrete binary version of PSO (DPSO) for such problems. As in basic PSO, a particle

has a location and velocity. However, in DPSO location is a vector of bits and every bit has a

velocity that determines the probability of the bit being set to one or zero. In DPSO, higher velocity

2062

WAEL MUSTAFA

increases the chances of bit to be set to one, while lower velocity increases the chance of the bit to

be set to zero. Like the basic continuous PSO, the formula used to compute the velocity of a bit at

the next iteration in DPSO is

Vi+1 = Vi+ c1(local_best - Xi) +c2(global_best - Xi)

Where c1 and c2 are small constants. Local_best, global_best, and Xi are all vectors of bits. In [16],

the authors suggest that velocity range to be between -6 and +6. After computing the velocity of a

bit b in a particle, the value of b in the next iteration is determined as follows:

if (rand () < Sig(v)) then b = 1; else b = 0,

where Sig is the sigmoid function, defined as Sig(x)= 1/(1+e-x), and rand() is a random number

between zero and one. For a bit with high velocity v, Sig(v) is closer to one and the bit will likely

to be one in the next iteration. On the other hand, for a bit with low velocity v, Sig(v) is closer to

zero and it is likely that the bit to be zero in the next iteration.

2.3 Simulated Annealing

The concept of annealing in combinatorial optimization was introduced in [17] and has been

used in the optimization of various combinatorial problems [18-23]. This concept is based on a

strong analogy with the physical annealing of metal objects. This process can be summarized by

the following two steps: bring the solid metal object to a very high temperature until melting; then

cool the object according to a specific temperature decreasing schedule to reach a solid state of a

desired shape. When used in optimization, the algorithm usually starts from a random state

representing a solution attempt and improves the quality of the current solution (state) by moving

to a better neighboring state. When this process is repeated, the algorithm often results in high-

quality solutions. In the remainder of this paper, the two terms solution and state are used

interchangeably.

A basic characteristic of SA algorithm is its ability to accept, with some computed probability,

moves to less desired states. The probability of accepting such moves depends on e/temp, where

e=2.178, temp is the current temperature, and  is a negative value representing the difference

between current and successor state fitness. Higher temperature values increase the probability of

2063

MAXIMUM PARTITION PROBLEM

accepting bad moves while higher || values decrease the probability of accepting bad moves.

In the early stages of SA, the temperature is usually set high. This increases chances of the SA

algorithm to accept moves that worsen the current solution. Through accepting bad moves, SA

algorithm often avoids local maximum’s and explores the search space more thoroughly. As the

temperature decreases while the algorithm executes, the algorithm tends to accept only moves that

improve the current solution. Near the end of execution, the temperature becomes usually near

zero and no move that results in a worse solution than the current solution is accepted. Fig. 2

contains the general framework of the SA algorithm.

Figure 2. Conventional simulated annealing algorithm.

The inner for loop, line 4, controls the number of chances the algorithm is given to move to a

worse state during different temperature iterations. This loop also affects the execution time and

quality of the output solution. Larger number of iterations for this loop increases the chances of

escaping local maximum’s, but increases the execution time. Often, the parameters of the outer

temperature loop, known as the cooling schedule, and the number of iterations of the inner loop,

i_max, are interrelated.

3. PROBLEM FORMULATION

This section formulates the concepts and operations used in applying DPSO and SA to the MPP.

This includes defining: state, particle, neighboring states, successor operation, and fitness function.

2064

WAEL MUSTAFA

A directed weighted graph G= (N, E), where N is the set of nodes and E is the set of weighted

directed edges, is represented by a square |N|x|N| adjacency matrix A. Elements of A represent the

weights of edges in E. The element in the i’th row and j’th column in A is equal to the weight of

the edge from node i to node j in G; A=[aij], aij=wi→j. A state in SA and also a particle in DPSO is

a partition of N into two disjoint subsets, N0 and N1. A partition (N0, N1) is represented by an n-

tuple of bits (b1, b2, …, bn), where n is the number of nodes in G and

bi (1≤i≤n) ={
0, 𝑖′th node in 𝑁 ∈ 𝑁0

1, 𝑖′th node in 𝑁 ∈ N1

In SA, the successor operation takes a partition represented by a tuple of bits and returns a

neighboring partition by complementing one of the bits in the tuple. Hence, a partition represented

by an n-tuple has n possible successors.

The fitness of either a partition, a state, or particle is the sum of the weights of directed edges

that leave N0 to N1. For a partition p= (b1, b2, …, bn), the fitness is computing using the formula

Fitness(p)= ∑ 𝐴[𝑖][𝑗]𝑛
𝑖,𝑗=1 , bi =1 and bj =0,

where the indexes i and j go over all the n bits in the tuple p and 𝐴[𝑖][𝑗] is the weight of the

edge connecting node i to node j in the graph being partitioned; G.

4. THE HYBRID ALGORITHM

The proposed hybrid algorithm is shown in Fig. 3. The DPSO is implemented in lines 2-35. Lines

2-4 initialize the M particles (swarm) with N random bits in each particle, where N is the number

of nodes in the graph. Lines 5-7 initialize the velocities of the bits in the particles to real numbers

in the range -V_MAX to +V_MAX. Lines 8-14 initialize the local best for the particles. Line 15

initializes the global best particle to the particle with highest fitness in the initial random swarm.

In lines 18-35, DPSO keeps executing until either there is no improvement in fitness of the

global best for a certain number of consecutive iterations (stagnation), or until the number of

iterations reaches K. In each iteration, the velocity of each bit in every particle is first computed

and then used to compute the new value of the bit. As in DPSO, bit values are computed, based on

2065

MAXIMUM PARTITION PROBLEM

the velocity, using the sigmoid function.

Figure 3. Hybrid DPSO-SA to solve MPP

Lines 16-17 initialize the variables used to implement stagnation. When DPSO

executes a number of consecutive iterations without an improvement of the global best

fitness, the algorithm considers this a stagnation and terminates the DPSO phase. The

2066

WAEL MUSTAFA

number of consecutive iterations that define stagnation is represented using

STAGNATION_INDEX.

At line 36, simulated annealing starts and continue on improving the global best partition

obtained using DPSO. During each iteration of the temperature loop, SA either moves to a better

partition (line 42), rarely moves to a worse partition (line 44), or stays at the same partition. When

SA moves to a worse partition, it occasionally uses the heuristic algorithm (HA), to improve the

fitness of this partition, line 45. To keep execution time low, the HA is performed with a low

probability; HA_PROB. Based on experimentation, executing the HA in every iteration of SA does

not improve fitness of the partition further. The HA, shown in Fig. 4, was suggested in [4] to find

pairs of characters that occur often consecutively in a given text. The original algorithm is slightly

modified for integration within the proposed algorithm. Here, the HA takes a partition p,

represented by a vector of n bits, and keeps flipping bits to improve the fitness of the partition. The

HA terminates when flipping any of the n bits does not improve the fitness of partition p.

Figure 4. Heuristic algorithm to improve partition fitness.

Since the SA goal is to improve the fitness of the near-optimal state produced by DPSO, SA

needs a maximum temperature that results in a low probability of accepting bad moves. Through

experimentation with a large number of graphs of various size, this low probability is about 0.25.

This low probability discourages SA from accepting bad moves and increases the chances of

maintaining the current good partition or improving it further.

The probability of moving to a worse partition is implemented in SA using e/temp, where  is

the difference in fitness between current partition and its successor, and temp is the current

2067

MAXIMUM PARTITION PROBLEM

temperature. So, in order to have the probability of moving to a worse partition in the early stages

of SA to be about 0.25, we need e/temp_max  0.25, which is equivalent to


𝑡𝑒𝑚𝑝_𝑚𝑎𝑥
  1.38. After

monitoring the negative  values inside temperature loop for a large number of random graphs of

different size, the author often finds that   0.35 * Wmax * √𝑛, where Wmax is the maximum

weight an edge may have and n is the number of nodes in the graph. Hence, the maximum

temperature used in SA needs to be about 0.25 * Wmax * √𝑛.

To give SA less chances to move to a worse state and also to reduce execution time, SA in the

hybrid algorithm reduces temperature rapidly between successive iterations using the cooling

function 𝑡𝑒𝑚𝑝𝑖 =
𝑡𝑒𝑚𝑝𝑖−1

2
 , where 𝑡𝑒𝑚𝑝𝑖 is the temperature at iteration i. The author

experimented with other cooling functions including exponential multiplicative cooling:

𝑡𝑒𝑚𝑝𝑖 = 𝑡𝑒𝑚𝑝𝑖−1 , where 0.8≤≤0.9, linear multiplicative cooling: 𝑡𝑒𝑚𝑝𝑖 =𝑡𝑒𝑚𝑝0 /(1 + 𝑖) ,

quadratic multiplicative cooling: 𝑡𝑒𝑚𝑝𝑖 =𝑡𝑒𝑚𝑝0 /(1 + 𝑖2) . These cooling functions increased

execution time without much improvement of output partition fitness.

In the SA phase of the hybrid algorithm, the number of iterations of the inner loop (line 37),

i_max, needs to be high, compared to conventional simulated annealing, due to the cooling

function being used which decreases temperature rapidly. The large i_max value gives SA more

chances to find a better neighboring partition before reducing the temperature. Smaller i_max

values reduce the chances of SA to recover from the local maximum problem and often result in

partitions with less fitness. On the other hand, too large i_max values increase execution time

without much gain in fitness.

5. RESULTS AND DISCUSSION

To compare the performance of conventional DPSO algorithm with the proposed hybrid

DPSO-SA algorithm, the two algorithms were implemented as functions in a single program in

visual C++ 2019. Conventional DPSO was implemented based on the parameters shown in Table

1 and the proposed hybrid DPSO-SA algorithm was implemented based on the parameters in Table

2. The resulting code was executed on an HP computer with an i7 CPU, running Windows 10; 2.2

2068

WAEL MUSTAFA

GHz speed; and an eight GB of main memory. Each algorithm was applied to 25 directed graphs

Gi, 1<=i<=25. Graph size starts at 100 nodes, increases by 100, until it reaches 500. The 25 graphs

are distributed equally over the mentioned sizes; 5 graphs per each size. All of the graphs are

complete; for every two different nodes x and y, there is a directed weighted edge from x to y and

there is another directed weighted edge from y to x. For example, graph G25 has 500 nodes and

500*499 edges.

Table 1. The parameters of the conventional DPSO algorithm.

Number of particles (M) 20

V_MAX 6

Number of iterations (K) 1000

Table 2. The parameters of the Hybrid DPSO-SA algorithms.

Number of particles (M) 20

V_MAX 6

Number of iterations (K) 1000

temp_max 340*√𝑛

i_max 400

HA_PROP 0.2

STAGNATION_INDEX 10, 20, 30

To ensure better randomness of the weights in the graphs and to obtain reproducible results,

weights in each graph are based on a different seed; weights in graph Gi, 1<=i<=25, are obtained

by first calling seed(i) C++ function, and then calling rand() function to generate the weights

themselves. The range of random weights in the graph is restricted to be from 0 to 100 to avoid an

extremely large sum of weights (fitness); a complete graph of 500 nodes has about 250,000

directed edges and the max fitness value is 25,000,000. Increasing the maximum weight limit

results in fitness values that are too large to store using unsigned long long in C++.

The hybrid DPSO-SA algorithm was executed on each graph 3 times using different stagnation

index values: 10, 20, 30. The results of applying the two algorithms to the 25 graphs are given in

2069

MAXIMUM PARTITION PROBLEM

appendix A. Fig. 5 shows execution time, to the nearest second, for conventional DPSO and hybrid

DPSO-SA with stagnation index values 10, 20, and 30. The execution time at each graph size was

computed as the average execution time of five graphs of the same size. For larger graphs, the

hybrid DPSO-SA algorithm with stagnation index 10 results in less execution time than both

conventional DPSO and also the hybrid DPSO-SA itself using stagnation index values 20 and 30.

For stagnation index value of 30, the hybrid DPSO-SA execution time becomes worse than that of

conventional DPSO. Larger stagnation index value means that there is a higher chance that DPSO

phase of the hybrid algorithm executes the entire K iterations. In such cases, the execution time of

the hybrid DPSO-SA algorithm will be the sum of execution time of conventional DPSO in

addition to the execution time of SA.

Figure 5. Execution time to the nearest second of DPSO and hybrid DPSO-SA algorithms.

Fig. 6 shows average number of DPSO iterations after which stagnation occurs at different

graph size for stagnation indeces 10, 20, and 30. For smaller graphs of 100 nodes, it takes about

100 iterations of DPSO to stagnate. For larger graphs of 500 nodes, it takes about 300-700

iterations to stagnate; depending on stagnation index value being used. In general, it takes larger

number of iterations for a stagnation to occur as graph size increases and also as stagnation index

increases. This suggests using a larger stagnation index values for larger graphs in the proposed

hybrid DPSO-SA algorithm.

2070

WAEL MUSTAFA

Figure 6. DPSO stagnation

The average fitness improvement of the hybrid DPSO-SA algorithm over conventional DPSO

for each graph size is shown in Fig. 7. The hybrid DPSO-SA algorithm results in higher fitness

using each of the three stagnation indexes 10, 20, and 30 at every graph size. Furthermore, the

improvement in fitness becomes larger as graph size increases. For a graph size of 100, average

improvement in fitness is about 300 whereas for a graph of size 500 nodes the average fitness

improvement is about 4000. For smaller graphs, stagnation index 10 results in most fitness

improvement, while for larger graphs stagnation index of 30 results in most fitness improvement.

Again, this suggests using a larger stagnation index in the hybrid DPSO-SA algorithm for large

graphs.

Figure 7. Average fitness improvement of hybrid DPSO-SA over conventional DPSO

Fig. 8 shows convergence of conventional DPSO and hybrid DPSO-SA with time for the

2071

MAXIMUM PARTITION PROBLEM

graphs G10 (200 nodes; 39,800 edges), G15 (300 nodes; 89,700 edges), G20 (400 node; 159,600

edges), and G25 (500 nodes; 249,500 edges). The results in Fig. 8 were obtained by performing

the two algorithms on the same graph for K=1000 iterations, and using stagnation index value 10

in the hybrid DPSO-SA. Global best fitness in the two algorithms was recorded every 2 seconds

during execution time. Although the hybrid DPSO-SA starts at global best with a lower fitness in

the four graphs, the hybrid DPSO-SA algorithm is able to catch up with conventional DPSO and

reach a better solution later. SA improves global fitness the most in its early iterations. This occurs

after about 4 seconds in G10, 6 seconds in G15, 14 seconds in G20, and 18 seconds in G25. This

illustrates the benefit of the cooling schedule used in SA phase of the algorithm in which

temperature is reduced rapidly; Using this schedule, SA is able to improve fitness of the solution

produced by DPSO in a short time

(a) (b)

(c) (d)

Figure 8. Convergence of conventional DPSO and hybrid DPSO-SA. (a) Graph G10,

(b) Graph G15, (c) Graph G20, (d) Graph G25.

2072

WAEL MUSTAFA

6. CONCLUSION AND FUTURE WORK

This paper presented a hybrid algorithm to solve the MPP. The hybridization is implemented

by performing simulated annealing on the result of applying discrete particle swarm optimization

to MPP. Experiments on random graphs with different size show that the proposed algorithm

produces better partitions than conventional DPSO. Furthermore, the proposed algorithm

converges faster to near optimal solutions than conventional DPSO.

Future work includes quantifying the relation between graph size and the most appropriate

stagnation index value. Another future work, is to extend the proposed algorithm to deal with

partitioning into more than two disjoint subsets, apply the resulting algorithm to data clustering

and compare the quality of the resulting clusters against exiting methods.

APPENDIX A.

Results of applying conventional DPSO and hybrid DPSO-SA to 25 random graphs. On each

graph, the hybrid DPSO-SA is performed three times using stagnation index values 10, 20, and 30.

2073

MAXIMUM PARTITION PROBLEM

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] E. Hancer, D. Karaboga, Comprehensive survey of traditional, merge-split and evolutionary approaches proposed

for determination of cluster number, Swarm Evol. Comput. 32 (2017), 49-67.

[2] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks. 16 (2005), 645-678.

[3] K. Premalatha, A. Natarajan, A literature review on document clustering, Inform. Technol. J. 9 (2010), 993-1002.

[4] U. Manber, A text compression scheme that allows fast searching directly in the compressed file, ACM Trans.

Inform. Syst. 15 (1997), 124–136.

[5] B. Kernighan, S. Lin. An efficient heuristic procedure for partitioning graphs, Bell Syst. Techn. J. 49 (1970), 91–

307.

[6] S. Dutt, New faster Kernighan-Lin-type graph-partitioning algorithms, in: Proceedings of 1993 International

Conference on Computer Aided Design (ICCAD), IEEE Comput. Soc. Press, Santa Clara, CA, USA, 1993: pp.

370–377.

[7] Hyunchul Shin, Chunghee Kim, A simple yet effective technique for partitioning, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems. 1 (1993), 380–386.

[8] C.M. Fiduccia, R.M. Mattheyses, A Linear-Time Heuristic for Improving Network Partitions, in: 19th Design

Automation Conference, IEEE, Las Vegas, NV, USA, 1982: pp. 175–181.

[9] J. Qin, Hybrid discrete particle swarm algorithm for graph coloring problem, J. Computers. 6 (2011), 1175-1182.

[10] S.D. Kapade, S.M. Khairnar, B.S. Chaudhari, A new particle swarm intelligence-based graph partitioning

technique for image segmentation, J. Electric. Syst. Inform. Technol. 7 (2020), 4.

[11] Y.-R. Wang, H.-L. Lin, L. Yang, Swarm Refinement PSO for Solving N-queens Problem, in: 2012 Third

International Conference on Innovations in Bio-Inspired Computing and Applications, IEEE, Kaohsiung City,

Taiwan, 2012: pp. 29–33.

[12] N. Blas, O. Tolic, Clustering using particle swarm optimization, Int. J. Inform. Theor. Appl. 23 (2016), 24-33.

2074

WAEL MUSTAFA

[13] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference

on Neural Networks, IEEE, Perth, WA, Australia, 1995: pp. 1942–1948.

[14] R. Eberhart, R. Dobbins, P. Simpson, Computational Intelligence PC Tools. Academic Press, Boston, (1996).

[15] J. Kennedy, The particle swarm: social adaptation of knowledge, in: Proceedings of 1997 IEEE International

Conference on Evolutionary Computation (ICEC ’97), IEEE, Indianapolis, IN, USA, 1997: pp. 303–308.

[16] J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International

Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, IEEE, Orlando, FL,

USA, 1997: pp. 4104–4108.

[17] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science. 220 (1983), 671-680.

[18] X. Geng, Z. Chen, W. Yang, D. Shi, Kai Zhao, Solving the traveling salesman problem based on an adaptive

simulated annealing algorithm with greedy search, Appl. Soft Comput. 11 (2011), 3680-3689.

[19] C. Gallo, V. Capozzi, A simulated annealing algorithm for scheduling problems, J. Appl. Math. Phys. 7 (2019),

2579-2594.

[20] D. Brown, C. Huntley, A practical application of simulated annealing to clustering, Pattern Recognition. 25

(1992), 401-412.

[21] H. Samma, J. Mohamad-Saleh, S. Azmin Suandi, B. Lahasan, Q-learning-based simulated annealing algorithm

for constrained engineering design problems, Neural Comput. Appl. 32 (2020), 5147–5161.

[22] C. Liu, Y. Zhang, Research on MTSP Problem based on Simulated Annealing, in: Proceedings of the 2018

International Conference on Information Science and System, ACM, Jeju Republic of Korea, 2018: pp. 283–285.

[23] W. Odziemczyk, Application of simulated annealing algorithm for 3D coordinate transformation problem

Solution, Open Geosci. 12 (2020), 491–502.

https://www.sciencedirect.com/science/article/pii/S1568494611000573
https://www.sciencedirect.com/science/article/pii/S1568494611000573
javascript:;
javascript:;
javascript:;
javascript:;
file:///C:/Users/97059/Desktop/research/3.%20MDPI-applied%20sciences-specia%20issue/vol.%2012,%20Issue%201

