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Abstract: The maximum partition problem (MPP) is to divide the set of nodes in directed weighted graph into two 

disjoint subsets such that the sum of weights of edges crossing from one subset of the partition to the other is 

maximized. The MPP is NP-hard. Hence, this paper presents a hybrid discrete particle swarm optimization (DPSO) 

simulated annealing (SA) algorithm to solve MPP. The proposed algorithm first applies DPSO to the problem until 

improvement in fitness slows down (stagnates). Then, the algorithm uses SA augmented with a heuristic method to 

improve the fitness of the solution obtained from DPSO. Experiments on randomly generated graphs of different size 

show that the proposed algorithm produces better partitions than conventional DPSO. Additionally, the proposed 

algorithm converges to near optimal solutions faster than conventional DPSO. 

Keywords: maximum partition problem; discrete particle swarm optimization; simulated annealing; combinatorial 

optimization. 
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1. INTRODUCTION 

The maximum partition problem (MPP) of a directed weighted graph with a set of nodes N and 

a set of edges E is to divide the set of nodes N into two nonempty disjoint subsets N0 and N1 such 

that the sum of the weights of edges that connect a node in N0 to a node in N1 is maximized. As an 

example, Fig. 1 shows a weighted directed graph (a) and its maximum partition (b). This partition 

can be expressed as a pair (N0={c, d}, N1={e, f}). The sum of the weights of edges that cross from 

N0 to N1 in this example is 22. 

 

Figure 1. A weighted directed graph and its maximum partition. (a) Weighted directed graph, (b) 

maximum partition. 

MPP applications include data clustering where a set of objects needs to be separated into 

classes such that the distance (dissimilarity) between objects in different classes is maximized [1-

3]. Another application of MPP is in text compression that supports direct search in compressed 

data [4]. In this application, nodes in the graph represent characters and the weight of an edge from 

character x to character y represents the number of occurrences of the string xy in the text that is 

being compressed. The maximum partition of the set of characters is used to find the pairs of 

characters that occur consecutively the most in the text. Compression is achieved by coding such 

pairs using single unused characters in the text. 

The MPP problem is NP-hard problem with a large search space. For a directed graph with 

n nodes, the number of possible partitions is 

∑ (𝑛
𝑘

)  =
𝑛−1

𝑖=1
 2n – 2. 

This is the number of subsets of the set of n nodes excluding the empty set and the set itself. 

These two subsets are excluded from possible partitions because they assign all nodes to one side 

of the partition and result in no edge crossing between the two sides of the partition; the total 

weight of crossing edges is zero. 
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Existing methods [6-8] to solve the MPP, known as heuristic or approximate methods, are often 

efficient with respect to execution time, but they do not guarantee an optimal solution. These 

methods suffer from the local maximum problem where a good solution is reached that is better 

than the neighboring solutions, but is not better than a global optimal solution. Discrete particle 

swarm optimization (DPSO) have been widely used to solve combinatorial problems effectively 

[9-12].  

DPSO converges to a good solution for MPP in a relatively short time. However, solutions 

obtained from DPSO alone are often not optimal and these solutions can be improved further using 

simulated annealing (SA) which has the ability to escape a local maximum solution. This is 

achieved by accepting moves that result in slightly worse solutions. After accepting a bad move, 

SA often recovers from the move and has a good chance of reaching better solutions later. This 

paper presents a hybrid DPSO-SA algorithm to solve the MPP. The proposed algorithm consists 

of two phases. First, DPSO executes until improvement in fitness slows down. Then, SA starts and 

continue on improving the solution produced by DPSO. The SA phase in the proposed algorithm 

is augmented with a heuristic method that moves nodes between two sides of the partition to 

improve fitness further. 

The remaining sections of this paper proceed as follows. Section two reviews algorithms 

related to the proposed algorithm. Section three formulates the MPP problem and discuses 

concepts and parameters needed to solve MPP using DPSO and SA. Section four presents the 

proposed algorithm and section five discuss the results of the algorithm. Finally, section six 

concludes the paper and suggests future work. 

 

2. BACKGROUND 

This section describes the algorithms that are used in the proposed hybrid algorithm. 

2.1 Particle Swarm Optimization 

The basic particle swarm optimization (PSO) mimics the collective behavior of a group of 

birds searching for food location [13-15]. To solve a particular problem, a population of random 
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solutions, called particles, is first created. The set of all particles is called swarm. The algorithm 

searches for a high-quality solution by updating particles over generations. In PSO, each particle 

has current location, fitness, velocity, local best location, and global best location. Fitness of a 

particle, which represents the quality of solution, is computed using certain objective function that 

is usually problem dependent. The local best of a particle is the best location the particle 

encountered so far during execution while global best is the best location found by the entire swarm 

so far.  

In basic PSO, each particle X at iteration i has a location vector Xi= (x1i, x2i,…, xni), and also 

has a velocity vector Vi=(v1i, v2i, ..,vni), where n is usually the number of variables of the continuous 

function being optimized. The velocity vector components are real numbers within a limited range. 

The velocity vector determines the movement of the particle in the next iteration of the algorithm. 

At each iteration, velocity is updated and used to update the position of the particle using the two 

equations: 

Vi+1 = Vi+ c1r1 (local_best - Xi) + c2 r2 (global_best - Xi) 

Xi = Xi + Vi+1 

Where r1 and r2 are two random variables in the range of zero to one, c1 and c2 are positive 

constants that control how how much the particle moves in the direction of local best and global 

best, respectively. The component c1r1 (local_best - Xi) is known as personal influence which 

moves the particle in the direction of local best, while c2r2 (global_best - Xi) is known as social 

influence which moves the particle in the direction of global best solution. 

2.2 Discrete Particle Swarm Optimization 

The basic PSO has been found to be efficient in optimizing continuous functions in various 

domains. However, many practical problems, such as MPP, travelling salesman, and N-queens are 

combinatorial optimization problems that involve optimizing discrete functions. The work in [16] 

presented a discrete binary version of PSO (DPSO) for such problems. As in basic PSO, a particle 

has a location and velocity. However, in DPSO location is a vector of bits and every bit has a 

velocity that determines the probability of the bit being set to one or zero. In DPSO, higher velocity 
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increases the chances of bit to be set to one, while lower velocity increases the chance of the bit to 

be set to zero. Like the basic continuous PSO, the formula used to compute the velocity of a bit at 

the next iteration in DPSO is 

Vi+1 = Vi+ c1(local_best - Xi) +c2(global_best - Xi) 

Where c1 and c2 are small constants. Local_best, global_best, and Xi are all vectors of bits. In [16], 

the authors suggest that velocity range to be between -6 and +6. After computing the velocity of a 

bit b in a particle, the value of b in the next iteration is determined as follows: 

if (rand () < Sig(v)) then b = 1; else b = 0, 

where Sig is the sigmoid function, defined as Sig(x)= 1/(1+e-x), and rand() is a random number 

between zero and one. For a bit with high velocity v, Sig(v) is closer to one and the bit will likely 

to be one in the next iteration. On the other hand, for a bit with low velocity v, Sig(v) is closer to 

zero and it is likely that the bit to be zero in the next iteration. 

2.3 Simulated Annealing 

The concept of annealing in combinatorial optimization was introduced in [17] and has been 

used in the optimization of various combinatorial problems [18-23]. This concept is based on a 

strong analogy with the physical annealing of metal objects. This process can be summarized by 

the following two steps: bring the solid metal object to a very high temperature until melting; then 

cool the object according to a specific temperature decreasing schedule to reach a solid state of a 

desired shape. When used in optimization, the algorithm usually starts from a random state 

representing a solution attempt and improves the quality of the current solution (state) by moving 

to a better neighboring state. When this process is repeated, the algorithm often results in high-

quality solutions. In the remainder of this paper, the two terms solution and state are used 

interchangeably. 

A basic characteristic of SA algorithm is its ability to accept, with some computed probability, 

moves to less desired states. The probability of accepting such moves depends on e/temp, where 

e=2.178, temp is the current temperature, and  is a negative value representing the difference 

between current and successor state fitness. Higher temperature values increase the probability of 
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accepting bad moves while higher || values decrease the probability of accepting bad moves. 

In the early stages of SA, the temperature is usually set high. This increases chances of the SA 

algorithm to accept moves that worsen the current solution. Through accepting bad moves, SA 

algorithm often avoids local maximum’s and explores the search space more thoroughly. As the 

temperature decreases while the algorithm executes, the algorithm tends to accept only moves that 

improve the current solution. Near the end of execution, the temperature becomes usually near 

zero and no move that results in a worse solution than the current solution is accepted. Fig. 2 

contains the general framework of the SA algorithm. 

 

Figure 2. Conventional simulated annealing algorithm. 

The inner for loop, line 4, controls the number of chances the algorithm is given to move to a 

worse state during different temperature iterations. This loop also affects the execution time and 

quality of the output solution. Larger number of iterations for this loop increases the chances of 

escaping local maximum’s, but increases the execution time. Often, the parameters of the outer 

temperature loop, known as the cooling schedule, and the number of iterations of the inner loop, 

i_max, are interrelated. 

 

3. PROBLEM FORMULATION 

This section formulates the concepts and operations used in applying DPSO and SA to the MPP. 

This includes defining: state, particle, neighboring states, successor operation, and fitness function. 
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A directed weighted graph G= (N, E), where N is the set of nodes and E is the set of weighted 

directed edges, is represented by a square |N|x|N| adjacency matrix A. Elements of A represent the 

weights of edges in E. The element in the i’th row and j’th column in A is equal to the weight of 

the edge from node i to node j in G; A=[aij], aij=wi→j. A state in SA and also a particle in DPSO is 

a partition of N into two disjoint subsets, N0 and N1. A partition (N0, N1) is represented by an n-

tuple of bits (b1, b2, …, bn), where n is the number of nodes in G and  

bi (1≤i≤n) ={
0,   𝑖′th node in 𝑁 ∈ 𝑁0

 
1,    𝑖′th node in 𝑁 ∈ N1

 

In SA, the successor operation takes a partition represented by a tuple of bits and returns a 

neighboring partition by complementing one of the bits in the tuple. Hence, a partition represented 

by an n-tuple has n possible successors. 

The fitness of either a partition, a state, or particle is the sum of the weights of directed edges 

that leave N0 to N1. For a partition p= (b1, b2, …, bn), the fitness is computing using the formula 

Fitness(p)= ∑ 𝐴[𝑖][𝑗]𝑛
𝑖,𝑗=1 , bi =1 and bj =0,  

where the indexes i and j go over all the n bits in the tuple p and 𝐴[𝑖][𝑗] is the weight of the 

edge connecting node i to node j in the graph being partitioned; G. 

 

4. THE HYBRID ALGORITHM 

The proposed hybrid algorithm is shown in Fig. 3. The DPSO is implemented in lines 2-35. Lines 

2-4 initialize the M particles (swarm) with N random bits in each particle, where N is the number 

of nodes in the graph. Lines 5-7 initialize the velocities of the bits in the particles to real numbers 

in the range -V_MAX to +V_MAX. Lines 8-14 initialize the local best for the particles. Line 15 

initializes the global best particle to the particle with highest fitness in the initial random swarm. 

In lines 18-35, DPSO keeps executing until either there is no improvement in fitness of the 

global best for a certain number of consecutive iterations (stagnation), or until the number of 

iterations reaches K. In each iteration, the velocity of each bit in every particle is first computed 

and then used to compute the new value of the bit. As in DPSO, bit values are computed, based on 
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the velocity, using the sigmoid function. 

 

Figure 3. Hybrid DPSO-SA to solve MPP 

Lines 16-17 initialize the variables used to implement stagnation. When DPSO 

executes a number of consecutive iterations without an improvement of the global best 

fitness, the algorithm considers this a stagnation and terminates the DPSO phase. The 
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number of consecutive iterations that define stagnation is represented using 

STAGNATION_INDEX. 

At line 36, simulated annealing starts and continue on improving the global best partition 

obtained using DPSO. During each iteration of the temperature loop, SA either moves to a better 

partition (line 42), rarely moves to a worse partition (line 44), or stays at the same partition. When 

SA moves to a worse partition, it occasionally uses the heuristic algorithm (HA), to improve the 

fitness of this partition, line 45. To keep execution time low, the HA is performed with a low 

probability; HA_PROB. Based on experimentation, executing the HA in every iteration of SA does 

not improve fitness of the partition further. The HA, shown in Fig. 4, was suggested in [4] to find 

pairs of characters that occur often consecutively in a given text. The original algorithm is slightly 

modified for integration within the proposed algorithm. Here, the HA takes a partition p, 

represented by a vector of n bits, and keeps flipping bits to improve the fitness of the partition. The 

HA terminates when flipping any of the n bits does not improve the fitness of partition p. 

 

Figure 4. Heuristic algorithm to improve partition fitness. 

Since the SA goal is to improve the fitness of the near-optimal state produced by DPSO, SA 

needs a maximum temperature that results in a low probability of accepting bad moves. Through 

experimentation with a large number of graphs of various size, this low probability is about 0.25. 

This low probability discourages SA from accepting bad moves and increases the chances of 

maintaining the current good partition or improving it further. 

The probability of moving to a worse partition is implemented in SA using e/temp, where  is 

the difference in fitness between current partition and its successor, and temp is the current 
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temperature. So, in order to have the probability of moving to a worse partition in the early stages 

of SA to be about 0.25, we need e/temp_max  0.25, which is equivalent to 


𝑡𝑒𝑚𝑝_𝑚𝑎𝑥
  1.38. After 

monitoring the negative  values inside temperature loop for a large number of random graphs of 

different size, the author often finds that    0.35 * Wmax * √𝑛, where Wmax is the maximum 

weight an edge may have and n is the number of nodes in the graph. Hence, the maximum 

temperature used in SA needs to be about 0.25 * Wmax * √𝑛. 

To give SA less chances to move to a worse state and also to reduce execution time, SA in the 

hybrid algorithm reduces temperature rapidly between successive iterations using the cooling 

function 𝑡𝑒𝑚𝑝𝑖  =  
𝑡𝑒𝑚𝑝𝑖−1

2
 , where 𝑡𝑒𝑚𝑝𝑖  is the temperature at iteration i. The author 

experimented with other cooling functions including exponential multiplicative cooling: 

𝑡𝑒𝑚𝑝𝑖 = 𝑡𝑒𝑚𝑝𝑖−1 , where 0.8≤≤0.9, linear multiplicative cooling: 𝑡𝑒𝑚𝑝𝑖 =𝑡𝑒𝑚𝑝0 /(1 + 𝑖) , 

quadratic multiplicative cooling: 𝑡𝑒𝑚𝑝𝑖 =𝑡𝑒𝑚𝑝0 /(1 + 𝑖2) . These cooling functions increased 

execution time without much improvement of output partition fitness. 

In the SA phase of the hybrid algorithm, the number of iterations of the inner loop (line 37), 

i_max, needs to be high, compared to conventional simulated annealing, due to the cooling 

function being used which decreases temperature rapidly. The large i_max value gives SA more 

chances to find a better neighboring partition before reducing the temperature. Smaller i_max 

values reduce the chances of SA to recover from the local maximum problem and often result in 

partitions with less fitness. On the other hand, too large i_max values increase execution time 

without much gain in fitness. 

 

5. RESULTS AND DISCUSSION 

To compare the performance of conventional DPSO algorithm with the proposed hybrid 

DPSO-SA algorithm, the two algorithms were implemented as functions in a single program in 

visual C++ 2019. Conventional DPSO was implemented based on the parameters shown in Table 

1 and the proposed hybrid DPSO-SA algorithm was implemented based on the parameters in Table 

2. The resulting code was executed on an HP computer with an i7 CPU, running Windows 10; 2.2 
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GHz speed; and an eight GB of main memory. Each algorithm was applied to 25 directed graphs 

Gi, 1<=i<=25. Graph size starts at 100 nodes, increases by 100, until it reaches 500. The 25 graphs 

are distributed equally over the mentioned sizes; 5 graphs per each size. All of the graphs are 

complete; for every two different nodes x and y, there is a directed weighted edge from x to y and 

there is another directed weighted edge from y to x. For example, graph G25 has 500 nodes and 

500*499 edges. 

Table 1. The parameters of the conventional DPSO algorithm. 

Number of particles (M) 20 

V_MAX 6 

Number of iterations (K) 1000 

Table 2. The parameters of the Hybrid DPSO-SA algorithms. 

Number of particles (M) 20 

V_MAX 6 

Number of iterations (K) 1000 

temp_max 340*√𝑛 

i_max 400 

HA_PROP 0.2 

STAGNATION_INDEX 10, 20, 30 

To ensure better randomness of the weights in the graphs and to obtain reproducible results, 

weights in each graph are based on a different seed; weights in graph Gi, 1<=i<=25, are obtained 

by first calling seed(i) C++ function, and then calling rand() function to generate the weights 

themselves. The range of random weights in the graph is restricted to be from 0 to 100 to avoid an 

extremely large sum of weights (fitness); a complete graph of 500 nodes has about 250,000 

directed edges and the max fitness value is 25,000,000. Increasing the maximum weight limit 

results in fitness values that are too large to store using unsigned long long in C++. 

The hybrid DPSO-SA algorithm was executed on each graph 3 times using different stagnation 

index values: 10, 20, 30. The results of applying the two algorithms to the 25 graphs are given in 
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appendix A. Fig. 5 shows execution time, to the nearest second, for conventional DPSO and hybrid 

DPSO-SA with stagnation index values 10, 20, and 30. The execution time at each graph size was 

computed as the average execution time of five graphs of the same size. For larger graphs, the 

hybrid DPSO-SA algorithm with stagnation index 10 results in less execution time than both 

conventional DPSO and also the hybrid DPSO-SA itself using stagnation index values 20 and 30. 

For stagnation index value of 30, the hybrid DPSO-SA execution time becomes worse than that of 

conventional DPSO. Larger stagnation index value means that there is a higher chance that DPSO 

phase of the hybrid algorithm executes the entire K iterations. In such cases, the execution time of 

the hybrid DPSO-SA algorithm will be the sum of execution time of conventional DPSO in 

addition to the execution time of SA. 

 

Figure 5. Execution time to the nearest second of DPSO and hybrid DPSO-SA algorithms. 

Fig. 6 shows average number of DPSO iterations after which stagnation occurs at different 

graph size for stagnation indeces 10, 20, and 30. For smaller graphs of 100 nodes, it takes about 

100 iterations of DPSO to stagnate. For larger graphs of 500 nodes, it takes about 300-700 

iterations to stagnate; depending on stagnation index value being used. In general, it takes larger 

number of iterations for a stagnation to occur as graph size increases and also as stagnation index 

increases. This suggests using a larger stagnation index values for larger graphs in the proposed 

hybrid DPSO-SA algorithm. 
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Figure 6. DPSO stagnation 

The average fitness improvement of the hybrid DPSO-SA algorithm over conventional DPSO 

for each graph size is shown in Fig. 7. The hybrid DPSO-SA algorithm results in higher fitness 

using each of the three stagnation indexes 10, 20, and 30 at every graph size. Furthermore, the 

improvement in fitness becomes larger as graph size increases. For a graph size of 100, average 

improvement in fitness is about 300 whereas for a graph of size 500 nodes the average fitness 

improvement is about 4000. For smaller graphs, stagnation index 10 results in most fitness 

improvement, while for larger graphs stagnation index of 30 results in most fitness improvement. 

Again, this suggests using a larger stagnation index in the hybrid DPSO-SA algorithm for large 

graphs. 

 

Figure 7. Average fitness improvement of hybrid DPSO-SA over conventional DPSO 

Fig. 8 shows convergence of conventional DPSO and hybrid DPSO-SA with time for the 
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graphs G10 (200 nodes; 39,800 edges), G15 (300 nodes; 89,700 edges), G20 (400 node; 159,600 

edges), and G25 (500 nodes; 249,500 edges). The results in Fig. 8 were obtained by performing 

the two algorithms on the same graph for K=1000 iterations, and using stagnation index value 10 

in the hybrid DPSO-SA. Global best fitness in the two algorithms was recorded every 2 seconds 

during execution time. Although the hybrid DPSO-SA starts at global best with a lower fitness in 

the four graphs, the hybrid DPSO-SA algorithm is able to catch up with conventional DPSO and 

reach a better solution later. SA improves global fitness the most in its early iterations. This occurs 

after about 4 seconds in G10, 6 seconds in G15, 14 seconds in G20, and 18 seconds in G25. This 

illustrates the benefit of the cooling schedule used in SA phase of the algorithm in which 

temperature is reduced rapidly; Using this schedule, SA is able to improve fitness of the solution 

produced by DPSO in a short time  

  

(a)  (b)  

  

(c)  (d) 

Figure 8. Convergence of conventional DPSO and hybrid DPSO-SA. (a) Graph G10, 

(b) Graph G15, (c) Graph G20, (d) Graph G25. 
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6. CONCLUSION AND FUTURE WORK 

This paper presented a hybrid algorithm to solve the MPP. The hybridization is implemented 

by performing simulated annealing on the result of applying discrete particle swarm optimization 

to MPP. Experiments on random graphs with different size show that the proposed algorithm 

produces better partitions than conventional DPSO. Furthermore, the proposed algorithm 

converges faster to near optimal solutions than conventional DPSO. 

Future work includes quantifying the relation between graph size and the most appropriate 

stagnation index value. Another future work, is to extend the proposed algorithm to deal with 

partitioning into more than two disjoint subsets, apply the resulting algorithm to data clustering 

and compare the quality of the resulting clusters against exiting methods. 

 

APPENDIX A.  

Results of applying conventional DPSO and hybrid DPSO-SA to 25 random graphs. On each 

graph, the hybrid DPSO-SA is performed three times using stagnation index values 10, 20, and 30. 
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