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Abstract. In this paper, we introduce the notion of quasi-bi-slant lightlike submanifolds of indefinite Kaehler

manifolds providing some non-trivial examples. Integrability conditions of distributions associated with definition

of such submanifolds have been obtained. Furthermore, some necessary and sufficient conditions for foliations

determined by the above distributions to be totally geodesic have been investigated. Finally, we obtain some

characterization results for totally umbilical and minimal quasi-bi-slant lightlike submanifolds of indefinite Kaehler

manifolds.
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1. INTRODUCTION

In 1996, Duggal and Bejancu introduced the theory of lightlike submanifolds of a semi-

Riemannian manifold ([6]). A lightlike submanifold M of a semi-Riemannian manifold M̄ is a

submanifold on which the induced metric is degenerate. Lightlike geometry has its applications

in general relativity, specially in black hole theory, which motivated geometers to study lightlike

submanifolds of semi-Riemannian manifolds equipped with certain structures. The concept of
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slant immersions in complex geometry was defined by B.Y. Chen as a natural generalization

of both totally real immersions and holomorphic immersions([3, 4]) in 1990. Further, N. Pa-

paghuic introduced the notion of semi-slant submanifolds of Kaehler manifolds in 1994. In [14,

15], Sahin studied the geometry of slant and screen-slant lightlike submanifolds of indefinite

Hermitian manifolds. The theory of slant, CR lightlike submanifolds, SCR lightlike submani-

folds of indefinite Kaehler manifolds and indefinite Sasakian manifolds has been studied in ([6],

[7]).

In this paper, we introduce the notion of quasi-bi-slant lightlike submanifolds of indefinite

Kaehler manifolds. The organization of paper as follows : In section 2, we obtained some basic

results. In section 3, we study quasi-bi-slant lightlike submanifolds of an indefinite Kaehler

manifold with some examples. Section 4 is dedicated to the study of foliations determined by

distributions on quasi-bi-slant lightlike submanifolds of indefinite Kaehler manifolds. In section

5 and 6, we discuss the minimal quasi-bi-slant lightlike submanifolds and totally umbilical

quasi-bi-slant lightlike submanifolds respectively and also provide some non-trivial examples.

2. PRELIMINARIES

A lightlike submanifold (Mm,g) immersed in a semi-Riemannian manifold (M̄m+n, ḡ) is a

submanifold in which induced metric g from ḡ is degenerate and the rank of radical distribution

Rad(T M) is r, where 1≤ r ≤m. Now suppose that S(T M) be a semi-Riemannian complemen-

tary distribution of Rad(T M) in T M, called screen distribution, i.e.

(2.1) T M = Rad(T M)⊕orth S(T M)

Let S(T M⊥) be a semi-Riemannian complementary vector bundle of Rad(T M) in T M⊥,

called screen transversal vector bundle. Since for any local basis {ξi} of Rad(T M) there exists

a local null frame {Ni} of sections with values in the orthogonal complement of S(T M⊥) in

[S(T M)]⊥ such that ḡ(ξi,N j) = δi j and ḡ(Ni,N j) = 0, it follows that there exists a lightlike

transversal vector bundle ltr(T M) locally spanned by {Ni}. Let

(2.2) tr(T M) = ltr(T M)⊕orth S(T M⊥)
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Then, tr(T M) is a complementary which is not orthogonal vector bundle to T M in T M̄|M,

i.e.

(2.3) T M̄|M = T M⊕ tr(T M)

and therefore

(2.4) T M̄|M = S(T M)⊕orth [Rad(T M)⊕ ltr(T M)]⊕orth S(T M⊥)

Following this, we have the four possible cases for a lightlike submanifold:

Case 1: r-lightlike if r ≤ min(m,n),

Case 2: co-isotropic if r = n≤ m, S(T M⊥) = {0},

Case 3: isotropic if r = m≤ n, S(T M) = {0},

Case 4: totally lightlike if r = m = n, S(T M) = S(T M⊥) = {0}.

The Gauss and Weingarten formulae are given as

(2.5) ∇̄XY = ∇XY +h(X ,Y ),

(2.6) ∇̄XV =−AV X +∇
t
XV.

for all X ,Y ∈Γ(T M) and V ∈Γ(tr(T M)), where {∇XY,AV X} belong to Γ(T M) and {h(X ,Y ),∇t
XV}

belong to Γ(tr(T M)). Here, ∇ and ∇t are linear connections on M and on the vector bun-

dle tr(T M) respectively. The second fundamental form h is a symmetric F(M)-bilinear form

on Γ(T M) with values in Γ(tr(T M)) and the shape operator AV is a linear endomorphism of

Γ(T M). From (2.5) and (2.6) we have

(2.7) ∇̄XY = ∇XY +hl(X ,Y )+hs(X ,Y ), ∀ X ,Y ∈ Γ(T M).

(2.8) ∇̄X N =−ANX +∇
l
X N +Ds(X ,N), ∀ N ∈ Γ(ltr(T M)).

(2.9) ∇̄XW =−AW X +Dl(X ,W )+∇
s
XW, ∀W ∈ Γ(S(T M⊥)).

where hl(X ,Y )=L(h(X ,Y )), hs(X ,Y )= S(h(X ,Y )), Dl(X ,W )=L(∇t
XW ), Ds(X ,N)= S(∇t

X N),

L and S are the projection morphisms of tr(T M) on ltr(T M) and S(T M⊥) respectively. Thus
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hl and hs are Γ(ltr(T M))-valued and Γ(S(T M⊥))-valued lightlike second fundamental form

and screen second fundamental form of M respectively. On the other hand, ∇l and ∇s are lin-

ear connections on ltr(T M) and S(T M⊥) called the lightlike connection and screen transversal

connection on M respectively. Now by using (2.5), (2.7)-(2.9) and metric connection ∇̄, we

obtain

(2.10) ḡ(hs(X ,Y ),W )+ ḡ(Y,Dl(X ,W )) = g(AW X),

(2.11) ḡ(Ds(X ,N),W ) = g(N,AW X),

Suppose P̄ is the projection of T M on S(T M). Then from the decomposition of the tangent

bundle of a lightlike submanifold, we have

(2.12) ∇X P̄Y = ∇
∗
X P̄Y +h∗(X , P̄Y ), ∀ X ,Y ∈ Γ(T M),

(2.13) ∇X ξ =−A∗
ξ

X +∇
∗t
X ξ , ξ ∈ Γ(Rad(T M))

where {∇∗X P̄Y,−A∗
ξ

X} and {h∗(X , P̄Y ),∇∗tX ξ} belong to Γ(S(T M)) and Γ(Rad(T M)) respec-

tively. It follows that ∇∗ and ∇∗t are linear connections on S(T M) and Rad(T M) respec-

tively. On the other hand, h∗ and A∗ are called the second fundamental forms of distribu-

tions S(T M) and Rad(T M) respectively, which are Γ(Rad(T M))-valued and Γ(S(T M))-valued

F(M)-bilinear forms on Γ(T M)×Γ(S(T M)) and Γ(Rad(T M))×Γ(T M). Now by using the

above equations, we obtain

(2.14) ḡ(hl(X , P̄Y ),ξ ) = g(A∗
ξ

X , P̄Y ),

(2.15) ḡ(h∗(X , P̄Y ),N) = g(ANX , P̄Y ),

(2.16) ḡ(hl(X ,ξ ),ξ ) = 0, A∗
ξ

ξ = 0.

Here, it is important to note that the induced connection ∇ on M is not a metric connection

in general. Since ∇̄ is a metric connection, by using (2.7) we get

(2.17) (∇X g)(Y,Z) = ḡ(hl(X ,Y ),Z)+ ḡ(hl(X ,Z),Y )
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A 2m-dimensional semi-Riemannian manifold (M̄, ḡ, J̄) with constant index q, where 0 <

q < 2m, and a (1,1) tensor field J̄ on M̄ is called an indefinite almost Hermitian manifold if the

following conditions are satisfied:

(2.18) J̄2X =−X

(2.19) ḡ(J̄X , J̄Y ) = ḡ(X ,Y ), ∀X ,Y ∈ Γ(T M̄).

An indefinite almost Hermitian manifold (M̄, ḡ; J̄) is called an indefinite Kaehler manifold if

J̄ is parallel with respect to ∇̄, i.e.,

(2.20) (∇̄X J̄)Y = 0,

for all X ,Y ∈ Γ(T M̄), where ∇̄ is the Levi-Civita connection with respect to ḡ.

3. QUASI-BI-SLANT LIGHTLIKE SUBMANIFOLDS

In this section, we introduce the notion of quasi-bi-slant lightlike submanifolds of indefinite

Kaehler manifolds. At first, we state the following lemma which was proved by Sahin[14]. We

shall use this lemma in defining the notion of quasi-bi-slant lightlike submanifolds of indefinite

Kaehler manifolds.

Lemma 1.[15] Let M be a q-lightlike submanifold of an indefinite Kaehler manifold M̄ of

index 2q. Suppose that there exists a screen distribution S(T M) such that J̄Rad(T M)⊂ S(T M)

and J̄ltr(T M) ⊂ S(T M). Then J̄Rad(T M)∩ J̄ltr(T M) = {0} and any complementry distribu-

tion to J̄Rad(T M)⊕ J̄ltr(T M) in S(T M) is Riemannian.

DEFINITION 1. Let M be a q-lightlike submanifold of an indefinite Kaehler manifold M̄

of index 2q such that 2q < dim(M). Then we say that M is a quasi-bi-slant lightlike submani-

fold of M̄ if the following conditions are satisfied:

(i) J̄Rad(T M) is a distribution on M such that Rad(T M)∩ J̄Rad(T M) = {0};

(ii) there exist non-degenerate orthogonal distributions D, D1 and D2 on M such that

S(T M) = (J̄Rad(T M)⊕ J̄ltr(T M))⊕orth D⊕orth D1⊕orth D2;
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(iii) the distribution D is an invariant distribution, i.e. J̄D = D;

(iv) the distribution D1 is slant with angle θ1, i.e. for each x ∈ M and each non-zero vector

X ∈ (D1)x, the angle θ1 between J̄X and the vector subspace (D1)x is a non-zero constant,

which is independent of the choice of x ∈M and X ∈ (D1)x.

(v) the distribution D2 is slant with angle θ2, i.e. for each x ∈ M and each non-zero vector

X ∈ (D2)x, the angle θ2 between J̄X and the vector subspace (D2)x is a non-zero constant,

which is independent of the choice of x ∈M and X ∈ (D2)x.

These constant angles θ1 and θ2 are called the slant angles of distributions D1 and D2 respec-

tively. A quasi-bi-slant lightlike submanifold is said to be proper if D1 6= {0}, D2 6= {0} and

θ1 6= π/2, θ2 6= π/2.

From the above definition, we have the following decomposition:

T M = Rad(T M)⊕orth (J̄Rad(T M)⊕ J̄ltr(T M))⊕orth D⊕orth D1⊕orth D2.

We observe that the above class of submanifolds includes slant, semi-slant, bi-slant lightlike

submanifolds of indefinite Kaehler manifolds as its particular cases.

Let (R2m
2q , ḡ, J̄) denote the manifold R2m

2q with its usual Kaehler structure given by

ḡ =
1
4
(−∑

q
i=1 dxi⊗dxi +dyi⊗dyi +∑

m
i=q+1 dxi⊗dxi +dyi⊗dyi),

J̄(∑m
i=1(Xidxi +Yidyi)) = ∑

m
i=1(Yi∂xi−Xi∂yi),

where (xi,yi) are the Cartesian co-ordinates on R2m
2q . Now, we construct some examples of

quasi-bi-slant lightlike submanifolds of an indefinite Kaehler manifold.

EXAMPLE 1. Let (R14
2 , ḡ, J̄) be an indefinite Kaehler manifold, where ḡ is of signature

(−,+,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical basis {∂x1,∂x2,∂x3,

∂x4,∂x5,∂x6,∂x7,∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂y7}.

Suppose M is a submanifold of R14
2 given by −x1 = y2 = u1, x2 = u2, y1 = u3, x3 = u4 cosβ ,

y3 = −u5 cosβ , x4 = u5 sinβ , y4 = u4 sinβ , x5 = u6 sinu7, y5 = u6 cosu7, x6 = k1 sinu6, y6 =

k1 cosu6, x7 = u8, y7 = u9, x8 = k2 cosu9, y8 = k2 sinu9, where k1 and k2 are constants.
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The local frame of T M is given by {Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}, where

Z1 = 2(−∂x1 +∂y2),

Z2 = 2(∂x2), Z3 = 2(∂y1),

Z4 = 2(cosβ∂x3 + sinβ∂y4),

Z5 = 2(sinβ∂x4− cosβ∂y3),

Z6 = 2(sinu7∂x5 + cosu7∂y5 + k1 cosu6∂x6− k1 sinu6∂y6),

Z7 = 2(u6 cosu7∂x5−u6 sinu7∂y5),

Z8 = 2(∂x7), Z9 = 2(∂y7− k2 sinu9∂x8 + k2 cosu9∂y8).

Hence Rad(T M)= span{Z1} and S(T M)= span{Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}. Now ltr(T M)

is spanned by N = ∂x1 +∂y2 and S(T M⊥) is spanned by

W1 = 2(sinβ∂x3− cosβ∂y4),

W2 = 2(cosβ∂x4 + sinβ∂y3),

W3 = 2(k2
1 sinu7∂x5 + k2

1 cosu7∂y5− k1 cosu6∂x6 + k1 sinu6∂y6),

W4 = 2(u6 sinu6∂x6 +u6 cosu6∂y6).

It follows that J̄Z1 = Z2 + Z3 and J̄N = 1
2(Z2 − Z3), which implies that J̄Rad(T M) and

J̄ltr(T M) are distributions on M. On the other hand, we can see that D = span{Z4,Z5} such

that J̄Z4 = Z5, J̄Z5 = −Z4, which implies that D is invariant with respect to J̄. Also D1 =

span{Z6,Z7} and D2 = span{Z8,Z9} are slant distributions with slant angles θ1 = cos−1(1/
√

1+ k2
1)

and θ2 = cos−1(1/
√

1+ k2
2) respectively. Hence M is a quasi-bi-slant 2-lightlike submanifold

of R14
2 .

EXAMPLE 2. Let (R14
2 , ḡ, J̄) be an indefinite Kaehler manifold, where ḡ is of signature

(−,+,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical basis {∂x1,∂x2,∂x3,

∂x4,∂x5,∂x6,∂x7,∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂y7}.



2446 S. S. SHUKLA, PAWAN KUMAR

Suppose M is a submanifold of R14
2 given by x1 = y2 = u1, x2 = u2, y1 = u3, x3 = u4 sinβ ,

y3 = −u5 sinβ , x4 = u5 cosβ , y4 = u4 cosβ , x5 = u6 cosu7, y5 = u6 sinu7, x6 = k1 cosu6, y6 =

k1 sinu6, x7 = u8, y7 = u9, x8 = k2 sinu9, y8 = k2 cosu9, where k1 and k2 are constants.

The local frame of T M is given by {Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}, where

Z1 = 2(∂x1 +∂y2),

Z2 = 2(∂x2), Z3 = 2(∂y1),

Z4 = 2(sinβ∂x3 + cosβ∂y4),

Z5 = 2(cosβ∂x4− sinβ∂y3),

Z6 = 2(cosu7∂x5 + sinu7∂y5− k1 sinu6∂x6 + k1 cosu6∂y6),

Z7 = 2(−u6 sinu7∂x5 +u6 cosu7∂y5),

Z8 = 2(∂x7), Z9 = 2(∂y7 + k2 cosu9∂x8− k2 sinu9∂y8).

Hence Rad(T M)= span{Z1} and S(T M)= span{Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}. Now ltr(T M)

is spanned by N =−∂x1 +∂y2 and S(T M⊥) is spanned by

W1 = 2(cosβ∂x3− sinβ∂y4),

W2 = 2(sinβ∂x4 + cosβ∂y3),

W3 = 2(k2
1 sinu9∂x8 + k2

1 cosu9∂y8),

W4 = 2(k2
2∂y7− k2 cosu9∂x8 + k2 sinu9∂y8).

It follows that J̄Z1 = Z2 − Z3 and J̄N = 1
2(Z2 + Z3), which implies that J̄Rad(T M) and

J̄ltr(T M) are distributions on M. On the other hand, we can see that D = span{Z4,Z5} such

that J̄Z4 = Z5, J̄Z5 = −Z4, which implies that D is invariant with respect to J̄. Also D1 =

span{Z6,Z7} and D2 = span{Z8,Z9} are slant distributions with slant angles θ1 = cos−1(1/
√

1+ k2
1)

and θ2 = cos−1(1/
√

1+ k2
2) respectively. Hence M is a quasi-bi-slant 2-lightlike submanifold

of R14
2 .

Now, for any vector field X tangent to M, we put

(3.1) J̄X = PX +FX
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where PX and FX are the tangential and transversal parts of J̄X respectively. We denote the

projections on Rad(T M), J̄Rad(T M), J̄ltr(T M), D, D1 and D2 in T M by P1, P2, P3, P4, P5 and

P6 respectively. Similarly, we denote the projections of tr(T M) on ltr(T M) and S(T M⊥) by Q

and R respectively. Thus, for any X ∈ Γ(T M), we get

(3.2) X = P1X +P2X +P3X +P4X +P5X +P6X ,

Now applying J̄ to (3.2), we have

(3.3) J̄X = J̄P1X + J̄P2X + J̄P3X + J̄P4X + J̄P5X + J̄P6X ,

which gives

(3.4) J̄X = J̄P1X + J̄P2X + J̄P3X + J̄P4X + f P5X +FP5X + f P6X +FP6X ,

where f P5X and FP5X (resp. f P6X and FP6X) denotes the tangential and transversal compo-

nents of J̄P5X (resp. J̄P6X). Thus we get J̄P1X ∈ Γ(J̄Rad(T M)), J̄P2X ∈ Γ(Rad(T M)), J̄P3X ∈

Γ(ltr(T M)), J̄P4X ∈Γ(D), f P5X ∈Γ(D1), f P6X ∈Γ(D2) and FP5X , FP6X ∈Γ(S(T M⊥). Also,

for any W ∈ Γ(tr(T M)), we have

(3.5) W = QW +RW,

Applying J̄ to (3.5), we obtain

(3.6) J̄W = J̄QW + J̄RW,

which gives

(3.7) J̄W = J̄QW +BR1W +CR1W +BR2W +CR2W,

where BR1W (resp. CR1W ) denotes the tangential (resp. transversal) component of J̄R1W and

BR2W (resp. CR2W ) denotes the tangential (resp. transversal) component of J̄R2W . Thus we

get J̄QW ∈ Γ(J̄ltr(T M)), BR1W ∈ Γ(D1), CR1W ∈ Γ(S(T M⊥)), BR2W ∈ Γ(D2) and CR2W ∈

Γ(S(T M⊥)). Now, by using (2.20), (3.4), (3.7) and (2.7)-(2.9) and identifying the components
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on Rad(T M), J̄Rad(T M), J̄ltr(T M), D, D1, D2, ltr(T M) and S(T M⊥), we obtain

(3.8) P1(∇X J̄P1Y )+P1(∇X J̄P2Y )+P1(∇X J̄P4Y )+P1(∇X f P5Y )+P1(∇X f P6Y )

= P1(AFP5Y X)+P1(AFP6Y X)+P1(AJ̄P3Y X)+ J̄P2∇XY,

(3.9) P2(∇X J̄P1Y )+P2(∇X J̄P2Y )+P2(∇X J̄P4Y )+P2(∇X f P5Y )+P2(∇X f P6Y )

= P2(AFP5Y X)+P2(AFP6Y X)+P2(AJ̄P3Y X)+ J̄P1∇XY,

(3.10) P3(∇X J̄P1Y )+P3(∇X J̄P2Y )+P3(∇X J̄P4Y )+P3(∇X f P5Y )+P3(∇X f P6Y )

= P3(AFP5Y X)+P3(AFP6Y X)+P3(AJ̄P3Y X)+ J̄hl(X ,Y ),

(3.11) P4(∇X J̄P1Y )+P4(∇X J̄P2Y )+P4(∇X J̄P4Y )+P4(∇X f P5Y )+P4(∇X f P6Y )

= P4(AFP5Y X)+P4(AFP6Y X)+P4(AJ̄P3Y X)+ J̄P4∇XY,

(3.12) P5(∇X J̄P1Y )+P5(∇X J̄P2Y )+P5(∇X J̄P4Y )+P5(∇X f P5Y )+P5(∇X f P6Y )

= P5(AFP5Y X)+P5(AFP6Y X)+P5(AJ̄P3Y X)+ f P5∇XY +Bhs(X ,Y ),

(3.13) P6(∇X J̄P1Y )+P6(∇X J̄P2Y )+P6(∇X J̄P4Y )+P6(∇X f P5Y )+P6(∇X f P6Y )

= P6(AFP5Y X)+P6(AFP6Y X)+P6(AJ̄P3Y X)+ f P6∇XY +Bhs(X ,Y ),

(3.14) hl(X , J̄P1Y )+hl(X , J̄P2Y )+hl(X , J̄P4Y )+hl(X , f P5Y )+hl(X , f P6Y )

= J̄P3∇XY −∇
l
X J̄P3Y −Dl(X ,FP5Y )−Dl(X ,FP6Y ),

(3.15) hs(X , J̄P1Y )+hs(X , J̄P2Y )+hs(X , J̄P4Y )+hs(X , f P5Y )+hs(X , f P6Y )

=Chs(X ,Y )−∇
s
X FP5Y −∇

s
X FP6Y −Ds(X , J̄P3Y )+FP5∇XY +FP6∇XY.

THEOREM 1. Let M be a q-lightlike submanifold of an indefinite Kaehler manifold M̄ of

index 2q. Then M is a quasi-bi-slant lightlike submanifold if and only if
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(i) J̄Rad(T M) is a distribution on M such that Rad(T M)∩ J̄Rad(T M) = {0};

(ii) the screen distribution S(T M) can be split as a direct sum

S(T M) = (J̄Rad(T M)⊕ J̄ltr(T M))⊕D⊕orth D1⊕orth D2

such that D is an invariant distribution on M, i.e. J̄D = D;

(iii) there exists a constant λ1 ∈ [0,1) such that P2X = −λ1X , for all X ∈ Γ(D1), where λ1 =

cos2θ1 and θ1 is the slant angle of D1;

(iv) there exists a constant λ2 ∈ [0,1) such that P2X = −λ2X , for all X ∈ Γ(D2), where λ2 =

cos2θ2 and θ2 is the slant angle of D2.

Proof. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold M̄.

Then the distribution D is invariant with respect to J̄ and J̄Rad(T M) is a distribution on M such

that Rad(T M)∩ J̄Rad(T M) = {0}.

For any X ∈ Γ(D1) we have |PX |= |J̄X |cosθ1, i.e.

(3.16) cosθ1 =
|PX |
|J̄X |

.

In view of (3.16), we get cos2 θ1 =
|PX |2

|J̄X |2
=

g(PX ,PX)

g(J̄X , J̄X)
=

g(X ,P2X)

g(X , J̄2X)
, which gives

(3.17) g(X ,P2X) = cos2
θ1g(X , J̄2X).

Since M is a quasi-bi-slant lightlike submanifold, cos2 θ1 = λ1(constant) ∈ [0,1) and therefore

from (3.16) we get g(X ,P2X) = λ1g(X , J̄2X) = g(X ,λ1J̄2X), for all X ∈ Γ(D1), which implies

(3.18) g(X ,(P2−λ1J̄2)X) = 0

Since (P2− λ1J̄2)X ∈ Γ(D1) and the induced metric g = g|D1×D1 is non-degenerate (positive

definite). From (3.18) we have (P2−λ1J̄2)X = 0, which implies

(3.19) P2X = λ1J̄2X =−λ1X , ∀X ∈ Γ(D1).

This proves (iii).

Suppose for any X ∈ Γ(D2) we have |PX |= |J̄X |cosθ2, i.e.

(3.20) cosθ2 =
|PX |
|J̄X |

.
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Now the proof follows by using similar steps above of proof of (iii), which gives cos2 θ2 =

λ2(constant). This proves (iv).

Conversely, suppose that conditions (i), (ii), (iii) and (iv) are satisfied. From (iii), we have

P2X = λ1J̄2X , ∀X ∈ Γ(D1), where λ1 ∈ [0,1).

Now cosθ1 =
g(J̄X ,PX)

|J̄X ||PX |
=−g(X , J̄PX)

|J̄X ||PX |
=−g(X ,P2X)

|J̄X ||PX |
=−λ1

g(X , J̄2X)

|J̄X ||PX |
= λ1

g(J̄X , J̄X)

|J̄X ||PX |
.

From the above equation, we obtain

(3.21) cosθ1 = λ1
|J̄X |
|PX |

.

Therefore (3.16) and (3.21) give cos2 θ1 = λ1(constant).

Furthermore, from (iv) we have P2X = λ2J̄2X , ∀X ∈ Γ(D2), where λ2 ∈ [0,1). Now by using

the similar steps above we get cos2 θ2 = λ2(constant). This completes the proof. Hence M is a

quasi-bi-slant lightlike submanifold. �

THEOREM 2. Let M be a q-lightlike submanifold of an indefinite Kaehler manifold M̄ of

index 2q. Then M is a quasi-bi-slant lightlike submanifold if and only if

(i) J̄Rad(T M) is a distribution on M such that Rad(T M)∩ J̄Rad(T M) = {0};

(ii) the screen distribution S(T M) can be split as a direct sum

S(T M) = (J̄Rad(T M)⊕ J̄ltr(T M))⊕D⊕orth D1⊕orth D2

such that D is an invariant distribution on M, i.e. J̄D = D;

(iii) there exists a constant µ1 ∈ [0,1) such that BFX =−µ1X , ∀X ∈ Γ(D1), where µ1 = sin2θ1

and θ1 is the slant angle of D1;

(iv) there exists a constant µ2 ∈ [0,1) such that BFX =−µ2X , ∀X ∈ Γ(D2), where µ2 = sin2θ2

and θ2 is the slant angle of D2.

Proof. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold M̄.

Then the distribution D is invariant with respect to J̄ and J̄Rad(T M) is a distribution on M such

that Rad(T M)∩ J̄Rad(T M) = {0}.

Now, for any vector field X ∈ Γ(D1), we have

(3.22) J̄X = PX +FX ,
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where PX and FX are the tangential and transversal parts of J̄X respectively. Applying J̄ to

(3.22) and taking the tangential component, we get

(3.23) −X = P2X +BFX , ∀X ∈ Γ(D1).

Since M is a quasi-bi-slant lightlike submanifold, P2X =−λ1X , ∀X ∈ Γ(D1), where λ1 ∈ [0,1)

and therefore from (3.23) we get

(3.24) BFX =−µ1X , ∀X ∈ Γ(D1),

where 1−λ1 = µ1(constant) ∈ (0,1]. Now, in view of Theorem 1, we have λ1 = cos2 θ1. This

proves (iii).

Suppose for any vector field X ∈ Γ(D2), we have

(3.25) J̄X = PX +FX ,

where PX and FX are the tangential and transversal parts of J̄X respectively. Now the proof

follows by using similar steps above of proof of (iii), which gives 1−λ2 = µ2(constant) ∈ [0,1),

where λ2 = cos2 θ2. This proves (iv).

Conversely, assume that conditions (i), (ii), (iii) and (iv) are satisfied. From (3.23) we get

(3.26) −X = P2X−µ1X , ∀X ∈ Γ(D1),

which implies

(3.27) P2X =−λ1X , ∀X ∈ Γ(D1)

where 1− µ1 = λ1(constant) ∈ [0,1). Furthermore, for any X ∈ Γ(D2), by using the similar

steps above we have 1− µ2 = λ2(constant) ∈ [0,1). Now the proof follows from Theorem 1.

Therefore, M is a quasi-bi-slant lightlike submanifold. �

Corollary 1. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler mani-

fold M̄. Then for any slant distribution D of M with slant angle θ , we have

g(PX ,PY ) = cos2 θg(X ,Y );

g(FX ,FY ) = sin2
θg(X ,Y ),
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for all X ,Y ∈ Γ(D).

The proof of the above corollary follows by using similar steps as in the proof of Corollary

3.1 of [15].

THEOREM 3. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler mani-

fold M̄ . Then the radical distribution Rad(T M) is integrable if and only if

(i) P1(∇X J̄Y ) = P1(∇Y J̄X) and P4(∇X J̄Y ) = P4(∇Y J̄X);

(ii) P5(∇X J̄Y ) = P5(∇Y J̄X) and P6(∇X J̄Y ) = P6(∇Y J̄X);

(iii) hl(Y, J̄X) = hl(X , J̄Y ) and hs(Y, J̄X) = hs(X , J̄Y )

for all X ,Y ∈ Γ(Rad(T M)).

Proof. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold M̄.

From (3.8), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.28) P1(∇X J̄Y ) = J̄P2∇XY.

By interchanging X and Y in (3.28) we get

(3.29) P1(∇Y J̄X) = J̄P2∇Y X .

From (3.28) and (3.29), we obtain

(3.30) P1(∇X J̄Y )−P1(∇Y J̄X) = J̄P2[X ,Y ].

From (3.11), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.31) P4(∇X J̄Y ) = J̄P4∇XY.

By interchanging X and Y in (3.31) we get

(3.32) P4(∇Y J̄X) = J̄P4∇Y X .

From (3.31) and (3.32), we obtain

(3.33) P4(∇X J̄Y )−P4(∇Y J̄X) = J̄P4[X ,Y ].
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From (3.12), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.34) P5(∇X J̄Y ) = f P5∇XY +Bhs(X ,Y ).

By interchanging X and Y in (3.34) we get

(3.35) P5(∇Y J̄X) = f P5∇Y X +Bhs(Y,X).

From (3.34) and (3.35), we obtain

(3.36) P5(∇X J̄Y )−P5(∇Y J̄X) = f P5[X ,Y ].

From (3.13), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.37) P6(∇X J̄Y ) = f P6∇XY +Bhs(X ,Y ).

By interchanging X and Y in (3.37) we get

(3.38) P6(∇Y J̄X) = f P6∇Y X +Bhs(Y,X).

From (3.37) and (3.38), we obtain

(3.39) P6(∇X J̄Y )−P6(∇Y J̄X) = f P6[X ,Y ].

From (3.14), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.40) hl(X , J̄Y ) = J̄P3∇XY.

Interchanging X and Y in (3.40) we get

(3.41) hl(Y, J̄X) = J̄P3∇Y X .

From (3.40) and (3.41) we get

(3.42) hl(X , J̄Y )−hl(Y, J̄X) = J̄P3[X ,Y ].

From (3.15), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.43) hs(X , J̄Y ) =Chs(X ,Y )+FP5∇XY +FP6∇XY.

Interchanging X and Y in (3.43) we get

(3.44) hs(Y, J̄X) =Chs(Y,X)+FP5∇Y X +FP6∇Y X .
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From (3.43) and (3.44), we obtain

(3.45) hs(X , J̄Y )−hs(Y, J̄X) = FP5[X ,Y ]+FP6[X ,Y ].

Now the proof follows from (3.30), (3.33), (3.36), (3.39), (3.42) and (3.45). �

THEOREM 4. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler

manifold M̄ . Then the distribution D is integrable if and only if

(i) P1(∇X J̄Y ) = P1(∇Y J̄X) and P2(∇X J̄Y ) = P2(∇Y J̄X);

(ii) P5(∇X J̄Y ) = P5(∇Y J̄X) and P6(∇X J̄Y ) = P6(∇Y J̄X);

(iii) hl(Y, J̄X) = hl(X , J̄Y ) and hs(Y, J̄X) = hs(X , J̄Y ),

for all X ,Y ∈ Γ(D).

Proof. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold M̄.

From (3.8), for any X ,Y ∈ Γ(D), we have

(3.46) P1(∇X J̄Y ) = J̄P2∇XY.

By interchanging X and Y in (3.46) we get

(3.47) P1(∇Y J̄X) = J̄P2∇Y X .

From (3.46) and (3.47), we obtain

(3.48) P1(∇X J̄Y )−P1(∇Y J̄X) = J̄P2[X ,Y ].

From (3.9), for any X ,Y ∈ Γ(D), we have

(3.49) P2(∇X J̄Y ) = J̄P1∇XY.

By interchanging X and Y in (3.49) we get

(3.50) P2(∇Y J̄X) = J̄P1∇Y X .

From (3.49) and (3.50), we obtain

(3.51) P2(∇X J̄Y )−P2(∇Y J̄X) = J̄P1[X ,Y ].
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From (3.12), for any X ,Y ∈ Γ(D), we have

(3.52) P5(∇X J̄Y ) = f P5∇XY +Bhs(X ,Y ).

By interchanging X and Y in (3.52) we get

(3.53) P5(∇Y J̄X) = f P5∇Y X +Bhs(Y,X).

From (3.52) and (3.53), we obtain

(3.54) P5(∇X J̄Y )−P5(∇Y J̄X) = f P5[X ,Y ].

From (3.13), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.55) P6(∇X J̄Y ) = f P6∇XY +Bhs(X ,Y ).

By interchanging X and Y in (3.55) we get

(3.56) P6(∇Y J̄X) = f P6∇Y X +Bhs(Y,X).

From (3.55) and (3.56), we obtain

(3.57) P6(∇X J̄Y )−P6(∇Y J̄X) = f P6[X ,Y ].

From (3.14), for any X ,Y ∈ Γ(D), we have

(3.58) hl(X , J̄Y ) = J̄P3∇XY.

Interchanging X and Y in (3.58) we get

(3.59) hl(Y, J̄X) = J̄P3∇Y X .

From (3.58) and (3.59) we get

(3.60) hl(X , J̄Y )−hl(Y, J̄X) = J̄P3[X ,Y ].

From (3.15), for any X ,Y ∈ Γ(Rad(T M)), we have

(3.61) hs(X , J̄Y ) =Chs(X ,Y )+FP5∇XY +FP6∇XY.

Interchanging X and Y in (3.61) we get

(3.62) hs(Y, J̄X) =Chs(Y,X)+FP5∇Y X +FP6∇Y X .
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From (3.62) and (3.63), we obtain

(3.63) hs(X , J̄Y )−hs(Y, J̄X) = FP5[X ,Y ]+FP6[X ,Y ].

Now, in view of the equations (3.48), (3.51), (3.54), (3.57), (3.60) and (3.63), the proof follows.

�

4. FOLIATIONS DETERMINED BY DISTRIBUTIONS

In this section, we obtain necessary and sufficient conditions for foliations determined by

distributions on a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold to be

totally geodesic.

DEFINITION 2. A quasi-bi-slant lightlike submanifold M of an indefinite Kaehler manifold

M̄ is said to be mixed geodesic if its second fundamental form h satisfies h(X ,Y ) = 0, for all

X ∈ Γ(D1) and Y ∈ Γ(D2). Thus M is a mixed geodesic quasi-bi-slant lightlike submanifold if

hl(X ,Y ) = 0 and hs(X ,Y ) = 0, ∀ X ∈ Γ(D1) and Y ∈ Γ(D2).

THEOREM 5. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler mani-

fold M̄. Then Rad(T M) defines a totally geodesic foliation if and only if

ḡ(∇X J̄P2Z +∇X J̄P4Z +∇X f P5Z +∇X f P6Z, J̄Y )

= g(AJ̄P3ZX +AFP5ZX +AFP6ZX , J̄Y ),

for all X ∈ Γ(Rad(T M)) and Z ∈ Γ(S(T M)).

Proof. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold M̄.

The distribution Rad(T M) defines a totally geodesic foliation if and only if ∇XY ∈ Rad(T M),

∀ X ,Y ∈ Γ(Rad(T M)). Since ∇̄ is a metric connection, using (2.7) and (2.19), for any X ,Y ∈

Γ(Rad(T M)) and Z ∈ Γ(S(T M)), we get

(4.1) ḡ(∇XY,Z) = ḡ((∇̄X J̄)Z− ∇̄X J̄Z, J̄Y ).
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Now from (2.20), (3.4) and (4.1) we get

(4.2) ḡ(∇XY,Z) = −ḡ(∇̄X(J̄P2Z + J̄P3Z + J̄P4Z + f P5Z + FP5Z + f P6Z + FP6Z), J̄Y ).

In view of (2.7)-(2.9) and (4.2), for any X ,Y ∈ Γ(Rad(T M)) and Z ∈ Γ(S(T M)), we obtain

(4.3) ḡ(∇XY,Z) = g(AJ̄P3ZX +AFP5ZX +AFP6ZX−∇X J̄P2Z

−∇X J̄P4Z−∇X f P5Z−∇X f P6Z, J̄Y ),

which completes the proof. �

THEOREM 6. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler

manifold M̄. Then D2 defines a totally geodesic foliation if and only if

(i) ḡ(∇X f Z−AFZX , fY ) = ḡ(hs(X , J̄Z),FY ),

(ii) g( fY,∇X J̄N) =−ḡ(FY,hs(X , J̄N)),

(iii) g( fY,AJ̄W X) = ḡ(FY,Ds(X , J̄W ))

for all X ,Y ∈ Γ(D2), Z ∈ Γ(D1), W ∈ Γ(J̄ltr(T M)) and N ∈ Γ(ltr(T M)).

Proof. Let M be a quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold. To

prove that the distribution D2 defines a totally geodesic foliation, it is sufficient to show that

∇XY ∈ Γ(D2), ∀ X ,Y ∈ Γ(D2). Since ∇̄ is a metric connection, using (2.7) and (2.19) for any

X ,Y ∈ Γ(D2) and Z ∈ Γ(D1) we get

(4.4) ḡ(∇XY,Z) = ḡ(∇̄X J̄Y, J̄Z) =−ḡ(∇̄X J̄Z, J̄Y )

From (2.7), (3.1) and (4.4) we get

(4.5) ḡ(∇XY,Z) =−ḡ(∇X( f Z +FZ)+hs(X , J̄Z), fY +FY )

In view of (2.7)-(2.9) and (4.5) we obtain

(4.6) ḡ(∇XY,Z) =−ḡ(∇X f Z−AFZX , fY )− ḡ(hs(X , J̄Z),FY )

From (4.6) we get (i).

Now for any X ,Y ∈ Γ(D2) and N ∈ Γ(ltr(T M)), we have

(4.7) ḡ(∇XY,N) = ḡ(∇̄X J̄Y, J̄N) =−ḡ(∇̄X J̄N, J̄Y )
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From (2.7), (3.1) and (4.7) we get

(4.8) ḡ(∇XY,N) =−ḡ(∇X J̄N +hs(X , J̄N), fY +FY )

In view of (4.8) we obtain

(4.9) ḡ(∇XY,N) =−ḡ(∇X J̄N, fY )− ḡ(hs(X , J̄N),FY )

Thus from (4.9) we get the result (ii).

Now for any X ,Y ∈ Γ(D2) and W ∈ Γ(J̄ltr(T M)), we have

(4.10) ḡ(∇XY,W ) = ḡ(∇̄X J̄Y, J̄W ) =−ḡ(∇̄X J̄W, J̄Y )

From (2.8), (3.1) and (4.10) we get

(4.11) ḡ(∇XY,W ) =−ḡ(−AJ̄W X +Ds(X , J̄W ), fY +FY )

In view of (4.11) we obtain

(4.12) ḡ(∇XY,W ) = ḡ(AJ̄W X , fY )− ḡ(FY,Ds(X , J̄W ))

Thus from (4.12) we get the result (iii), which completes the proof. �

5. MINIMAL QUASI-BI-SLANT LIGHTLIKE SUBMANIFOLD

In this section, we study minimal quasi-bi-slant lightlike submanifolds of indefinite Kaehler

manifolds. A general notion of a minimal lightlike submanfold in a semi-Riemannian manifold,

as introduced by Bejancu and Duggal in [1] is as follows:

DEFINITION 3.[8] A lightlike submanifold (M,g) of a semi-Riemannian manifold (M̄, ḡ)

is minimal if

(i) hs = 0 on Rad(T M),

(ii) trace h = 0, where trace is written with respect to g restricted to S(T M).

EXAMPLE 3. Let (R14
2 , ḡ, J̄) be an indefinite Kaehler manifold, where ḡ is of signature

(−,+,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical basis {∂x1,∂x2,∂x3,

∂x4,∂x5,∂x6,∂x7,∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂y7}.
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Suppose M is a submanifold of R14
2 given by −x1 = y2 = u1, x2 = u2, y1 = u3, x3 = u4 = y4,

x4 = u5 =−y3, x5 = u6, x6 =−u7 = y5, y6 =−u9, x7 = u9 =−y6, y7 = u8. The local frame of

T M is given by {Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}, where

Z1 = 2(−∂x1 +∂y2),

Z2 = 2(∂x2), Z3 = 2(∂y1),

Z4 = 2(∂x3 +∂y4), Z5 = 2(∂x4−∂y3),

Z6 = 2(∂x5), Z7 = 2(−∂x6−∂y5),

Z8 = 2(∂y7), Z9 = 2(∂x7− y6).

Hence Rad(T M)= span{Z1} and S(T M)= span{Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}. Now ltr(T M)

is spanned by N = ∂x1 +∂y2 and S(T M⊥) is spanned by

W1 = 2(∂x3−∂y4), W2 = 2(∂x4 +∂y3),

W3 = 2(∂x6 +∂y5), W4 = 2(∂x7 +∂y6),

It follows that J̄Z1 = Z2 + Z3 and J̄N = 1
2(Z2 − Z3), which implies that J̄Rad(T M) and

J̄ltr(T M) are distributions on M. On the other hand, we can see that D = span{Z4,Z5} such

that J̄Z4 = Z5, J̄Z5 = −Z4, which implies that D is invariant with respect to J̄. Also D1 =

span{Z6,Z7} and D2 = span{Z8,Z9} are slant distributions with slant angles θ1 = π/4 and

θ2 = π/4 respectively. Hence M is a quasi-bi-slant 2-lightlike submanifold of R14
2 . Now by

direct computation and using Gauss formula, we get for any X ∈ Γ(T M) we have

∇̄ZiZ j = 0, where 1≤ i, j ≤ 9

which implies hl(Zi,Z j) = 0, hs(Zi,Z j) = 0. Thus hs(Z1,Z1) = 0, i.e. hs = 0 on Rad(T M). We

also have ε1 = g(Z1,Z1) = 0, ε2 = g(Z2,Z2) = 1, ε3 = g(Z3,Z3) =−1, ε4 = g(Z4,Z4) = 2, ε5 =

g(Z5,Z5) = 2, ε6 = g(Z6,Z6) = 1, ε7 = g(Z7,Z7) = 2, ε8 = g(Z8,Z8) = 1, ε9 = g(Z9,Z9) = 2.

Hence we get

traceg|S(T M)h = ε2h(Z2,Z2)+ ε3h(Z3,Z3)+ ε4h(Z4,Z4)+ ε5h(Z5,Z5)+ ε6h(Z6,Z6)+

ε7h(Z7,Z7)+ ε8h(Z8,Z8)+ ε9h(Z9,Z9) = 0.

Therefore, M is a minimal quasi-bi-slant lightlike submanifold of R14
2 .
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Now we prove two characterization results for minimal quasi-bi-slant lightlike sub mani-

folds.

LEMMA 2. Let M be a proper quasi-bi-slant lightlike submanifold of an indefinite Kaehler

manifold M̄. Now suppose D is any slant distribution of M such that dim(D) = dim(S(T M⊥).

If {e1, ....,em} is a local orthonormal basis of Γ(D), then {cscθFe1, ....,cscθFem} is an or-

thonormal basis of S(T M⊥).

Proof. Since {e1, ....,em} is a local orthonormal basis of D, which is Riemannian. So from

Corollory 1, we get

ḡ(cscθFei,cscθFe j) = csc2θ sin2
θg(ei,e j) = δi j,

where i, j = 1,2, ...,m. This proves the assertion. �

THEOREM 7. Let M be a proper quasi-bi-slant lightlike submanifold of an indefinite

Kaehler manifold M̄. Then M is minimal if and only if

traceA∗
ξ j
|S(T M) = 0, traceAW j |S(T M) = 0,

ḡ(Dl(X ,W ),Y ) = 0, ∀ X ,Y ∈ Γ(Rad(T M)).

where {ξ j}r
j=1 is a basis of Rad(T M) and {Wα}m

α=1 is a basis of S(T M⊥).

Proof. Since for any X ∈ Γ(T M), we have ∇̄X X = 0, so we get hl(X ,X) = hs(X ,X) = 0. Now

take an orthonormal basis {e1, ...,em} of any slant distribution D. Now we know that hl = 0 on

Rad(T M). Thus M is minimal if and only if ∑
m
i=1 h(ei,ei) = 0 and hs = 0 on Rad(T M). Now

using (2.10) and (2.14) we obtain

∑
m
i=1 h(ei,ei) = ∑

m
i=1

1
r ∑

r
j=1 g(A∗

ξ j
ei,ei)N j +

1
m ∑

m
α=1 g(A∗Wα

ei,e j)Wα ,

On the other hand, from(2.10), we get hs = 0 on Rad(T M) if

ḡ(Dl(X ,W ),Y ) = 0,

for X ,Y ∈ Γ(Rad(T M)) and W ∈ Γ(S(T M⊥)). �

THEOREM 8. Let M be a proper quasi-bi-slant lightlike submanifold of an indefinite

Kaehler manifold M̄. Now suppose D is any slant distribution of M such that dim(D) =

dim(S(T M⊥). Then M is minimal if and only if
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traceA∗
ξk
|S(T M) = 0, traceAFe j |S(T M) = 0,

ḡ(Dl(X ,Fe j),Y ) = 0,

for X ,Y ∈ Γ(Rad(T M)), where {ξk}r
k=1 is a basis of Γ(Rad(T M)) and {e j}m

j=1 is a basis of D.

Proof. From Lemma 2, {cscθFe1, ...,cscθFem} is an orthonormal basis of S(T M⊥). Thus we

can write

hs(X ,X) = ∑
m
i=1 AicscθFei, ∀ X ∈ Γ(T M)

for some functions Ai, i ∈ {1, ...,m}. Hence we obtain

hs(X ,X) = ∑
m
i=1 cscθg(AFeiX ,X)Fei, ∀X ∈ Γ(J̄Rad(T M)⊕ J̄ltr(T M)⊥ D).

Thus the assertion of theorem follows from Theorem 7. �

6. TOTALLY UMBILICAL QUASI-BI-SLANT LIGHTLIKE SUBMANIFOLDS

In this section, we study totally umbilical quasi-bi-slant lightlike submanifolds of indefinite

Kaehler manifolds. A general notion of a totally umbilical lightlike submanfold in a semi-

Riemannian manifold, as introduced by Bejancu and Duggal in [1] is as follows:

DEFINITION 4.[8] A lightlike submanifold (M,g) of a semi-Riemannian manifold (M̄, ḡ)

is totally umbilical in M̄ if there is a smooth transversal vector field H ∈ Γ(tr(T M)) on M,

called the transversal curvature vector field of M, such that for all X ,Y ∈ Γ(T M),

(6.1) h(X ,Y ) = H ḡ(X ,Y )

It is easy to see that M is totally umbilical if and only if on each coordinate neighborhood U ,

there exist smooth vector fields H l ∈ Γ(ltr(T M)) and H s ∈ Γ(S(T M⊥), and smooth functions

H l
i ∈ F(ltr(T M)) and H s

i ∈ F(S(T M⊥)) such that

(6.2) hl(X ,Y ) = H l ḡ(X ,Y ), hs(X ,Y ) = H sḡ(X ,Y ).

(6.3) hl
i(X ,Y ) = H l

i ḡ(X ,Y ), hs
i (X ,Y ) = H s

i ḡ(X ,Y ).

for any X ,Y ∈ Γ(T M).
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EXAMPLE 4. Let (R14
2 , ḡ, J̄) be an indefinite Kaehler manifold, where ḡ is of signature

(−,+,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical basis {∂x1,∂x2,∂x3,

∂x4,∂x5,∂x6,∂x7,∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂y7}.

Suppose M is a submanifold of R14
2 given by x1 = y2 = u1, x2 = u2, y1 = u3, x3 = u4, y3 = u5,

x4 = u5, y4 = −u4, x5 = u6, y5 = u7, x6 = cosu7, y6 = sinu7, x7 = u8, y7 = u9, x8 = sinu9,

y8 = cosu9. The local frame of T M is given by {Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}, where

Z1 = 2(∂x1 +∂y2),

Z2 = 2(∂x2), Z3 = 2(∂y1),

Z4 = 2(∂x3−∂y4), Z5 = 2(∂x4 +∂y3),

Z6 = 2(∂x5), Z7 = 2(∂y5− sinu7∂x6 + cosu7∂y6),

Z8 = 2(∂x7), Z9 = 2(∂y7 + cosu9∂x8− sinu9∂y8).

Hence Rad(T M)= span{Z1} and S(T M)= span{Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9}. Now ltr(T M)

is spanned by N =−∂x1 +∂y2 and S(T M⊥) is spanned by

W1 = 2(cosu7∂x6 + sinu7∂y6),

W2 = 2(∂y5− cosu7∂x6 + sinu7∂y6),

W3 = 2(sinu9∂x8 + cosu9∂y8),

W4 = 2(∂y7− cosu9∂x8 + sinu9∂y8).

It follows that J̄Z1 = Z2 − Z3 and J̄N = 1
2(Z2 + Z3), which implies that J̄Rad(T M) and

J̄ltr(T M) are distributions on M. On the other hand, we can see that D = span{Z4,Z5} such

that J̄Z4 = Z5, J̄Z5 = −Z4, which implies that D is invariant with respect to J̄. Also D1 =

span{Z6,Z7} and D2 = span{Z8,Z9} are slant distributions with slant angles θ1 = π/4 and

θ2 = π/4 respectively. Hence M is a quasi-bi-slant 2-lightlike submanifold of R14
2 . Now by

direct computation and using Gauss formula, we get for every X ∈ Γ(T M) we have

∇̄X Z1 = ∇̄X Z2 = ∇̄X Z3 = ∇̄X Z4 = ∇̄X Z5 = ∇̄X Z6 = ∇̄X Z8 = 0.

Also we can see that ∇̄X Z7 = 0, for any X ∈ Γ(T M) except X = Z7 as

∇̄Z7Z7 =−8(cosu7∂x6 + sinu7∂y6) =−4W1.
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In the similar way we get that ∇̄X Z9 = 0, for any X ∈ Γ(T M) except X = Z9 as

∇̄Z9Z9 =−8(sinu9∂x8 + cosu9∂y8) =−4W3.

Thus by (2.7) we have hl(X ,Y ) = 0 for all X ,Y ∈ Γ(T M). Also hs(X ,Y ) = 0 for all X ,Y ∈

Γ(T M) except

hs(Z7,Z7) =−4W1 =−2ḡ(Z7,Z7)W1,

hs(Z9,Z9) =−4W3 =−2ḡ(Z9,Z9)W3.

Therefore M is a totally umbilical quasi-bi-slant lightlike submanifold of R14
2 .

The following results are important for our subsequent use.

PROPOSITION 1.[7] Let M be a lightlike submanifold of a semi-Riemannian manifold M̄.

Then, hl = 0 on Γ(Rad(T M)).

THEOREM 9.[7] There are no minimal lightlike submanifold contained in a proper totally

umbilical quasi-bi-slant lightlike submanifold of an indefinite Kaehler manifold.

Now, we prove a characterization result for totally umbilical quasi-bi-slant lightlike subman-

ifolds of an indefinite Kaehler manifolds:

THEOREM 10. Let M be a totally umbilical quasi-bi-slant lightlike submanifold of an indef-

inite Kaehler manifold M̄ . Then M is minimal if and only if M is totally geodesic. Proof:

Suppose M is a minimal submanifold of an indefinite Kaehler submanifold, then hs(X ,Y ) = 0,

for all X ,Y ∈ Γ(Rad(T M)) and by the Proposition 6.1, we have hl = 0 on Rad(T M). Now we

choose an orthonormal basis {e1,e2, ...,em−r} of Γ(S(T M)). Then, from (6.3) we get

trace h(ei,ei) = Σ
m−r
i=1 εig(ei,ei)H l + εig(ei,ei)H s.

Thus we have trace h(ei,ei) = (m− r)H l +(m− r)H s. Since M is minimal and ltr(T M)∩

S(T M⊥) = {0}, so we get H l = 0 and H s = 0, which implies that M is totally geodesic.

Conversely, suppose that M is totally geodesic. Now, for any x0 ∈M there exists V0 ∈ TxM

and the unique geodesic Γ : xα = xα(t), α ∈ {1,2, ...,m}, such that xα(0) = x0 and
dxα

dt
(0) =V0.

Since Γ is also a geodesic of M̄, hl and hs vanish identically on M, which implies that hs = 0
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on Rad(T M) and trace h = 0, where trace is written with respect to g restricted to S(T M).

Therefore M is minimal.
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