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Abstract: In this paper, a class of singularly perturbed differential-difference equations having boundary layer at 

one end is analysed to get its solution numerically by a fitted method. Such types of equations occur very frequently 

in various fields of applied mathematics and engineering such as fluid dynamics, quantum mechanics, optimal 

control, chemical reactor theory etc. The basic purpose of this study is to describe a numerical approach for the 

solution of singularly perturbed differential-difference equation based on deviating argument and interpolation. 

Thomas algorithm is used to solve the tri-diagonal system. Numerical examples are presented which demonstrate the 

applicability of this method.  
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1. INTRODUCTION 

Due to the availability of supercomputing and cloud computing, now mathematicians are 

seriously concentrating on developing the robust numerical methods for solving most 

challenging problems like Boundary Layer Problems. In general, a region in which the solution 

of the problem changes rapidly is called Boundary Layer. In fact the solution changes rapidly to 
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satisfy the given conditions in the problem. Any ordinary differential equation in which the 

highest order derivative is multiplied by a small positive parameter which is popularly known as 

singularly perturbation problem always exhibits the boundary layer phenomenon. Also any 

differential equation which contains at least one delay/advance parameters which is popularly 

called as delay/differential-difference equation also exhibits the boundary layer phenomenon. 

Solving these problems is very difficult due to the boundary layer phenomenon. These problems 

arise in the modelling of various practical phenomena in bioscience, engineering, control theory, 

such as in variational problems in control theory, in describing the human pupil-light reflex, in a 

variety of models for physiological processes or diseases  and first exit time problems in the 

modelling of the determination of expected time for the generation of action potential in nerve 

cells by random synaptic inputs in dendrites. To solve these problems, perturbation methods such 

as Matched Asymptotic Expansions, WKB method are used extensively. These asymptotic 

expansions of solutions require skill, insight and experimentation. Further, the Matching 

Principle: matching of the coefficients of the inner and outer regions solution expansions is also 

a demanding process. Hence, researchers started developing numerical methods. If we use the 

existing numerical methods with the step size more than the perturbation parameters, for solving 

these problems we get oscillatory solutions due to the presence of the boundary layer. Existing 

numerical methods will produce good results only when we take step size less than the 

perturbation parameters. This is very costly and time-consuming process.  Hence, the researchers 

are concentrating on developing robust numerical methods, which can work with a reasonable 

step size. In fact, these robust numerical methods should be independent of the parameters. The 

efficiency of such numerical method is determined by its accuracy, simplicity in computing the 

solution and its sensitivity to the parameters of the given problem.  Lange and Miura [4-5], were 

first to publish a series of papers for solving these problems. Diddi Kumara Swami et al  [6-7] 

have presented an accurate numerical method for singularly perturbed differential difference 

equations with mixed shifts. G. File and Y.N. Reddy [8] presented the numerical Integration of a 

class of singularly perturbed delay differential equations with small shift. Lakshmi Sirisha, et 

al[10-11]  have presented  a mixed finite difference method for singularly perturbed differential 
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difference equations with mixed shifts.  Adilaxmi and et al [13-15], have presented an initial 

value technique using exponentially fitted non-standard finite difference method for singularly 

perturbed differential - difference equations. M. K. Kadalbajoo and K. K. Sharma[16] have 

discussed the numerical analysis of boundary-value problems for singularly perturbed 

differential-difference equations with small shifts of mixed type. Kadalbajoo and Sharma [17-18], 

have given numerical treatment of boundary value problems for second order singularly 

perturbed delay differential equations. R. N. Rao and P. Chakravarthy [22] have presented a 

fitted Numerov method for singularly perturbed parabolic partial differential equation with a 

small negative shift arising in control theory. Reddy et all [23-25] have presented some simple 

methods for the solution of singularly perturbed differential-difference equations.  For the more 

theory of perturbation problems, one may refer books: Bender and Orzag [2], Driver[19], 

El’sgol’ts and Norkin[12], Hale [9], Ali H. Nayfeh [1], RE Bellaman and Cook [20] 

O’Malley[21], Van Dyke [18].  

In this paper, a class of singularly perturbed differential-difference equation having boundary 

layer at one end is analysed to get its solution numerically by fitted method. Such types of 

equations occur very frequently in various fields of applied mathematics and engineering such as 

fluid dynamics, quantum mechanics, optimal control, chemical reactor theory etc. The basic 

purpose of this study is to describe a numerical approach for the solution of singularly perturbed 

differential-difference equation based on deviating argument and interpolation. Thomas 

algorithm is used to solve the tri-diagonal system. Numerical examples are presented which 

demonstrate the applicability of this method.  

 

2. DESCRIPTION OF THE FITTED METHOD 

2.1 Type-𝐈: Delay Differential Equation having boundary layer 

Consider the delay differential equation of the form: 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥),     0 ≤ 𝑥 ≤ 1,                       (1) 

with boundary conditions 
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𝑦(𝑥) = 𝜑(𝑥) ,     − 𝛿 ≤ 𝑥 ≤ 0,                                                (2) 

and 

𝑦(1) = 𝛽,                                                                       (3) 

where 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 < 𝛿 = 𝑂(𝜀) is the small delay parameter, 𝑎(𝑥), 

𝑏(𝑥)and 𝑓(𝑥)are sufficiently differentiable functions in (0, 1).𝜑(𝑥) is also bounded continuous 

function on [0, 1] and 𝛽 is a finite constant.  

From the Taylor’s series expansion 

𝑦′(𝑥 − 𝛿) ≈ 𝑦′(𝑥) − 𝛿𝑦′′(𝑥)                                                   (4) 

Substituting Equation (4) into Equation (1), we get singularly perturbed ordinary differential 

equation: 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                              (5) 

with boundary conditions 

𝑦(0) = 𝛼                                                                                             (6) 

𝑦(1) = 𝛽                                                                                            (7) 

where 𝜀′ = 𝜀 − 𝑎(𝑥)𝛿 , 𝐴(𝑥) = 𝑎(𝑥) , 𝐵(𝑥) = 𝑏(𝑥)  and 𝛼  is a finite constant. Further it is 

established that, when 𝑎(𝑥) ≥ 𝑀 > 0  in [0, 1], boundary layer will be at 𝑥 = 0  and when 

𝑎(𝑥) ≤ 𝑀 < 0 in [0, 1], boundary layer will be at 𝑥 = 1, where 𝑀 is some positive number. 

Since 0 < 𝛿 ≪ 1, the transition from Equation (1) to Equation (5) is admitted. For more details 

on the validity of this transition, one can refer El’sgolt’s and Norkin [12]. Here we assume that 

𝑎(𝑥) = 𝑎 and 𝑏(𝑥) = 𝑏 are constants. 

2.2 Type-II: Differential-Difference Equation having boundary layer 

Consider the differential-difference equation of the form: 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦(𝑥 + 𝜂) = 𝑓(𝑥),                   (8) 

0 ≤ 𝑥 ≤ 1 with boundary conditions 

𝑦(𝑥) = 𝜑(𝑥),  on −𝛿 ≤ 𝑥 ≤ 0,                                                      (9) 

𝑦(𝑥) = 𝛾(𝑥),  on 1 ≤ 𝑥 ≤ 1 + 𝜂,                                                  (10) 
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with the constant coefficients (i.e.,𝑎(𝑥) = 𝑎, 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐 and 𝑑(𝑥) = 𝑑 are constants) 

and 𝑓(𝑥), 𝜑(𝑥) and 𝛾(𝑥) are smooth functions. 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 <

𝛿 = 𝑂(𝜀) and 0 < 𝜂 = 𝑂(𝜀) are the delay and advanced parameters respectively. 

From Taylor’s series expansion 

                                   𝑦(𝑥 − 𝛿) ≈ 𝑦(𝑥) − 𝛿𝑦′(𝑥) +
𝛿2

2
𝑦′′(𝑥)                                                   (11) 

                                     𝑦(𝑥 + 𝜂) ≈ 𝑦(𝑥) + 𝜂𝑦′(𝑥) +
𝜂2

2
𝑦′′(𝑥)                                                 (12) 

Substituting Equations (11)-(12) into Equation (8), we get singularly perturbed ordinary 

differential equation 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                    (13) 

with boundary conditions 

𝑦(0) = 𝛼                                                            (14) 

𝑦(1) = 𝛽                                                            (15) 

where 

𝜀′ = 𝜀 + 𝑏(𝑥)
𝛿2

2
+ 𝑑(𝑥)

𝜂2

2
,                                                            (16) 

𝐴(𝑥) =  𝑎(𝑥) − 𝛿𝑏(𝑥) + 𝜂𝑑(𝑥),                                                (17) 

𝐵(𝑥) =  𝑏(𝑥) + 𝑐(𝑥) + 𝑑(𝑥),                                                   (18) 

Since 0 < 𝛿 ≪ 1 and 0 < 𝜂 ≪ 1, the transition from Equation (8) to Equation (13) is admitted. 

For more details on the validity of this transition, one can refer El’sgolt’s and Norkin [12]. The 

behaviour of the boundary layer is given by the sign of 𝐴(𝑥) and 𝐵(𝑥). Further it is established 

that, if 𝐵(𝑥) ≤ 0, 𝐴(𝑥) ≥ 𝑀 > 0  in [0, 1] then Equation (8) has unique solution and a 

boundary layer at 𝑥 = 0and if 𝐵(𝑥) ≤ 0, 𝐴(𝑥) ≤ 𝑀 < 0 in [0, 1] then Equation (8) has unique 

solution and a boundary layer at 𝑥 = 1, where 𝑀 is a positive number. 

2.3. Case(I): For Left-end boundary layer 

Consider equation (5) or (13) with their boundary conditions 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                             (19) 
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𝑦(0) = 𝛼                                                           (20)   

𝑦(1) = 𝛽                                                           (21) 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of the 

point 𝑥, we have 

                                 𝑦(𝑥 − √𝜀′) ≈ 𝑦(𝑥) − √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)                                                (22)  

From equation (19) and (22), we have 

                                         𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 − √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                                    (23) 

where  

                                                           𝑝(𝑥) =
−2

2√𝜀′ + 𝐴(𝑥)
                                                               (24) 

                                                           𝑞(𝑥) =
2 − 𝐵(𝑥)

2√𝜀′ + 𝐴(𝑥)
                                                               (25) 

                                                           𝑟(𝑥) =
𝑓(𝑥)

2√𝜀′ + 𝐴(𝑥)
                                                               (26) 

The transition from equation (19) to (23) is valid, because of the condition that √𝜀′ is small. For 

more details on the validity of this transition, one can refer El’sgolt’s and Norkin [12].  

Now, we divide the interval [0, 1] into 𝑛 equal parts with constant mesh length ℎ = 1 𝑛⁄ .  

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛. From our 

earlier assumptions, 𝐴(𝑥)  and 𝐵(𝑥)  are constants. Therefore, 𝑝(𝑥)  and 𝑞(𝑥)  are constants. 

Equation (23) can be written as 

                                               𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)                                            (27) 

We take an integrating factor 𝑒−𝑞𝑥 to equation (27) and producing (as in B. J. McCartin [3]) 

𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)]                                                 (28) 

On integrating equation (28) from 𝑥𝑖 to 𝑥𝑖+1, we get  

𝑒−𝑞𝑥𝑖+1𝑦𝑖+1 − 𝑒−𝑞𝑥𝑖𝑦𝑖 = ∫ 𝑒−𝑞𝑥
𝑥𝑖+1

𝑥𝑖

𝑝𝑦(𝑥 − √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥
𝑥𝑖+1

𝑥𝑖

𝑟(𝑥)𝑑𝑥           (29) 
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Using the Hermite interpolation on [𝑥𝑖𝑥𝑖+1] for 𝑦(𝑥 − √𝜀′) and 𝑟(𝑥) into the above equation, we 

get 

𝑦𝑖+1 = 𝑒𝑞ℎ𝑦𝑖 + 𝑝 ∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

{ℎ𝑖(𝑥 − √𝜀′) ∗ 𝑦(𝑥𝑖 − √𝜀′) + ℎ𝑖+1(𝑥 − √𝜀′) ∗ 𝑦(𝑥𝑖+1 − √𝜀′)

+ ℎ𝑖(𝑥 − √𝜀′) ∗ 𝑦′(𝑥𝑖 − √𝜀′) + ℎ𝑖+1(𝑥 − √𝜀′) ∗ 𝑦′(𝑥𝑖+1 − √𝜀′)}𝑑𝑥

+ ∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

{ℎ𝑖(𝑥) ∗ 𝑟(𝑥𝑖) + ℎ𝑖+1(𝑥) ∗ 𝑟(𝑥𝑖+1) + ℎ𝑖(𝑥) ∗ 𝑟′(𝑥𝑖) + ℎ𝑖+1(𝑥)

∗ 𝑟′(𝑥𝑖+1)}𝑑𝑥                                                                                          

(30) 

where ℎ𝑖, ℎ𝑖+1, ℎ𝑖 and ℎ𝑖+1 are given by Hermite interpolation 

ℎ𝑖 = [(−2)𝑥3 + (3𝑥𝑖 + 3𝑥𝑖+1)𝑥2 + (−6𝑥𝑖𝑥𝑖+1)𝑥 + 3𝑥𝑖𝑥𝑖+1
2 − 𝑥𝑖+1

3 ]/(−ℎ3) 

ℎ𝑖+1 = [(−2)𝑥3 + (3𝑥𝑖 + 3𝑥𝑖+1)𝑥2 + (−6𝑥𝑖𝑥𝑖+1)𝑥 + 3𝑥𝑖+1𝑥𝑖
2 − 𝑥𝑖

3]/(ℎ3) 

ℎ𝑖 = [𝑥3 + (−𝑥𝑖 − 2𝑥𝑖+1)𝑥2 + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1
2 )𝑥 − 𝑥𝑖𝑥𝑖+1

2 ]/(ℎ2) 

ℎ𝑖+1 = [𝑥3 + (−2𝑥𝑖 − 𝑥𝑖+1)𝑥2 + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖
2)𝑥 − 𝑥𝑖+1𝑥𝑖

2]/(ℎ2) 

To solve equation (30), We firstly solve integrals 

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)𝑥𝑖+1

𝑥𝑖
ℎ𝑖𝑑𝑥 =

1

−ℎ3 [(3𝑥𝑖 + 3𝑥𝑖+1) {𝑥𝑖+1
2 (−

1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2) + 2 (−
1

𝑞3) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2 ) − 2 (
𝑒𝑞ℎ

−𝑞3)} − 6𝑥𝑖𝑥𝑖+1 {𝑥𝑖+1 (−
1

𝑞
) − (

1

𝑞2) −

                                             𝑥𝑖 (
𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2 )} − 2 {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2) + 6𝑥𝑖+1 (−
1

𝑞3) −

                                            6 (
1

𝑞4
) − 𝑥𝑖

3 (
𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2
) − 6𝑥𝑖 (

𝑒𝑞ℎ

−𝑞3
) + 6 (

𝑒𝑞ℎ

𝑞4
)} + (3𝑥𝑖𝑥𝑖+1

2 −

                                            𝑥𝑖+1
3 ) {−

1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑋(𝑖)(Say)     (31) 

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)𝑥𝑖+1

𝑥𝑖
ℎ𝑖+1𝑑𝑥 =

1

ℎ3 [(3𝑥𝑖 + 3𝑥𝑖+1) {𝑥𝑖+1
2 (−

1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2) + 2 (−
1

𝑞3) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2 ) − 2 (
𝑒𝑞ℎ

−𝑞3)} − 6𝑥𝑖𝑥𝑖+1 {𝑥𝑖+1 (−
1

𝑞
) − (

1

𝑞2) −

                                             𝑥𝑖 (
𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2 )} − 2 {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2) + 6𝑥𝑖+1 (−
1

𝑞3) −
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                                            6 (
1

𝑞4) − 𝑥𝑖
3 (

𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2 ) − 6𝑥𝑖 (
𝑒𝑞ℎ

−𝑞3) + 6 (
𝑒𝑞ℎ

𝑞4 )} + (3𝑥𝑖+1𝑥𝑖
2 −

                                            𝑥𝑖
3) {−

1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑌(𝑖)   (Say)                                          (32) 

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)ℎ𝑖
𝑥𝑖+1

𝑥𝑖
𝑑𝑥 =

1

ℎ2
[(−𝑥𝑖 − 2𝑥𝑖+1) {𝑥𝑖+1

2 (−
1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2
) + 2 (−

1

𝑞3
) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2
) − 2 (

𝑒𝑞ℎ

−𝑞3
)} + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1

2 ) {𝑥𝑖+1 (−
1

𝑞
) −

                                           (
1

𝑞2
) −  𝑥𝑖 (

𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2
)} + {𝑥𝑖+1

3 (−
1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2
) +

                                            6𝑥𝑖+1 (−
1

𝑞3) − 6 (
1

𝑞4) − 𝑥𝑖
3 (

𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2 ) − 6𝑥𝑖 (
𝑒𝑞ℎ

−𝑞3) +

                                           6 (
𝑒𝑞ℎ

𝑞4 )} − 𝑥𝑖𝑥𝑖+1
2 {−

1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑍(𝑖) (Say)                            (33) 

∫ 𝑒𝑞(𝑥𝑖+1−𝑥)ℎ𝑖+1
𝑥𝑖+1

𝑥𝑖
𝑑𝑥 =

1

ℎ2 [(−𝑥𝑖+1 − 2𝑥𝑖) {𝑥𝑖+1
2 (−

1

𝑞
) − (2𝑥𝑖+1) (

1

𝑞2) + 2 (−
1

𝑞3) −

                                             𝑥𝑖
2 (

𝑒𝑞ℎ

−𝑞
) + 2𝑥𝑖 (

𝑒𝑞ℎ

𝑞2 ) − 2 (
𝑒𝑞ℎ

−𝑞3)} + (2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖
2) {𝑥𝑖+1 (−

1

𝑞
) −

                                           (
1

𝑞2) −  𝑥𝑖 (
𝑒𝑞ℎ

−𝑞
) + (

𝑒𝑞ℎ

𝑞2 )} + {𝑥𝑖+1
3 (−

1

𝑞
) − 3𝑥𝑖+1

2 (
1

𝑞2) +

                                            6𝑥𝑖+1 (−
1

𝑞3) − 6 (
1

𝑞4) − 𝑥𝑖
3 (

𝑒𝑞ℎ

−𝑞
) + 3𝑥𝑖

2 (
𝑒𝑞ℎ

𝑞2 ) − 6𝑥𝑖 (
𝑒𝑞ℎ

−𝑞3) +

                                           6 (
𝑒𝑞ℎ

𝑞4 )} − 𝑥𝑖+1𝑥𝑖
2 {−

1

𝑞
+

𝑒𝑞ℎ

𝑞
}] = 𝑊(𝑖) (Say)                            (34) 

After Substituting equations (31), (32), (33) and (34) in equation (30), we obtain 

𝑦𝑖+1 = 𝑒𝑞ℎ𝑦𝑖 + {𝑝𝑦(𝑥𝑖 − √𝜀′) +  𝑟(𝑥𝑖)}𝑋(𝑖) + {𝑝𝑦(𝑥𝑖+1 − √𝜀′) +  𝑟(𝑥𝑖+1)}𝑌(𝑖)

+ {𝑝𝑦′(𝑥𝑖 − √𝜀′) + 𝑟′(𝑥𝑖)}𝑍(𝑖) + {𝑝𝑦′(𝑥𝑖+1 − √𝜀′) + 𝑟′(𝑥𝑖+1)}𝑊(𝑖)  (35) 

From finite difference approximation, we have 

𝑦(𝑥𝑖+1 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖+1 +

√𝜀′

ℎ
𝑦𝑖 

𝑦(𝑥𝑖 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖 +

√𝜀′

ℎ
𝑦𝑖−1 

𝑦′(𝑥𝑖 − √𝜀′) ≈ 𝑦𝑖
′ − √𝜀′𝑦𝑖

′′ ≈ (𝑦𝑖 − 𝑦𝑖−1)/ℎ 

𝑦′(𝑥𝑖+1 − √𝜀′) ≈ 𝑦𝑖+1
′ − √𝜀′𝑦𝑖+1

′′ ≈ (𝑦𝑖+1 − 𝑦𝑖)/ℎ 
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Therefore equation (35) becomes 

                                          𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖 ,     𝑖 = 1,2, … , 𝑛 − 1                            (36) 

where, 

  𝐸𝑖 = −
𝑝√𝜀′

ℎ
𝑋(𝑖) +

𝑝

ℎ
𝑍(𝑖) 

                                                         𝐹𝑖 = 𝑒𝑞ℎ + 𝑝 (1 −
√𝜀′

ℎ
) 𝑋(𝑖) +

𝑝√𝜀′

ℎ
𝑌(𝑖) +

𝑝

ℎ
𝑍(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐺𝑖 = 1 − 𝑃 (1 −
√𝜀′

ℎ
) 𝑌(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐻𝑖 = 𝑟𝑖𝑋(𝑖) + 𝑟𝑖+1𝑌(𝑖) + 𝑟′
𝑖 𝑍(𝑖) + 𝑟′

𝑖+1 𝑊(𝑖) 

This is a tridiagonal system of  𝑛 − 1  equations. We solve this tridiagonal system with given two 

boundary conditions by Thomas algorithm. 

2.4. Case (II): For Right-end boundary layer 

Consider equation (5) or (13) with their boundary conditions 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                             (37) 

𝑦(0) = 𝛼                                                           (38) 

𝑦(1) = 𝛽                                                           (39) 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of the 

point 𝑥, we have 

                                 𝑦(𝑥 + √𝜀′) ≈ 𝑦(𝑥) + √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)                                                (40) 

From equation (37) and (40), we have 

                                         𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 + √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                                    (41) 

where  

                                                        𝑝(𝑥) =
−2

−2√𝜀′ + 𝐴(𝑥)
                                                               (42) 
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                                                        𝑞(𝑥) =
2 − 𝐵(𝑥)

−2√𝜀′ + 𝐴(𝑥)
                                                               (43) 

                                                        𝑟(𝑥) =
𝑓(𝑥)

−2√𝜀′ + 𝐴(𝑥)
                                                               (44) 

The transition from equation (37) to (41) is valid, because of the condition that √𝜀′ is small. For 

more details on the validity of this transition, one can refer El’sgolt’s and Norkin [8]. Now, we 

divide the interval [0, 1] into 𝑛 equal parts with constant mesh length ℎ = 1 𝑛⁄ .  

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛. From our 

earlier assumptions, 𝐴(𝑥)  and 𝐵(𝑥)  are constants. Therefore, 𝑝(𝑥)  and 𝑞(𝑥)  are constants. 

Equation (41) can be written as 

                                               𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)                                            (45) 

We take an integrating factor 𝑒−𝑞𝑥 to equation (45) and producing (as in B. J. McCartin[3]) 

𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)]                                                 (46) 

On integrating equation (46) from 𝑥𝑖−1 to 𝑥𝑖, we get  

𝑒−𝑞𝑥𝑖𝑦𝑖 − 𝑒−𝑞𝑥𝑖−1𝑦𝑖−1 = ∫ 𝑒−𝑞𝑥
𝑥𝑖

𝑥𝑖−1

𝑝𝑦(𝑥 + √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥
𝑥𝑖

𝑥𝑖−1

𝑟(𝑥)𝑑𝑥           (47) 

Using the Hermite interpolation on [𝑥𝑖−1𝑥𝑖] for 𝑦(𝑥 + √𝜀′) and 𝑟(𝑥) into the above equation, we 

get 

𝑦𝑖 = 𝑒𝑞ℎ𝑦𝑖−1 + 𝑝 ∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

{ℎ𝑖−1(𝑥 + √𝜀′) ∗ 𝑦(𝑥𝑖−1 + √𝜀′) + ℎ𝑖(𝑥 + √𝜀′) ∗ 𝑦(𝑥𝑖 + √𝜀′)

+ ℎ𝑖−1(𝑥 + √𝜀′) ∗ 𝑦′(𝑥𝑖−1 + √𝜀′) + ℎ𝑖(𝑥 + √𝜀′) ∗ 𝑦′(𝑥𝑖 + √𝜀′)}𝑑𝑥

+ ∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

{ℎ𝑖−1(𝑥) ∗ 𝑟(𝑥𝑖−1) + ℎ𝑖(𝑥) ∗ 𝑟(𝑥𝑖) + ℎ𝑖−1(𝑥) ∗ 𝑟′(𝑥𝑖−1) + ℎ𝑖(𝑥)

∗ 𝑟′(𝑥𝑖)}𝑑𝑥                                                                                                                      (48) 

where ℎ𝑖−1, ℎ𝑖, ℎ𝑖−1 and ℎ𝑖 are given by Hermite interpolation as in case of left end boundary 

layer. In the similar way, we get 
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∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

ℎ𝑖−1𝑑𝑥 = 𝑋(𝑖)                                                         (49) 

∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

ℎ𝑖𝑑𝑥 = 𝑌(𝑖)                                                              (50) 

∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

ℎ𝑖−1𝑑𝑥 = 𝑍(𝑖)                                                              (51) 

∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

ℎ𝑖𝑑𝑥 = 𝑊(𝑖)                                                               (52) 

After Substituting equations (49), (50), (51) and (52) in equation (48) and using finite difference 

approximation, we obtain 

                                      𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖 ,     𝑖 = 1,2, … , 𝑛 − 1                                 (53) 

where, 

  𝐸𝑖 = −𝑒𝑞ℎ − 𝑝 (1 −
√𝜀′

ℎ
) 𝑋(𝑖) +

𝑝

ℎ
𝑍(𝑖) 

                                                         𝐹𝑖 = −1 + 𝑝 (1 −
√𝜀′

ℎ
) 𝑌(𝑖) +

𝑝√𝜀′

ℎ
𝑋(𝑖) +

𝑝

ℎ
𝑍(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐺𝑖 = −
𝑝√𝜀′

ℎ
𝑌(𝑖) −

𝑝

ℎ
𝑊(𝑖) 

𝐻𝑖 = 𝑟𝑖−1𝑋(𝑖) + 𝑟𝑖𝑌(𝑖) + 𝑟′
𝑖−1 𝑍(𝑖) + 𝑟′

𝑖 𝑊(𝑖) 

This is a tridiagonal system of  𝑛 − 1  equations. We solve this tridiagonal system with given two 

boundary conditions by Thomas algorithm. 

3. Numerical Experiments 

In this section, six model examples are solved and the solutions are compared with the 

exact/available solutions. The exact solution of equation (8) is given by (with 

assumptions𝑓(𝑥) = 𝑓, 𝜑(𝑥) = 𝜑 and 𝛾(𝑥)= 𝛾 are constant) 

                                                𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + 𝑓 𝑐′⁄                                                     (54) 

where 

𝑐′ = 𝑏 + 𝑐 + 𝑑 



2858 

RAGHVENDRA PRATAP SINGH, Y. N. REDDY 

𝑚1 = [−(𝑎 − 𝛿𝑏 + 𝜂𝑑) + √(𝑎 − 𝛿𝑏 + 𝜂𝑑)2 − 4𝜀𝑐′] 2⁄ 𝜀 

𝑚2 = [−(𝑎 − 𝛿𝑏 + 𝜂𝑑) − √(𝑎 − 𝛿𝑏 + 𝜂𝑑)2 − 4𝜀𝑐′] 2⁄ 𝜀 

𝑐1 = [−𝑓 + 𝛾𝑐′ + 𝑒𝑚2(𝑓 − 𝜑𝑐′] [(𝑒𝑚1 − 𝑒𝑚2)𝑐′]⁄  

𝑐2 = [𝑓 − 𝛾𝑐′ + 𝑒𝑚1(−𝑓 + 𝜑𝑐′] [(𝑒𝑚1 − 𝑒𝑚2)𝑐′]⁄  

Example 1.Consider the delay differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0, 0 ≤ 𝑥 ≤ 1;with𝑦(0) = 1 and 𝑦(1) = 1. 

The exact solution is given by 

𝑦 = ((1 − 𝑒𝑚2)𝑒𝑚1𝑥 + (𝑒𝑚1 − 1)𝑒𝑚2𝑥)/(𝑒𝑚1 − 𝑒𝑚2) 

where 

𝑚1 =
−1 − √1 + 4(𝜀 − 𝛿)

2(𝜀 − 𝛿)
and𝑚2 =

−1 + √1 + 4(𝜀 − 𝛿)

2(𝜀 − 𝛿)
 

The computational results are shown in table-1 & 2, the layer behaviour in fig. 1 & 2 for 

different values of parameters.  

Example 2. Consider the differential-differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥) − 2𝑦(𝑥 − 𝛿) − 5𝑦(𝑥) + 𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1;  

with 𝑦(0) = 1 and  𝑦(1) = 1. 

The exact solution is given by equation (54) and computational results are shown in table-3 & 4 

and the layer behaviour in fig. 3 & 4 for different values of parameters. 

Example 3. Consider the differential-differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥) − 3𝑦(𝑥) + 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1 and  𝑦(1) = 1. 

The exact solution is given by equation (54) and computational results are shown in table-5 & 6, 

the layer behaviour in fig. 5 & 6 for different values of parameters. 

Example 4. Now we consider the delay differential equation having right boundary layer:    

𝜀𝑦′′(𝑥) − 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0, 0 ≤ 𝑥 ≤ 1;  with 𝑦(0) = 1 and𝑦(1) = −1. 

The exact solution is given by 
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𝑦 = ((1 + 𝑒𝑚2)𝑒𝑚1𝑥 − (𝑒𝑚1 + 1)𝑒𝑚2𝑥)/(𝑒𝑚2 − 𝑒𝑚1) 

where 

𝑚1 =
1 − √1 + 4(𝜀 + 𝛿)

2(𝜀 + 𝛿)
and𝑚2 =

1 + √1 + 4(𝜀 + 𝛿)

2(𝜀 + 𝛿)
 

The computational results are shown in table-7 & 8, the layer behaviour in fig. 7 & 8 for 

different values of parameters. 

Example 5. Consider the differential-differential equation having right boundary layer: 

𝜀𝑦′′(𝑥) − 𝑦′(𝑥) − 2𝑦(𝑥 − 𝛿) + 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1;  

with 𝑦(0) = 1 and  𝑦(1) = −1. 

The exact solution is given by equation (54) and computational results are shown in table-9 & 10, 

the layer behaviour in fig. 9 & 10 for different values of parameters. 

Example 6. Consider the differential-differential equation having right boundary layer: 

𝜀𝑦′′(𝑥) − 𝑦′(𝑥) + 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1 and  𝑦(1) = −1. 

The exact solution is given by equation (54) and computational results are shown in table-11 & 

12, the layer behaviour in fig. 11 & 12 for different values of parameters. 

 

3. DISCUSSION AND CONCLUSIONS 

A fitted numerical scheme is presented to get solutions of singularly perturbed differential-

difference equations having boundary layer at one end. Original Problem is converted into an 

asymptotically equivalent singularly perturbed differential equation by using Taylor’s 

transformation. In this scheme deviating argument and Hermite interpolation concepts are used. 

This scheme is implemented on six standard model examples and found that the numerical 

solutions are in agreement with available or exact solution. Solutions obtained from this scheme 

and exact solutions are presented in their respective tables also layer behaviour for different 

values of the parameters. Scheme is simple and easy to implement on the class of singularly 

perturbed differential-difference equations having layer at one end. 
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Example 1: ℎ = 0.01, 𝜀 = 0.01 and 𝛿 = 0.001  

Table-1. 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [8] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.38024295 0.42885272 0.37530590 

0.04 0.38327294 0.38987298 0.38287105 

0.06 0.39097449 0.39385789 0.39060602 

0.08 0.39886493 0.40144299 0.39849726 

0.1 0.40691486 0.40946339  0.40654792 

0.2 0.44966807 0.45216849 0.44930761 

0.3 0.49691321 0.49933011 0.49656465 

0.4 0.54912224 0.55141074 0.54879207 

0.5 0.60681671 0.60892343 0.60651264 

0.6 0.67057294 0.67243474 0.67030411 

0.7 0.74102783 0.74257036 0.74080501 

0.8 0.81888518 0.82002118 0.81872102 

0.9 0.90492274 0.90555021 0.90483204 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig.1 
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Example 1: ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0001 

Table-2. 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [8] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02   0.37590123 0.37560498 0.37562175 

0.04 0.38300304 0.38318659 0.38296304 

0.06 0.39073751 0.39092122 0.39069782 

0.08 0.39862855 0.39881199 0.39858892 

0.1 0.40667895 0.40686202 0.40663940 

0.2 0.44943632 0.44961616 0.44939748 

0.3 0.49668912 0.49686302 0.49665156 

0.4 0.54890998 0.54907470 0.54887440 

0.5 0.60662123 0.60677293 0.60658846 

0.6 0.67040012 0.67053424 0.67037115 

0.7 0.74088459 0.74099575 0.74086058 

0.8 0.81877965 0.81886155 0.81876196 

0.9 0.90486444 0.90490969 0.90485466 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig. 2. 
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 Example 2: ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.001 and 𝜂 = 0.005 

Table-3. 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [11] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.01060194 0.12303611 0.12573638 

0.04 0.00344628 0.01867136 0.01924308 

0.06 0.00381518 0.00667501 0.00668484 

0.08 0.00429460 0.00577240 0.00566896 

0.1 0.00483483 0.00625879 0.00612688 

0.2 0.00874323 0.01096036 0.01074933 

0.3 0.01581114 0.01926844 0.01894343 

0.4 0.02859264 0.03387416 0.03338381 

0.5 0.05170651 0.05955119 0.05883196 

0.6 0.09350529 0.10469173 0.10367897 

0.7 0.16909358 0.18404935 0.18271239 

0.8 0.30578634 0.32356102 0.32199219 

0.9 0.55297951 0.56882424 0.56744355 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig.3. 
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Example 2: ℎ = 0.01, 𝜀 = 0.001, 𝛿 = 0.0001 and 𝜂 = 0.0005 

Table-4. 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [11] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02        0.00365332 0.00290566 0.00427314 

0.04 0.00319817 0.00327352 0.00209563 

0.06 0.00360408 0.00368796 0.00237638 

0.08 0.00406235 0.00415486 0.00270237 

0.1 0.00457889 0.00468088 0.00307310 

0.2 0.00833059 0.00849532 0.00584433 

0.3 0.01515624 0.01541816 0.01111458 

0.4 0.02757446 0.02798241 0.02113738 

0.5 0.05016751 0.05078525 0.04019845 

0.6 0.09127210 0.09217010 0.07644823 

0.7 0.16605560 0.16727944 0.14538701 

0.8 0.30211273 0.30359530 0.27649274 

0.9 0.54964782 0.55099482 0.52582577 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig. 4. 
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Example 3:ℎ = 0.01, 𝜀 = 0.001, 𝛿 = 0.001 and 𝜂 = 0.001 

Table-5. 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [11] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37669432 0.37641209 0.37180442 

0.04 0.38374303 0.38399316 0.37934369 

0.06 0.39147662 0.39172692 0.38708203 

0.08 0.39936653 0.39961644 0.39497823 

0.1 0.40741545 0.40766486 0.40303550 

0.2 0.45015975 0.45040470 0.44585542 

0.3 0.49738860 0.49762541 0.49322467 

0.4 0.54957251 0.54979677 0.54562660 

0.5 0.60723132 0.60743781 0.60359590 

0.6 0.67093945 0.67112197 0.66772406 

0.7 0.74133157 0.74148282 0.73866542 

0.8 0.81910894 0.81922034 0.81714384 

0.9 0.90504637 0.90510791 0.90396009 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig.5.          
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 Example 3: ℎ = 0.01, 𝜀 = 0.001, 𝛿 = 0.001 and 𝜂 = 0.0001 

Table-6. 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [11] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37603526 0.37575175 0.37114042 

0.04 0.38308252 0.38333326 0.37867982 

0.06 0.39081682 0.39106774 0.38641872 

0.08 0.39870774 0.39895828 0.39431577 

0.1 0.40675798 0.40700803 0.40237422 

0.2 0.44951396 0.44975958 0.44520510 

0.3 0.49676420 0.49700169 0.49259513 

0.4 0.54898109 0.54920605 0.54502961 

0.5 0.60668672 0.60689389 0.60304550 

0.6 0.67045802 0.67064117 0.66723691 

0.7 0.74093258 0.74108438 0.73826121 

0.8 0.81881501 0.81892684 0.81684571 

0.9 0.90488397 0.90494576 0.90379517 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig. 6. 

 



2866 

RAGHVENDRA PRATAP SINGH, Y. N. REDDY 

Example 4: ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.001 

Table-7. 

𝑥 Present Solution  Exact Solution Result by [8] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90487768 0.90510729 0.90254597 

0.2 0.81880362 0.81921921 0.81458924 

0.3 0.74091713 0.74148128 0.73520424 

0.4 0.67043938 0.67112011 0.66355563 

0.5 0.60666563 0.60743571 0.59888947 

0.6 0.54895819 0.54979449 0.54052528 

0.7 0.49674002 0.49762300 0.48784892 

0.8 0.44948896 0.45040221 0.44030608 

0.9 0.40673253 0.40766232 0.39739648 

0.92 0.39868224 0.39961390 0.38932991 

0.94 0.39079127 0.39172437 0.38142112 

0.96 0.38305253 0.38398849 0.37331288 

0.98 0.37314318 0.37470173 0.34361581 

1.0 -1.00000000 -1.00000000 -1.00000000 

 

                                                                  Fig. 7. 
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Example 4: ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0005 

Table-8. 

𝑥 Present Solution  Exact Solution Result by [8] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90487229 0.90501768 0.90361600 

0.2 0.81879387 0.81905700 0.81652188 

0.3 0.74090389 0.74126107 0.73782223 

0.4 0.67042340 0.67085438 0.66670798 

0.5 0.60664756 0.60713507 0.60244800 

0.6 0.54893857 0.54946798 0.54438165 

0.7 0.49671931 0.49727823 0.49191197 

0.8 0.44946754 0.45004559 0.44449953 

0.9 0.40671073 0.40729922 0.40165688 

0.92 0.39866039 0.39925006 0.39359720 

0.94 0.39076939 0.39135997 0.38569882 

0.96 0.38303236 0.38362581 0.37789776 

0.98 0.37370459 0.37598358 0.36118295 

1.0 -1.00000000 -1.00000000 -1.00000000 

 

                                                                  Fig. 8. 
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Example 5: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.001 and η = 0.02 

Table-9. 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.74923676 0.74995512 0.74540014 

0.2 0.56135572 0.56243268 0.55562138 

0.3 0.42058834 0.42179927 0.41416026 

0.4 0.31512024 0.31633052 0.30871512 

0.5 0.23609967 0.23723370 0.23011629 

0.6 0.17689455 0.17791462 0.17152872 

0.7 0.13253590 0.13342798 0.12785753 

0.8 0.09930077 0.10006500 0.09530502 

0.9 0.07439978 0.07504426 0.07104038 

0.92 0.07022560 0.07084750 0.06698586 

0.94 0.06628561 0.06688544 0.06316275 

0.96 0.06256503 0.06314495 0.05955775 

0.98 0.05773454 0.05961135 0.05585811 

1.0 -1.00000000 -1.00000000 -1.00000000 

 

                                                                  Fig. 9. 
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Example 5: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.0001 and η = 0.005 

Table-10. 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.74326245 0.74424718 0.74075573 

0.2 0.55243907 0.55390386 0.54871906 

0.3 0.41060722 0.41224139 0.40646679 

0.4 0.30518893 0.30680949 0.30109261 

0.5 0.22683547 0.22834210 0.22303607 

0.6 0.16859829 0.16994296 0.16521525 

0.7 0.12531278 0.12647957 0.12238414 

0.8 0.09314028 0.09413206 0.09065676 

0.9 0.06922767 0.07005752 0.06715451 

0.92 0.06523913 0.06603865 0.06324267 

0.94 0.06148038 0.06225033 0.05955870 

0.96 0.05793541 0.05867932 0.05608921 

0.98 0.05288638 0.05527724 0.05247124 

1.0 -1.00000000 -1.00000000 -1.00000000 

 

                                                                  Fig. 10. 

 



2870 

RAGHVENDRA PRATAP SINGH, Y. N. REDDY 

Example 6: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.001 and η = 0.005 

Table-11. 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90577262 0.90590670 0.90542830 

0.2 0.82042404 0.82066696 0.81980040 

0.3 0.74311763 0.74344771 0.74227049 

0.4 0.67309560 0.67349426 0.67207271 

0.5 0.60967157 0.61012297 0.60851365 

0.6 0.55222381 0.55271449 0.55096548 

0.7 0.50018921 0.50070777 0.49885974 

0.8 0.45305769 0.45359453 0.45168172 

0.9 0.41036725 0.41091432 0.40896541 

0.92 0.40232455 0.40287283 0.40091970 

0.94 0.39443947 0.39498870 0.39303227 

0.96 0.38670520 0.38725886 0.38530000 

0.98 0.37686475 0.37963166 0.37757875 

1.0 -1.00000000 -1.00000000 -1.00000000 

 

                                                                  Fig. 11. 
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Example 6: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.0003 and η = 0.0006 

Table-12. 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90498600 0.90512548 0.90465207 

0.2 0.81899966 0.81925214 0.81839538 

0.3 0.74118322 0.74152599 0.74036308 

0.4 0.67076044 0.67117407 0.66977100 

0.5 0.60702881 0.60749675 0.60590973 

0.6 0.54935257 0.54986079 0.54813749 

0.7 0.49715639 0.49769301 0.49587372 

0.8 0.44991957 0.45047463 0.44859319 

0.9 0.40717091 0.40773607 0.40582076 

0.92 0.39912150 0.39968779 0.39776868 

0.94 0.39123120 0.39179839 0.38987636 

0.96 0.38349295 0.38406471 0.38214061 

0.98 0.37358889 0.37642359 0.37439988 

1.0 -1.00000000 -1.00000000 -1.00000000 

 

Fig. 12. 
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