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Abstract: The problem of selecting as few as the possible number of sets that would cover the whole universal set is 

called a set cover. The commonly used set cover algorithm GreedySetCover gives a better approximation result. 

There are various alternative algorithms for GreedySetCover are proposed in the research, depending on the nature 

of the problem. This paper proposes an enhanced GreedySetCover algorithm such as MaxFrequentGroupGreedy to 

find the minimum number of representative pattern sets by combining two or more maximum frequent itemsets 

groups and checking set cover among them. The groups are combined by using the percentage difference formula 

and set cover is done by removing the itemset which is contained in another itemset in the combined group. The 

effectiveness of this approach is tested on frequent itemsets which are determined from NCFP-tree and 
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ModifiedRPset algorithms and a reduced number of representative itemsets is obtained. The reduced itemsets 

approximate all other itemsets. 

Keywords: frequent itemsets; greedy algorithm; maximum frequency; representative pattern sets. 

2010 AMS Subject Classification: 68W01. 

 

1. INTRODUCTION 

One of the key techniques used by large retailers is to identify relationships between the items 

that people buy. They find out the combinations of items that occur together frequently in 

transactions. In data mining, discovering frequent itemsets is taken into account important 

research due to its large applicability in real-world applications. But, the complete set of 

discovered frequent patterns often contains a lot of redundancy. To overcome this problem, 

finding a few numbers of representative patterns with an approximation guarantee is suggested in 

the literature. Several approximation algorithms have been proposed to find approximate 

solutions for the Minimum Set Cover problem and research is still going on to optimize the 

solution. The widely used approximate solution for the Set Cover Problem is the Greedy Set 

Cover algorithm. 

Set covering is considered NP-Hard in optimization and search problems and NP-Complete in 

decision-based problems. In the set cover problem, we are given a universe U, such that |U|=n, 

and sets S1, . . . , Sk ⊆ U. A set cover is a collection C of some of the sets fromS1, . . . , Sk whose 

union is the entire universe U. Formally, C is a set cover if ⋃Si∈C Si=U. We would like to 

minimize |C| i.e) Set Covering is to select a minimum number of subsets in such a way that they 

contain all the elements from a fixed universe [6]. The study on set covering provides many 

useful results for the market basket analysis problem. 

In this paper, the MaxFrequentGroupGreedy algorithm is proposed to find the minimum number 

of representative pattern sets based on approximation. It approximates the support count value 

for reducing the number of frequent itemsets. In the business intelligence world, “market basket 

analysis” helps retailers better understand – and ultimately serve – their users by predicting their 

purchasing behaviours. This algorithm helps to make decisions based on the resultant set which 
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is obtained by using the support count value. It initially finds the maximum frequency count1and 

groups the itemsets which have the same frequency. This group is taken as g. Then, it finds the 

next maximum frequency (support count2) and applies the percentage difference formula 

between them and checks that calculated percentage difference value against the given 

percentage difference value d. The percentage difference formula is given below: 

 

Percentage Difference = 
|count1−count2|

((count1+count2)/2)
x 100                                  (1) 

 

If the difference is less than or equal to d, then it adds that itemset that has frequency count2 to 

group g. The grouped itemsets are removed from F where F refers to the set of frequent itemsets 

given as input. The grouping of itemsets is repeated by finding the next maximum frequency 

count2 each time and applies the percentage difference formula with count1 till the difference is 

less than or equal to d. Afterwards, it checks each set in the group g whether it belongs to any 

one of the three categories such as i) subset ii) superset and iii) independent set and adds that set 

into the resultant set depends on the newly added elements in visited set. This algorithm 

approximates the frequencies while grouping the itemsets. The subset, superset and independent 

set are determined based on the size of the itemset only because all itemsets which belong to the 

same group g are considered as having the same frequency. This algorithm maintains the visited 

set for keeping the elements/items of the set if the set is selected for adding into the resultant set. 

Here, the proposed algorithm adds the elements into the visited set instead of deleting elements 

from the universal set in the GreedySetCover approach if the set is selected for adding into the 

resultant set. The above process is repeated by checking all the sets in the group g, clearing 

existing group g and creating a new group from F till F reaches a null set and the size of the 

visited set is less than the size of the universal set. 

The rest of the paper is organized as follows: Section 2 presents the related work. Section 3 

describes the proposed method for generating a reduced number of representative pattern sets 

with an example. The experimental results are shown in section 4. Finally, section 5 concludes 

the paper. 



3750 

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR  

2. RELATED WORK 

Algorithms for optimization problems typically go through a sequence of steps, with a set of 

choices at each step. It returns a near-optimal solution. Timothy Chan et al. [19] say that 

optimization has numerous applications in different areas of studies and industrial applications. 

Many algorithms are introduced in two aspects such as to achieve a better approximation ratio 

and to get a minimum number of subsets. Bar-Yehuda and Even presented a linear time 

approximation algorithm [2] for the weighted set-covering problem. Chvatal et al. [3] proved a 

greedy-type algorithm to approximate the SCP with a performance guarantee log |S|. Petr Slavic 

[12] showed that the approximation ratio is in fact ln(m) - ln(ln(m)) + (1), where m is the size of 

the universe. Fabrizio Grandoni et al. proposed an algorithm [4] based on the interleaving of the 

standard greedy algorithm that selects the min-cost set which covers at least one uncovered 

element. Fatema Akhter [5] proposed a heuristic approach to solve the problem using a modified 

hill-climbing algorithm. Monjurul Alom et al. proved [11] the better results. They proposed a 

scanning of every subset S from the solution against the union of the other subsets of the solution 

to determine whether all the elements S covers are already covered by the other sets. If this is 

true, then S is removed from the solution. Stefan Spasovski et al. proposed [18] Optimization of 

the Polynomial Greedy Solution for the Set Covering Problem. They mentioned the derived 

GreedySetCover algorithm from Bar-Yehuda and Even. They modified the existing greedy 

algorithm to find if the element /elements belong to only one set. If it is true, then it will be 

added to the solution set. It is considered as the preprocessing step and the remaining procedure 

is the same as the GREEDYSETCOVER algorithm. They obtained optimal results opposite to 

the GREEDYSETCOVER algorithm in the best case. Rafael Hassin and Asaf Levin proposed a 

modification of the GREEDYSETCOVER algorithm, called greedy algorithm with withdrawals, 

SETCOVERWITH WITHDRAWALS [15]. This algorithm subtracts any subset S from the 

solution if it is replaced with other subsets that contain the elements covered by S. They 

concluded that withdrawal operation was crucial to obtain a better approximation ratio and 

proved the result. Anupam Gupta et al. [1] presented generic techniques for a dynamic set cover 

problems related to time bounds and limited resources. Habib Mostafaei et al. [8] focused on the 
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problem of partial coverage and presented an algorithm PCLA for minimizing the number of 

sensors to activate for covering the desired portion of the region of interest preserving the 

connectivity among sensors. An improved deterministic distributed algorithm for hypergraph 

maximal matching and improved algorithms for edge-coloring are discussed in [10].  R. 

Ramdani et al. proposed an approach [16] to improve segmentation based on word embedding.  

In their research, greedy splitting was improved by applying the window approach and the 

greedy process is minimized by defining the number of sentences or words that would be 

examined. An improvement plan for the efficiency of the Energy Storage System (ESS) and 

energy use is proposed in [17]. It suggests that the use of sodium-ion batteries will overcome the 

disadvantages of lithium-ion batteries, which are dominant in the current market. The greedy 

algorithm and the Floyd–Warshall algorithm were proposed as a method of scheduling energy 

use while considering the elements that could affect communication output and energy use. The 

simulation results showed that the greedy algorithm was more efficient. Graham Cormode et al. 

provide a new algorithm [7] that finds a solution that is probably close to that of greedy. Ioannis 

Tsamardinos et al. proposed a Parallel Forward–Backward with Pruning (PFBP) algorithm [9] 

for feature selection (FS) for Big Data of high dimensionality. PFBP partitions the data matrix 

both in terms of rows as well as columns. It provides asymptotic guarantees of optimality for 

data distributions faithfully representable by a causal network (Bayesian network or maximal 

ancestral graph). In this paper, our study focuses to approximate the support count value for 

grouping the itemsets and to determine superset and independent sets to get the minimum 

number of itemsets (pattern sets). It uses a similar GreedySetCover approach for selecting and 

adding an itemset into the resultant set based on the size of a set.  

 

3. PROPOSED ALGORITHM 

Our proposed algorithm MaxFrequentGroupGreedy is similar to the GreedySetCover algorithm. 

This algorithm initially finds the maximum frequency count1and groups the itemsets which have 

the same frequency (support count1). This group is named g. The grouped itemsets are removed 

from F. Then, it finds the next maximum frequency (support count2) and determines the 
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percentage difference between both frequencies. It would be less than or equal to the given 

percentage difference value d. If it is true, it adds the itemsets with frequency count2 into g. The 

percentage difference between the two frequencies is calculated using the formula (1). The 

number of groups that is to be combined to group g is decided based on the percentage difference 

between the first maximum frequency count1and the next successively finding maximum 

frequency count2 i.e., each time, the frequency count2 is calculated and it is compared with the 

initial frequency count1 till the difference between them is less than or equal to d. The grouped 

itemsets are removed from F. Afterwards, it checks each set in the group g against all other sets 

and determines whether it belongs to any one of the three categories such as i) subset ii) superset 

and iii) independent set of any other set. This is determined based on the size of sets only 

because all the sets in group g have approximately the same frequencies. If the sizes (the number 

of items/elements) of the itemsets are different, then the proposed algorithm selects the set from 

the group g by determining the set which contains another set and adds that set into the resultant 

set R. It discards the set from the group if it is contained in another set. Suppose, if the set to be 

checked is not a subset /superset of any other set, then it decides that it automatically belongs to 

the third category i.e., independent set. The independent sets are not only having different sizes 

but also having the same size but different elements. Therefore, this independent set category is 

again checked for the same size after checking all the categories for a different size. It maintains 

the visited set for keeping the elements/items of the set if the set is selected for adding into the 

resultant set. Each time, it checks either the superset or the independent set with the visited set 

before adding into the resultant set R. The visited set is updated by adding those elements of the 

superset/independent set which does not already exist in the visited set i.e., the duplicate 

elements are removed from the visited set. If the number of elements of that set does not exist in 

the existing visited set is non zero, then that set will be added into the resultant set R. Otherwise, 

it will not be added. The proposed algorithm applies the greedy approach while selecting and 

adding the itemset into the resultant set R. The GreedySetCover approach removes the elements 

of the set from the universal set if the set is selected for adding into the solution set. But, the 

proposed algorithm adds the elements into the visited set instead of deleting elements from the 
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universal set in the greedy approach if the set is selected for adding into the resultant set. It keeps 

the visited set for checking and adding the superset and independent set into resultant set R. It 

also keeps the size of the visited set for checking the process whether it is completed or not. The 

above-said process is repeated till all the sets in the group g are processed. Then, it repeats the 

whole process with a new maximum frequency count1 and group g till all itemsets in F are 

processed and the size of the visited set is less than the size of the universal set. This algorithm 

gives better results while approximating support count values for grouping the frequent itemsets. 

This paper compares the proposed approach MaxFrequentGroupGreedy with Greedy approaches 

such as set coverage and weighted set coverage. The overview of our proposed approach is given 

in Fig. 1. 
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Fig. 1. Overview of MaxFrequentGroupGreedy 
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The proposed algorithm is given below: 

Algorithm: MaxFrequentGroupGreedy 

Input: Frequent itemset F={{s1,c1},{s2.c2},{s3,c3}……..{sn,cn}}, percentage difference value d , 

visited set  = {},Universal set U and count =0 

Output: 

Representative Pattern Sets R   

Description: 

1. Create a new group g for each iteration based on d and do the following   

 while ( (F !=) && count < size(U) ) 

 begin 

      //choose first maximum frequency (support count) 

  Let count1 = Maximum Frequency c  F  

  Let n = | {si} | if c = ci where i= 1to size (F) 

  for i = 1 to n  

   Add { si } to the group g 

   Remove { si } from F 

  end for //next i 

  //choose next maximum frequency (support count) 

          Let count2 = Maximum Frequency c  F 

  Calculate pd = 
|count1−count2|

((count1+count2)/2)
x 100 

  while (pd <=d) 

  begin 

        Let n = | {si} | if c = ci where i= 1to size (F) 

            for  i = 1 to n  

         Add{ si }to the group g 

         Remove { si }from F 

            end for //next  i 

          Let count2 = Maximum Frequency c  F 

          Calculate pd = 
|count1−count2|

((count1+count2)/2)
x 100           
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  end while 

//Check each set whether it is a subset/superset/independent set   

  for  i=0 to size(g) 

         num1 = |si|; status1 =0; status2 =0; 

       for  j=i to size(g) 

      num2 = |sj| 

      if (num1 != num2) 

          if (si  sj ) // si - subset 

                   Continue to next iteration for i 

           else if (sj  si ) // si - superset 

                  status1 = 1 

          end if 

        end if 

      else if (num1 = num2) //independent set (same size)     

                 status2 =1 

    end if 

      end for // next  j 

    number of elements added=0 

        if ( ((status1=0)&&(status2=0)) || ((status1=0)&&(status2=1)) || (status1=1) )  

        // independent set different, same size, superset                                                                                                                                                                                                                                                                                       

               // Update visited set and R 

       Add each element of si to visited set if it already does not exist  

       number of elements added=number of newly added elements to visited set 

       if (number of elements added > 0) 

            Add si  to R  

             end if    

     end if  

  end for // next i 

  Let count =size (visited set) 
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  Set g = // clear group g 

 end while 

2. display Representative Pattern Sets R 

3. end 

3.1 Example 

Consider the Transactional Database given in Table 1. It has seven transactions, that is |D|=7. 

Assume min-sup=40%. The set of frequent itemsets which are determined by using the 

NCFP-tree algorithm [11] is given in Table 2. The NCFP-tree stores frequent itemsets in a 

compact form. 

 

 Table 1 Transaction Database    Table 2 Frequent itemset (NCFP-tree) 

 

 

 

 

 

 

 

 

 

 

Here, the proposed algorithm considers the percentage frequency difference as 0.3. Initially, the 

maximum support count itemsets a (a:6), ma (ma:5) and f (f:5) are combined based on the 

percentage frequency difference. The itemset a is contained in ma. Therefore, a is skipped. Then, 

ma and f are added into the resultant set because they are independent of each other. Now, the 

process is repeated by grouping the remaining itemsets such as cma (cma:3), d, (d:3), 

pfma(pfma:3), pf(pf:4), fma(fma:4) and fa(fa:4). The itemsets cma, d and pfma are added into 

the resultant set and the itemsets pf, fma and fa are not added because their elements are already 

included in the visited set. The resultant set obtained is {{ma:5}, {f:5}, {cma:3}, {d:3}, 

TID TRANSACTION 

1 a, c, e, f, m, p 

2 a, b, f, m, p 

3 a, b, d, f, g 

4 d, e, f, h, p 

5 a, c, d, m, v 

6 a, c, h, m, s 

7 a, f, m, p, u 

Frequent Itemsets(Compact Form) 

(min_sup = 40%) 

 

cma:3 

d:3 

pfma:3  pf:4 

fma:3    fa:4  f:5 

ma:5 

a:6 
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{pfma:3}}. But, the greedy approaches give the resultant set {{cma: 3}, {d: 3}, {pfma: 3}}.  

Here, our approach gives importance to approximating the support count value because, in the 

market-basket analysis problem, support count is very much important for finding frequent 

itemsets. Our proposed method gives the same result as the greedy method if percentage 

frequency difference d is considered as 0.7. Therefore, our proposed method aims not only to 

reduce the frequent itemsets but also gives importance to consider the support count value. It 

gives a better result in that aspect.  

 

4. EXPERIMENTAL RESULTS  

The experiments are carried out on the computer with the configuration such as Intel(R) 

Core(TM) i3CPU, 3 GB RAM, 2.53 GHz Speed and Windows 7 Operating System. The 

approaches MaxFrequentGroupGreedy, GreedySetCover and Greedy Weighted Set Cover [3] are 

implemented in java. The experiments are evaluated on three datasets such as mushroom dataset, 

retail dataset and internet usage data dataset. The datasets are handled in two ways such as i) 

finding frequent itemsets from the dataset and applying the resultant frequent itemsets and ii) 

generating a weight randomly for each transaction of the dataset and applying the resultant 

transactional dataset.  

The mushroom dataset contains the characteristics of various species of mushrooms. It has 119 

items and 8124 transactions. The minimum, maximum and average length of its transaction is 23. 

The retail dataset contains the retail market basket data from an anonymous Belgian retail store. 

It has 16,470 items and 88,162 transactions. The maximum length of its transaction is 77 and the 

average length of its transaction is10. Both datasets are taken from the FIMI data repository page 

[20]. The internet usage data dataset available from UCI's Machine Learning Repository [21] 

contains general demographic information on internet users in 1997. This dataset has 10,104 

instances and 72 attributes, and the data types of this dataset were categorical or integer.  
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4.1 Performance on the frequent itemsets 

The experiment is performed on frequent itemsets which are obtained from the mushroom 

dataset and retail dataset. The algorithms NCFP-tree [13] and ModifiedRPset [14] are used to 

find frequent itemsets. In ModifiedRPset, the patterns which are obtained before applying the 

greedy algorithm are taken and used. The determined frequent itemsets from these algorithms are 

applied in MaxFrequentGroupGreedy, GreedySetCover and Greedy Weighted Set Cover to get a 

minimum number of frequent itemsets. The experiment considers both execution time and 

number of representative pattern sets for finding the performance of the algorithms. 

The number of representative pattern sets obtained from MaxFrequentGroupGreedy (while 

considering percentage frequency differences d= 10%, d=50% and not considering frequency 

difference d= 0%), GreedySetCover and Greedy Weighted Set Cover is given in Table 3 and 4. In 

Table 3, the three approaches use the frequent itemsets which are obtained from NCFP-tree 

(min-supp varies from 0.2 to 0.8) and ModifiedRPset (min-supp=0.4) algorithms. Here, the 

mushroom dataset is applied in both algorithms NCFP-tree and ModifiedRPset to get frequent 

itemsets. The retail dataset is used in Table 4. The min-supp is varied from 0.02 to 0.1. Here, the 

NCFP-tree algorithm is used for getting frequent itemsets and it is given as input for three 

approaches. 

Table 3 Representative Pattern Sets (Mushroom Dataset) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.No Min 

Sup

p 

Number of 

frequent 

itemsets 

from 

NCFP- 

tree 

MaxFrequent 

Group 

Greedy 

 

Greedy 

Set 

Cover 

Greedy 

Weighte

d Set  

Cover 

 

d=50% 

 

d=10% 

 

d=0

% 

  

1. 0.2 6089 18 32 22 10 22 

2. 0.4 565 7 13 6 5 5 

3. 0.6 51 7 13 6 3 5 

4. 0.8 23 1 2 1 1 1 

5. 0.4 Modified 

RPset 

(65) 

14 14 14 14 14 
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Table 4 Representative Pattern Sets (Retail Dataset) 

 

 

 

 

 

 

 

 

 

The proposed algorithm gives the same number of representative pattern sets as the Greedy 

Weighted Set Cover algorithm when not considering the percentage frequency difference (d=0%). 

But, it gives more number of representative pattern sets while grouping the itemsets based on 

percentage frequency difference when applying NCFP-tree algorithm and it gives the same 

number of representative pattern sets in the case of applying ModifiedRPset algorithm. It gives 

more or less the same number of resultant itemsets as greedy approaches which are given in 

Table 4. The proposed algorithm divides the given itemsets into many groups depends on the 

percentage difference and it gives the resultant itemsets from each group. Therefore, it gives 

more number of resultant itemsets if it has a lesser percentage frequency difference. This concept 

of the proposed algorithm helps to predict the purchase behavior of the customer and also helps 

to support for market basket analysis problem. But, the GreedySetCover algorithms process all 

given itemsets as a single group. 

It is observed that the proposed algorithm gives the number of pattern sets that is closer to 

GreedySetCover algorithms if no percentage difference is considered (d=0%) i.e., it behaves in 

the same manner as GreedySetCover algorithms when the input is considered as a single group. 

The execution time of MaxFrequentGroupGreedy is compared with GreedySetCover and Greedy 

S.No Min 

supp 

Number 

of 

frequent 

itemsets 

from 

NCFP 

-tree 

MaxFrequent 

Group 

Greedy 

 

Greedy 

Set 

Cover 

Greedy 

Weighte

d 

 Set 

Cover  

d=50% 

 

d=10% 

 

d=0

% 

1. 0.02 4903 3 5 3 6 4 

2. 0.04 116 1 1 1 1 1 

3. 0.06 26 1 1 1 1 1 

4. 0.08 26 1 1 1 1 1 

5. 0.1 26 1 1 1 1 1 
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Weighted Set Cover algorithms. Figure 2 and Figure 3 show the running time of the three 

algorithms. They use frequent itemsets from the NCFP-tree algorithm. The min-supp is varied 

from 0.2 to 0.8 for the mushroom dataset and it is varied from 0.02 to 0.1 for the retail dataset. 

Here, the proposed algorithm applies the frequent itemsets when d= 0% (single group), d= 10% 

and d= 50%. 

 

Fig. 2. Running Time using Mushroom Dataset 

                                                      

                                                                                                                       

 

Fig. 3. Running Time using Retail Dataset 
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From the figures, we observed that when min-supp is increased, all the three methods give the 

same execution time. But, if min-supp is lesser, the proposed method MaxFrequentGroupGreedy 

gives slightly lesser execution time compared to GreedySetCover and Greedy Weighted Set 

Cover algorithms. The proposed algorithm MaxFrequent GroupGreedy gives more or less the 

same execution time for all three cases (d =0%, d= 10% and d =50%). It reduces the execution 

time by a factor of 10% comparing to Greedy Weighted Set Cover when min-supp=0.2 while 

applying the mushroom dataset. Similarly, it gives the same execution time in the case of the 

retail dataset when min-supp is increased and it reduces the execution time approximately by a 

factor of 18% comparing to Greedy Weighted Set Cover when min-supp=0.02. The acceptability 

of a percentage error depends on the application. Here, the importance is given for approximately 

grouping frequent itemsets using support count value to find the number of frequent itemsets 

regardless of the time taken by the algorithm.  

4.2 Performance on the transactional dataset 

To handle large datasets, two datasets such as the internet usage data dataset and the mushroom 

dataset are directly applied without finding frequent itemsets. The internet usage data dataset has 

frequency values but, the mushroom dataset does not have frequency values. Therefore, a weight 

is assigned to each transaction of the mushroom dataset and is assumed as the frequency for the 

transaction. Generally, any dataset can be taken and the weight can be randomly generated 

depends on the size of the dataset. For example, the weight for each transaction of the mushroom 

dataset is randomly generated from 1 to 8124. The datasets are utilized in two ways such as by 

partitioning the dataset and by considering the whole dataset (without partitioning). Table 5 

shows the performance of the approaches Greedy Weighted Set Cover, 

MaxFrequentGroupGreedy(d=0%) and MaxFrequentGroup Greedy (d=50%) without 

partitioning the dataset and Table 6 shows the performance of these algorithms with partitioning 

the dataset. When following the partitioning approach, initially the partition size is fixed. The 

partitions are successively processed iteratively and the result obtained from the previous 

iteration is combined with the input for the next iteration. Therefore, each time the number of 

transactions to be retrieved from the dataset is calculated as subtracting the number of previous 

iteration's resultant transactions from the fixed partition size. The resultant tables are given as 

follows: 
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Table 5 Performance of the algorithms for large datasets 
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Table 6 Performance of the algorithms for large datasets 

(Partition size = 4k) 

 

 

 

 

 

 

 

 

 

 

 

Dataset Algorithm 

Running 

Time 

(milli sec) 

Number 

of 

Resultant 

Set 

 

 

Mushroom 

Greedy Weighted Set 

Cover  

3620 35 

MaxFrequentGroupGreedy 

(d=0%) 

1680 

 

36 

MaxFrequentGroupGreedy 

(d=50%) 

1571 39 

 

 

 

Internet 

Usage Data 

 

 

 

Greedy Weighted Set 

Cover  

10857 36 

MaxFrequentGroupGreedy 

(d=0%) 

16392 41 

MaxFrequentGroupGreedy 

(d=50%) 

16197 

 

41 

 

Dataset Algorithm 

Running 

Time 

(milli sec) 

Number 

of 

Resultant 

Set 

 

Mushroom 

 

Greedy Weighted Set 

Cover 
2637 31 

MaxFrequentGroupGreedy 

(d=0%) 
1323 36 

MaxFrequentGroupGreedy 

(d=50%) 
1169 39 

Internet 

Usage Data 

Greedy Weighted Set 

Cover 
9887 36 

MaxFrequentGroupGreedy 

(d=0%) 
15102 41 

MaxFrequentGroupGreedy 

(d=50%) 
16004 41 
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From the tables, we observed that our proposed algorithm gives more or less the same number of 

resultant sets as the Greedy Weighted Set Cover algorithm for both datasets. The proposed 

algorithm reduces the execution time by a factor of 55% approximately (in the case of the 

mushroom dataset) and it gives at most approximately a 62% increase in time (in the case of 

Internet usage Data Dataset) comparing to the Greedy Weighted Set Cover algorithm. It is known 

that the minimum representative pattern sets are determined after finding frequent itemsets from 

the transactional database. Therefore, the proposed algorithm would give better results if 

frequent itemsets are given as input.  

 

5. CONCLUSION 

In this paper, we followed a generalized version of the set covering called the GreedySetCover 

method and modified the concept to select the set for finding minimum representative pattern 

sets. The Greedy algorithm may provide an efficient solution that is close to optimal. But, there 

is no general template on how to apply the greedy method to a given problem. Therefore, we 

applied the greedy method while selecting the itemsets based on the categories from the 

approximately grouped itemsets (grouping percentage frequency difference d) and produced a 

minimum number of itemsets. Our algorithm gives the mostly same result (reduced number of 

sets) as existing algorithms if no percentage frequency difference (single group i.e) d=0%) is 

considered and it gives better results if percentage frequency difference d is considered. It also 

supports finding representative pattern sets for large datasets. As part of our future work, we can 

apply the proposed algorithm in a parallel processing environment to improve the overall 

performance.  
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