
*Corresponding author

E-mail address: prabacs2006@gmail.com

†
Research Scholar, (Reg No. 11991)

Received March 10, 2021

3747

 Available online at http://scik.org

 J. Math. Comput. Sci. 11 (2021), No. 3, 3747-3766

https://doi.org/10.28919/jmcs/5676

ISSN: 1927-5307

AN ENHANCED APPROXIMATION ALGORITHM TO FIND MINIMUM

REPRESENTATIVE PATTERN SETS

R. PRABAMANIESWARI1,†,*, D.S. MAHENDRAN2, T.C. RAJA KUMAR3

 1Research Department of Computer Science, St. Xavier’s College, Palayamkottai,

Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India

2Aditanar College of Arts & Science, Tiruchendur, Tamil Nadu, India

3Department of Computer Science, St. Xavier’s College, Palayamkottai, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License,which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The problem of selecting as few as the possible number of sets that would cover the whole universal set is

called a set cover. The commonly used set cover algorithm GreedySetCover gives a better approximation result.

There are various alternative algorithms for GreedySetCover are proposed in the research, depending on the nature

of the problem. This paper proposes an enhanced GreedySetCover algorithm such as MaxFrequentGroupGreedy to

find the minimum number of representative pattern sets by combining two or more maximum frequent itemsets

groups and checking set cover among them. The groups are combined by using the percentage difference formula

and set cover is done by removing the itemset which is contained in another itemset in the combined group. The

effectiveness of this approach is tested on frequent itemsets which are determined from NCFP-tree and

3748

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

ModifiedRPset algorithms and a reduced number of representative itemsets is obtained. The reduced itemsets

approximate all other itemsets.

Keywords: frequent itemsets; greedy algorithm; maximum frequency; representative pattern sets.

2010 AMS Subject Classification: 68W01.

1. INTRODUCTION

One of the key techniques used by large retailers is to identify relationships between the items

that people buy. They find out the combinations of items that occur together frequently in

transactions. In data mining, discovering frequent itemsets is taken into account important

research due to its large applicability in real-world applications. But, the complete set of

discovered frequent patterns often contains a lot of redundancy. To overcome this problem,

finding a few numbers of representative patterns with an approximation guarantee is suggested in

the literature. Several approximation algorithms have been proposed to find approximate

solutions for the Minimum Set Cover problem and research is still going on to optimize the

solution. The widely used approximate solution for the Set Cover Problem is the Greedy Set

Cover algorithm.

Set covering is considered NP-Hard in optimization and search problems and NP-Complete in

decision-based problems. In the set cover problem, we are given a universe U, such that |U|=n,

and sets S1, . . . , Sk ⊆ U. A set cover is a collection C of some of the sets fromS1, . . . , Sk whose

union is the entire universe U. Formally, C is a set cover if ⋃Si∈C Si=U. We would like to

minimize |C| i.e) Set Covering is to select a minimum number of subsets in such a way that they

contain all the elements from a fixed universe [6]. The study on set covering provides many

useful results for the market basket analysis problem.

In this paper, the MaxFrequentGroupGreedy algorithm is proposed to find the minimum number

of representative pattern sets based on approximation. It approximates the support count value

for reducing the number of frequent itemsets. In the business intelligence world, “market basket

analysis” helps retailers better understand – and ultimately serve – their users by predicting their

purchasing behaviours. This algorithm helps to make decisions based on the resultant set which

3749

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

is obtained by using the support count value. It initially finds the maximum frequency count1and

groups the itemsets which have the same frequency. This group is taken as g. Then, it finds the

next maximum frequency (support count2) and applies the percentage difference formula

between them and checks that calculated percentage difference value against the given

percentage difference value d. The percentage difference formula is given below:

Percentage Difference =
|count1−count2|

((count1+count2)/2)
x 100 (1)

If the difference is less than or equal to d, then it adds that itemset that has frequency count2 to

group g. The grouped itemsets are removed from F where F refers to the set of frequent itemsets

given as input. The grouping of itemsets is repeated by finding the next maximum frequency

count2 each time and applies the percentage difference formula with count1 till the difference is

less than or equal to d. Afterwards, it checks each set in the group g whether it belongs to any

one of the three categories such as i) subset ii) superset and iii) independent set and adds that set

into the resultant set depends on the newly added elements in visited set. This algorithm

approximates the frequencies while grouping the itemsets. The subset, superset and independent

set are determined based on the size of the itemset only because all itemsets which belong to the

same group g are considered as having the same frequency. This algorithm maintains the visited

set for keeping the elements/items of the set if the set is selected for adding into the resultant set.

Here, the proposed algorithm adds the elements into the visited set instead of deleting elements

from the universal set in the GreedySetCover approach if the set is selected for adding into the

resultant set. The above process is repeated by checking all the sets in the group g, clearing

existing group g and creating a new group from F till F reaches a null set and the size of the

visited set is less than the size of the universal set.

The rest of the paper is organized as follows: Section 2 presents the related work. Section 3

describes the proposed method for generating a reduced number of representative pattern sets

with an example. The experimental results are shown in section 4. Finally, section 5 concludes

the paper.

3750

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

2. RELATED WORK

Algorithms for optimization problems typically go through a sequence of steps, with a set of

choices at each step. It returns a near-optimal solution. Timothy Chan et al. [19] say that

optimization has numerous applications in different areas of studies and industrial applications.

Many algorithms are introduced in two aspects such as to achieve a better approximation ratio

and to get a minimum number of subsets. Bar-Yehuda and Even presented a linear time

approximation algorithm [2] for the weighted set-covering problem. Chvatal et al. [3] proved a

greedy-type algorithm to approximate the SCP with a performance guarantee log |S|. Petr Slavic

[12] showed that the approximation ratio is in fact ln(m) - ln(ln(m)) + (1), where m is the size of

the universe. Fabrizio Grandoni et al. proposed an algorithm [4] based on the interleaving of the

standard greedy algorithm that selects the min-cost set which covers at least one uncovered

element. Fatema Akhter [5] proposed a heuristic approach to solve the problem using a modified

hill-climbing algorithm. Monjurul Alom et al. proved [11] the better results. They proposed a

scanning of every subset S from the solution against the union of the other subsets of the solution

to determine whether all the elements S covers are already covered by the other sets. If this is

true, then S is removed from the solution. Stefan Spasovski et al. proposed [18] Optimization of

the Polynomial Greedy Solution for the Set Covering Problem. They mentioned the derived

GreedySetCover algorithm from Bar-Yehuda and Even. They modified the existing greedy

algorithm to find if the element /elements belong to only one set. If it is true, then it will be

added to the solution set. It is considered as the preprocessing step and the remaining procedure

is the same as the GREEDYSETCOVER algorithm. They obtained optimal results opposite to

the GREEDYSETCOVER algorithm in the best case. Rafael Hassin and Asaf Levin proposed a

modification of the GREEDYSETCOVER algorithm, called greedy algorithm with withdrawals,

SETCOVERWITH WITHDRAWALS [15]. This algorithm subtracts any subset S from the

solution if it is replaced with other subsets that contain the elements covered by S. They

concluded that withdrawal operation was crucial to obtain a better approximation ratio and

proved the result. Anupam Gupta et al. [1] presented generic techniques for a dynamic set cover

problems related to time bounds and limited resources. Habib Mostafaei et al. [8] focused on the

3751

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

problem of partial coverage and presented an algorithm PCLA for minimizing the number of

sensors to activate for covering the desired portion of the region of interest preserving the

connectivity among sensors. An improved deterministic distributed algorithm for hypergraph

maximal matching and improved algorithms for edge-coloring are discussed in [10]. R.

Ramdani et al. proposed an approach [16] to improve segmentation based on word embedding.

In their research, greedy splitting was improved by applying the window approach and the

greedy process is minimized by defining the number of sentences or words that would be

examined. An improvement plan for the efficiency of the Energy Storage System (ESS) and

energy use is proposed in [17]. It suggests that the use of sodium-ion batteries will overcome the

disadvantages of lithium-ion batteries, which are dominant in the current market. The greedy

algorithm and the Floyd–Warshall algorithm were proposed as a method of scheduling energy

use while considering the elements that could affect communication output and energy use. The

simulation results showed that the greedy algorithm was more efficient. Graham Cormode et al.

provide a new algorithm [7] that finds a solution that is probably close to that of greedy. Ioannis

Tsamardinos et al. proposed a Parallel Forward–Backward with Pruning (PFBP) algorithm [9]

for feature selection (FS) for Big Data of high dimensionality. PFBP partitions the data matrix

both in terms of rows as well as columns. It provides asymptotic guarantees of optimality for

data distributions faithfully representable by a causal network (Bayesian network or maximal

ancestral graph). In this paper, our study focuses to approximate the support count value for

grouping the itemsets and to determine superset and independent sets to get the minimum

number of itemsets (pattern sets). It uses a similar GreedySetCover approach for selecting and

adding an itemset into the resultant set based on the size of a set.

3. PROPOSED ALGORITHM

Our proposed algorithm MaxFrequentGroupGreedy is similar to the GreedySetCover algorithm.

This algorithm initially finds the maximum frequency count1and groups the itemsets which have

the same frequency (support count1). This group is named g. The grouped itemsets are removed

from F. Then, it finds the next maximum frequency (support count2) and determines the

3752

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

percentage difference between both frequencies. It would be less than or equal to the given

percentage difference value d. If it is true, it adds the itemsets with frequency count2 into g. The

percentage difference between the two frequencies is calculated using the formula (1). The

number of groups that is to be combined to group g is decided based on the percentage difference

between the first maximum frequency count1and the next successively finding maximum

frequency count2 i.e., each time, the frequency count2 is calculated and it is compared with the

initial frequency count1 till the difference between them is less than or equal to d. The grouped

itemsets are removed from F. Afterwards, it checks each set in the group g against all other sets

and determines whether it belongs to any one of the three categories such as i) subset ii) superset

and iii) independent set of any other set. This is determined based on the size of sets only

because all the sets in group g have approximately the same frequencies. If the sizes (the number

of items/elements) of the itemsets are different, then the proposed algorithm selects the set from

the group g by determining the set which contains another set and adds that set into the resultant

set R. It discards the set from the group if it is contained in another set. Suppose, if the set to be

checked is not a subset /superset of any other set, then it decides that it automatically belongs to

the third category i.e., independent set. The independent sets are not only having different sizes

but also having the same size but different elements. Therefore, this independent set category is

again checked for the same size after checking all the categories for a different size. It maintains

the visited set for keeping the elements/items of the set if the set is selected for adding into the

resultant set. Each time, it checks either the superset or the independent set with the visited set

before adding into the resultant set R. The visited set is updated by adding those elements of the

superset/independent set which does not already exist in the visited set i.e., the duplicate

elements are removed from the visited set. If the number of elements of that set does not exist in

the existing visited set is non zero, then that set will be added into the resultant set R. Otherwise,

it will not be added. The proposed algorithm applies the greedy approach while selecting and

adding the itemset into the resultant set R. The GreedySetCover approach removes the elements

of the set from the universal set if the set is selected for adding into the solution set. But, the

proposed algorithm adds the elements into the visited set instead of deleting elements from the

3753

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

universal set in the greedy approach if the set is selected for adding into the resultant set. It keeps

the visited set for checking and adding the superset and independent set into resultant set R. It

also keeps the size of the visited set for checking the process whether it is completed or not. The

above-said process is repeated till all the sets in the group g are processed. Then, it repeats the

whole process with a new maximum frequency count1 and group g till all itemsets in F are

processed and the size of the visited set is less than the size of the universal set. This algorithm

gives better results while approximating support count values for grouping the frequent itemsets.

This paper compares the proposed approach MaxFrequentGroupGreedy with Greedy approaches

such as set coverage and weighted set coverage. The overview of our proposed approach is given

in Fig. 1.

 No

 Yes

Get frequent itemset F,

percentage difference value d,

Universal set U and initialize

count =0, visited set = {}

B

A

Start

While (|F|>0)&&

(Count

<size(U)

Display R

End

Find maximum frequency count1 and group the

itemsets which belong to the same frequency. Let

the group be g. Remove the grouped sets from F.

3754

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

 No

 Yes

Fig. 1. Overview of MaxFrequentGroupGreedy

A

Check each set in the group g whether it belongs to any one of the

three categories such as i) subset ii) superset and iii) independent

set based on the size and add that set accordingly into R if number

of element(s) of that set not exist in visited set > 0.

Update visited set; Clear group g; Set count =size of visited set

 B

Add the itemsets which belong to the frequency

count2 to the group g and remove the added itemsets

from F.

Find count2 = next maximum frequency.

Calculate

Percentage difference (pd) =

Find count2 = next maximum frequency.

Calculate

Percentage difference (pd) =
|count1−count2|

((count1+count2)/2)
x 100

While

pd  d

3755

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

The proposed algorithm is given below:

Algorithm: MaxFrequentGroupGreedy

Input: Frequent itemset F={{s1,c1},{s2.c2},{s3,c3}……..{sn,cn}}, percentage difference value d ,

visited set = {},Universal set U and count =0

Output:

Representative Pattern Sets R

Description:

1. Create a new group g for each iteration based on d and do the following

 while ((F !=) && count < size(U))

 begin

 //choose first maximum frequency (support count)

 Let count1 = Maximum Frequency c  F

 Let n = | {si} | if c = ci where i= 1to size (F)

 for i = 1 to n

 Add { si } to the group g

 Remove { si } from F

 end for //next i

 //choose next maximum frequency (support count)

 Let count2 = Maximum Frequency c  F

 Calculate pd =
|count1−count2|

((count1+count2)/2)
x 100

 while (pd <=d)

 begin

 Let n = | {si} | if c = ci where i= 1to size (F)

 for i = 1 to n

 Add{ si }to the group g

 Remove { si }from F

 end for //next i

 Let count2 = Maximum Frequency c  F

 Calculate pd =
|count1−count2|

((count1+count2)/2)
x 100

3756

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

 end while

//Check each set whether it is a subset/superset/independent set

 for i=0 to size(g)

 num1 = |si|; status1 =0; status2 =0;

 for j=i to size(g)

 num2 = |sj|

 if (num1 != num2)

 if (si  sj) // si - subset

 Continue to next iteration for i

 else if (sj  si) // si - superset

 status1 = 1

 end if

 end if

 else if (num1 = num2) //independent set (same size)

 status2 =1

 end if

 end for // next j

 number of elements added=0

 if (((status1=0)&&(status2=0)) || ((status1=0)&&(status2=1)) || (status1=1))

 // independent set different, same size, superset

 // Update visited set and R

 Add each element of si to visited set if it already does not exist

 number of elements added=number of newly added elements to visited set

 if (number of elements added > 0)

 Add si to R

 end if

 end if

 end for // next i

 Let count =size (visited set)

3757

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

 Set g = // clear group g

 end while

2. display Representative Pattern Sets R

3. end

3.1 Example

Consider the Transactional Database given in Table 1. It has seven transactions, that is |D|=7.

Assume min-sup=40%. The set of frequent itemsets which are determined by using the

NCFP-tree algorithm [11] is given in Table 2. The NCFP-tree stores frequent itemsets in a

compact form.

 Table 1 Transaction Database Table 2 Frequent itemset (NCFP-tree)

Here, the proposed algorithm considers the percentage frequency difference as 0.3. Initially, the

maximum support count itemsets a (a:6), ma (ma:5) and f (f:5) are combined based on the

percentage frequency difference. The itemset a is contained in ma. Therefore, a is skipped. Then,

ma and f are added into the resultant set because they are independent of each other. Now, the

process is repeated by grouping the remaining itemsets such as cma (cma:3), d, (d:3),

pfma(pfma:3), pf(pf:4), fma(fma:4) and fa(fa:4). The itemsets cma, d and pfma are added into

the resultant set and the itemsets pf, fma and fa are not added because their elements are already

included in the visited set. The resultant set obtained is {{ma:5}, {f:5}, {cma:3}, {d:3},

TID TRANSACTION

1 a, c, e, f, m, p

2 a, b, f, m, p

3 a, b, d, f, g

4 d, e, f, h, p

5 a, c, d, m, v

6 a, c, h, m, s

7 a, f, m, p, u

Frequent Itemsets(Compact Form)

(min_sup = 40%)

cma:3

d:3

pfma:3 pf:4

fma:3 fa:4 f:5

ma:5

a:6

3758

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

{pfma:3}}. But, the greedy approaches give the resultant set {{cma: 3}, {d: 3}, {pfma: 3}}.

Here, our approach gives importance to approximating the support count value because, in the

market-basket analysis problem, support count is very much important for finding frequent

itemsets. Our proposed method gives the same result as the greedy method if percentage

frequency difference d is considered as 0.7. Therefore, our proposed method aims not only to

reduce the frequent itemsets but also gives importance to consider the support count value. It

gives a better result in that aspect.

4. EXPERIMENTAL RESULTS

The experiments are carried out on the computer with the configuration such as Intel(R)

Core(TM) i3CPU, 3 GB RAM, 2.53 GHz Speed and Windows 7 Operating System. The

approaches MaxFrequentGroupGreedy, GreedySetCover and Greedy Weighted Set Cover [3] are

implemented in java. The experiments are evaluated on three datasets such as mushroom dataset,

retail dataset and internet usage data dataset. The datasets are handled in two ways such as i)

finding frequent itemsets from the dataset and applying the resultant frequent itemsets and ii)

generating a weight randomly for each transaction of the dataset and applying the resultant

transactional dataset.

The mushroom dataset contains the characteristics of various species of mushrooms. It has 119

items and 8124 transactions. The minimum, maximum and average length of its transaction is 23.

The retail dataset contains the retail market basket data from an anonymous Belgian retail store.

It has 16,470 items and 88,162 transactions. The maximum length of its transaction is 77 and the

average length of its transaction is10. Both datasets are taken from the FIMI data repository page

[20]. The internet usage data dataset available from UCI's Machine Learning Repository [21]

contains general demographic information on internet users in 1997. This dataset has 10,104

instances and 72 attributes, and the data types of this dataset were categorical or integer.

3759

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

4.1 Performance on the frequent itemsets

The experiment is performed on frequent itemsets which are obtained from the mushroom

dataset and retail dataset. The algorithms NCFP-tree [13] and ModifiedRPset [14] are used to

find frequent itemsets. In ModifiedRPset, the patterns which are obtained before applying the

greedy algorithm are taken and used. The determined frequent itemsets from these algorithms are

applied in MaxFrequentGroupGreedy, GreedySetCover and Greedy Weighted Set Cover to get a

minimum number of frequent itemsets. The experiment considers both execution time and

number of representative pattern sets for finding the performance of the algorithms.

The number of representative pattern sets obtained from MaxFrequentGroupGreedy (while

considering percentage frequency differences d= 10%, d=50% and not considering frequency

difference d= 0%), GreedySetCover and Greedy Weighted Set Cover is given in Table 3 and 4. In

Table 3, the three approaches use the frequent itemsets which are obtained from NCFP-tree

(min-supp varies from 0.2 to 0.8) and ModifiedRPset (min-supp=0.4) algorithms. Here, the

mushroom dataset is applied in both algorithms NCFP-tree and ModifiedRPset to get frequent

itemsets. The retail dataset is used in Table 4. The min-supp is varied from 0.02 to 0.1. Here, the

NCFP-tree algorithm is used for getting frequent itemsets and it is given as input for three

approaches.

Table 3 Representative Pattern Sets (Mushroom Dataset)

S.No Min

Sup

p

Number of

frequent

itemsets

from

NCFP-

tree

MaxFrequent

Group

Greedy

Greedy

Set

Cover

Greedy

Weighte

d Set

Cover

d=50%

d=10%

d=0

%

1. 0.2 6089 18 32 22 10 22

2. 0.4 565 7 13 6 5 5

3. 0.6 51 7 13 6 3 5

4. 0.8 23 1 2 1 1 1

5. 0.4 Modified

RPset

(65)

14 14 14 14 14

3760

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

Table 4 Representative Pattern Sets (Retail Dataset)

The proposed algorithm gives the same number of representative pattern sets as the Greedy

Weighted Set Cover algorithm when not considering the percentage frequency difference (d=0%).

But, it gives more number of representative pattern sets while grouping the itemsets based on

percentage frequency difference when applying NCFP-tree algorithm and it gives the same

number of representative pattern sets in the case of applying ModifiedRPset algorithm. It gives

more or less the same number of resultant itemsets as greedy approaches which are given in

Table 4. The proposed algorithm divides the given itemsets into many groups depends on the

percentage difference and it gives the resultant itemsets from each group. Therefore, it gives

more number of resultant itemsets if it has a lesser percentage frequency difference. This concept

of the proposed algorithm helps to predict the purchase behavior of the customer and also helps

to support for market basket analysis problem. But, the GreedySetCover algorithms process all

given itemsets as a single group.

It is observed that the proposed algorithm gives the number of pattern sets that is closer to

GreedySetCover algorithms if no percentage difference is considered (d=0%) i.e., it behaves in

the same manner as GreedySetCover algorithms when the input is considered as a single group.

The execution time of MaxFrequentGroupGreedy is compared with GreedySetCover and Greedy

S.No Min

supp

Number

of

frequent

itemsets

from

NCFP

-tree

MaxFrequent

Group

Greedy

Greedy

Set

Cover

Greedy

Weighte

d

 Set

Cover

d=50%

d=10%

d=0

%

1. 0.02 4903 3 5 3 6 4

2. 0.04 116 1 1 1 1 1

3. 0.06 26 1 1 1 1 1

4. 0.08 26 1 1 1 1 1

5. 0.1 26 1 1 1 1 1

3761

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

Weighted Set Cover algorithms. Figure 2 and Figure 3 show the running time of the three

algorithms. They use frequent itemsets from the NCFP-tree algorithm. The min-supp is varied

from 0.2 to 0.8 for the mushroom dataset and it is varied from 0.02 to 0.1 for the retail dataset.

Here, the proposed algorithm applies the frequent itemsets when d= 0% (single group), d= 10%

and d= 50%.

Fig. 2. Running Time using Mushroom Dataset

Fig. 3. Running Time using Retail Dataset

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.2 0.4 0.6 0.8

T
im

e
(m

il
li

 s
ec

)

Support %

Running Time - Input- NCFP-tree (Mushroom

Dataset)

GreedySetCover

Weighted Greedy

SetCover

MaxFrequentGroupG

reedy(d=0%)

MaxFrequentGroupG

reedy(d=10%)

MaxFrequentGroupG

reedy(d=50%)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0.02 0.04 0.06 0.08 0.1

T
im

e
(m

il
li

 s
ec

)

Support %

Running Time - Input- NCFP-tree (Retail Dataset)

GreedySetCover

Weighted Greedy

SetCover

MaxFrequentGroupG

reedy(d=0%)

MaxFrequentGroupG

reedy(d=10%)

MaxFrequentGroupG

reedy(d=50%)

3762

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

From the figures, we observed that when min-supp is increased, all the three methods give the

same execution time. But, if min-supp is lesser, the proposed method MaxFrequentGroupGreedy

gives slightly lesser execution time compared to GreedySetCover and Greedy Weighted Set

Cover algorithms. The proposed algorithm MaxFrequent GroupGreedy gives more or less the

same execution time for all three cases (d =0%, d= 10% and d =50%). It reduces the execution

time by a factor of 10% comparing to Greedy Weighted Set Cover when min-supp=0.2 while

applying the mushroom dataset. Similarly, it gives the same execution time in the case of the

retail dataset when min-supp is increased and it reduces the execution time approximately by a

factor of 18% comparing to Greedy Weighted Set Cover when min-supp=0.02. The acceptability

of a percentage error depends on the application. Here, the importance is given for approximately

grouping frequent itemsets using support count value to find the number of frequent itemsets

regardless of the time taken by the algorithm.

4.2 Performance on the transactional dataset

To handle large datasets, two datasets such as the internet usage data dataset and the mushroom

dataset are directly applied without finding frequent itemsets. The internet usage data dataset has

frequency values but, the mushroom dataset does not have frequency values. Therefore, a weight

is assigned to each transaction of the mushroom dataset and is assumed as the frequency for the

transaction. Generally, any dataset can be taken and the weight can be randomly generated

depends on the size of the dataset. For example, the weight for each transaction of the mushroom

dataset is randomly generated from 1 to 8124. The datasets are utilized in two ways such as by

partitioning the dataset and by considering the whole dataset (without partitioning). Table 5

shows the performance of the approaches Greedy Weighted Set Cover,

MaxFrequentGroupGreedy(d=0%) and MaxFrequentGroup Greedy (d=50%) without

partitioning the dataset and Table 6 shows the performance of these algorithms with partitioning

the dataset. When following the partitioning approach, initially the partition size is fixed. The

partitions are successively processed iteratively and the result obtained from the previous

iteration is combined with the input for the next iteration. Therefore, each time the number of

transactions to be retrieved from the dataset is calculated as subtracting the number of previous

iteration's resultant transactions from the fixed partition size. The resultant tables are given as

follows:

3763

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

Table 5 Performance of the algorithms for large datasets

 (No Partition)

Table 6 Performance of the algorithms for large datasets

(Partition size = 4k)

Dataset Algorithm

Running

Time

(milli sec)

Number

of

Resultant

Set

Mushroom

Greedy Weighted Set

Cover

3620 35

MaxFrequentGroupGreedy

(d=0%)

1680

36

MaxFrequentGroupGreedy

(d=50%)

1571 39

Internet

Usage Data

Greedy Weighted Set

Cover

10857 36

MaxFrequentGroupGreedy

(d=0%)

16392 41

MaxFrequentGroupGreedy

(d=50%)

16197

41

Dataset Algorithm

Running

Time

(milli sec)

Number

of

Resultant

Set

Mushroom

Greedy Weighted Set

Cover
2637 31

MaxFrequentGroupGreedy

(d=0%)
1323 36

MaxFrequentGroupGreedy

(d=50%)
1169 39

Internet

Usage Data

Greedy Weighted Set

Cover
9887 36

MaxFrequentGroupGreedy

(d=0%)
15102 41

MaxFrequentGroupGreedy

(d=50%)
16004 41

3764

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

From the tables, we observed that our proposed algorithm gives more or less the same number of

resultant sets as the Greedy Weighted Set Cover algorithm for both datasets. The proposed

algorithm reduces the execution time by a factor of 55% approximately (in the case of the

mushroom dataset) and it gives at most approximately a 62% increase in time (in the case of

Internet usage Data Dataset) comparing to the Greedy Weighted Set Cover algorithm. It is known

that the minimum representative pattern sets are determined after finding frequent itemsets from

the transactional database. Therefore, the proposed algorithm would give better results if

frequent itemsets are given as input.

5. CONCLUSION

In this paper, we followed a generalized version of the set covering called the GreedySetCover

method and modified the concept to select the set for finding minimum representative pattern

sets. The Greedy algorithm may provide an efficient solution that is close to optimal. But, there

is no general template on how to apply the greedy method to a given problem. Therefore, we

applied the greedy method while selecting the itemsets based on the categories from the

approximately grouped itemsets (grouping percentage frequency difference d) and produced a

minimum number of itemsets. Our algorithm gives the mostly same result (reduced number of

sets) as existing algorithms if no percentage frequency difference (single group i.e) d=0%) is

considered and it gives better results if percentage frequency difference d is considered. It also

supports finding representative pattern sets for large datasets. As part of our future work, we can

apply the proposed algorithm in a parallel processing environment to improve the overall

performance.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

3765

TO FIND MINIMUM REPRESENTATIVE PATTERN SETS

REFERENCES

[1] A. Gupta, R. Krishnaswamy, A. Kumar, D. Panigrahi, Online and dynamic algorithms for set cover, in:

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM, Montreal Canada,

2017: pp. 537–550.

[2] R. Bar-Yehuda, S. Even, A linear-time approximation algorithm for the weighted vertex cover problem, J.

Algorithms. 2 (1981), 198–203.

[3] V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (1979), 233–235.

[4] F. Grandoni, A. Gupta, S. Leonardi, P. Miettinen, P. Sankowski, M. Singh, Set covering with our eyes closed,

in: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Philadelphia, PA, USA,

2008: pp. 347–356.

[5] F. Akhter, A heuristic approach for minimum set cover problem, Int. J. Adv. Res. Artif. Intell. 4 (2015), 40-45.

[6] G. Gens, E. Levner, Complexity of approximation algorithms for combinatorial problems: a survey, ACM

SIGACT News. 12 (1980), 52–65.

[7] G. Cormode, H. Karloff, A. Wirth, Set cover algorithms for very large datasets, in: Proceedings of the 19th

ACM International Conference on Information and Knowledge Management - CIKM ’10, ACM Press, Toronto,

ON, Canada, 2010: p. 479.

[8] H. Mostafaei, A. Montieri, V. Persico, A. Pescapé, A sleep scheduling approach based on learning automata

for WSN partialcoverage, J. Netw. Computer Appl. 80 (2017), 67–78.

[9] I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis, V. Christophides, A greedy feature selection

algorithm for big data of high dimensionality, Mach. Learn. 108 (2019), 149–202.

[10] M. Ghaffari, D.G. Harris, F. Kuhn, On Derandomizing Local Distributed Algorithms, in: 2018 IEEE 59th

Annual Symposium on Foundations of Computer Science (FOCS), IEEE, Paris, 2018: pp. 662–673.

[11] B.M.M. Alom, S. Das, M.A. Rouf, Performance evaluation of vertex cover and set cover problem using

optimal algorithm, DUET J. 1 (2011), 8-13.

[12] P. Slavı́k, A tight analysis of the greedy algorithm for set cover, J. Algorithms. 25 (1997), 237–254.

[13] R. Prabamanieswari, NCFP-tree: a non-recursive approach to CFP-tree using single conditional database, Int. J.

Res. Appl. Sci. Eng. Technol. 5 (2017), 386–393.

3766

R. PRABAMANIESWARI, D.S. MAHENDRAN, T.C. RAJA KUMAR

[14] R. Prabamanieswari, D.S. Mahendran, T.C. Raja Kumar, A modified algorithm for finding representative

pattern sets, Int. J. Eng. Res. Computer Sci. Eng. 5 (2018), 201-205.

[15] R. Hassin, A. Levin, A better-than-greedy approximation algorithm for the minimum set cover problem, SIAM

J. Comput. 35 (2005), 189-200.

[16] R. Ramdani, A.F. Huda, M. Arif Bijaksana, Text Segmentation Based on Word Embedding on Indonesian

Quran Translation by Greedy with Window Approaching, in: 2019 7th International Conference on

Information and Communication Technology (ICoICT), IEEE, Kuala Lumpur, Malaysia, 2019: pp. 1–5.

[17] S.-M. Je, J.-H. Huh, An Optimized Algorithm and Test Bed for Improvement of Efficiency of ESS and Energy

Use, Electronics. 7 (2018), 388.

[18] S. Spasovski, A.M. Bogdanova, Optimization of the polynomial greedy solution for the set covering problem,

in: The 10th Conference for Informatics and Information Technology (CIIT 2013), 175-177.

[19] T.M. Chan, E. Grant, J. Könemann, M. Sharpe, Weighted Capacitated, Priority, and Geometric Set Cover via

Improved Quasi-Uniform Sampling, in: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on

Discrete Algorithms, SIAM, 2012: pp. 1576–1585.

[20] Workshop on frequent itemset mining implementations (FIMI’04), http://fimi.cs.helsinki.fi (2004).

[21] https://archive.ics.uci.edu/ml/datasets/Internet+Usage+Data

