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1.   INTRODUCTION  

In [5], Atanassov and Shanaon discussed arrays of numbers that are in some way, between two-

dimensional vectors and  (2 × 2)-dimensional matrices in their paper titled matrix-tertions and 

noitrets. As an extension, Ajibade [1] in 2003 introduced objects which are in some ways, between 

(2 × 2) -dimensional and (3 × 3) -dimensional matrices. This new paradigm of science now 

known as rhotrix theory was defined in [1] for dimension three as: 

                                          𝑅 = {⟨
𝑎

𝑏    𝑐     𝑑
𝑒   

⟩  ∶  𝑎, 𝑏, 𝑐, 𝑑, 𝑒 𝜖 ℝ},  
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where  𝑐 = ℎ(𝑅) is called the heart of any rhotrix  𝑅 and  ℝ is the set of real numbers. 

It is worthy to note that these heart-oriented rhotrices are always of odd dimension. Thereafter, 

Mohammed [21] in his PhD thesis extended the idea to rhotrix set of size  𝑛. 

It is known in [1] that addition and multiplication of two heart-oriented rhotrices are as follows: 

          𝑅 + 𝑄 = ⟨
𝑎

𝑏    ℎ(𝑅)     𝑑
𝑒   

⟩ + ⟨
𝑓

𝑔    ℎ(𝑄)     𝑗
𝑘   

⟩ = ⟨
𝑎 + 𝑓

𝑏 + 𝑔    ℎ(𝑅) + ℎ(𝑄)    𝑑 + 𝑗
𝑒 + 𝑘   

⟩ 

and       𝑅 ∘ 𝑄 = ⟨

    𝑎ℎ(𝑄) + 𝑓ℎ(𝑅)

𝑏ℎ(𝑄) + 𝑔ℎ(𝑅)    ℎ(𝑅)ℎ(𝑄)      𝑑ℎ(𝑄) + 𝑗ℎ(𝑅)

    𝑒ℎ(𝑄) + 𝑘ℎ(𝑅)   

⟩ 

respectively. Furthermore, Mohammed [21] and Ezegwu et al [9] gave a generalization of this 

heart-oriented rhotrices.  

A row-column multiplication of heart-oriented rhotrices was given by Sani [28] as: 

                    𝑅 ∘ 𝑄 = ⟨

    𝑎𝑓 + 𝑑𝑔

𝑏𝑓 + 𝑒𝑔      ℎ(𝑅)ℎ(𝑄)    𝑎𝑗 + 𝑑𝑘
   𝑏𝑗 + 𝑒𝑘   

⟩. 

Sani [29] also gave a generalization of this row-column multiplication of heart-oriented rhotrices 

as: 

𝑅𝑛 ∘ 𝑄𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 = 〈 ∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)

𝑡

𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1
𝑑𝑙2𝑘2

)

𝑡−1

𝑙2𝑘1=1

〉 , 𝑡 =
𝑛 + 1

2
 , 

where 𝑅𝑛 and 𝑄𝑛 denote  𝑛-dimensional rhotrices (with  𝑛 rows and 𝑛 columns). 

Mohammed [20] classified the heart-oriented rhotrices as abstract structures of rings, fields, 

integral domains and unique factorization domain. The necessary and sufficient condition under 

which a linear map can be represented over a heart-oriented rhotrix was carried out in [22] by 

Mohammed et al. More so, Mohammed [24] and Isere [15] gave a new technique for expressing 

rhotrices in a general form. Another method of rhotrix representation was given by Chinedu in [6]. 

In [30], the algebraic properties of singleton, coiled and modulo rhotrices were presented. A study 

of finite fields over rhotrices were carried out in [31] and [35]. Tudunkaya and makanjuola [32] 

gave the structure of rhotrices having entries from the set of integers modulo P and their properties. 

The rhotrix quadratic polynomial presentation as part of a note on rhotrix exponent rule and its 

applications in [19] was extended in [33]. Rhotrix polynomial and its extension to construction of 
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rhotrix polynomial ring was studied in [34]. An investigation of rhotrix sets and rhotrix sets and 

rhotrix spaces categorized over numbers in real and complex fields was presented in [23]. A system 

of linear equation arising from the rhotrix equation  𝐴 ∘ 𝑋 = 𝐶 was carried out in [2] and the 

conditions for their solvability were determined. A note on rhotrix system of equations was 

presented in [3] as an extension to earlier work done in [2]. 

In [4], there was an introduction to the concept of paraletrix as a generalization of rhotrix 

Mohammed and Balarabe [25] gave the first review of articles on rhotrix theory since its inception. 

Also in [26], some construction of rhotrix semigroup was given. In 2018, Isere and Adeniran [17] 

introduced the concept of quasigroups and rhotrix loops as non-associative rhotrix theory. In the 

same year, Isere [16] gave a description of even dimensional rhotrix. 

In generalizing regular semigroups, Fountain [10] considered the Green’s *-relations  ℒ∗ and ℛ∗ 

instead of trying to weaken the regularity of a semigroup. Let  𝑎, 𝑏 be elements of a semigroup  𝑆, 

we define  𝑎 ℛ∗𝑏  if and only if for all  𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 = 𝑦𝑎 ⇔ 𝑥𝑏 = 𝑦𝑏. Dually we define the 

relation  ℒ∗.  

Utilizing the Green *- relations, Fountain called a semigroup  𝑆 abundant if any ℒ∗ and ℛ∗-classes 

of 𝑆 contain at least one idempotent. Following Fountain [11], an abundant semigroup 𝑆 is said to 

be adequate if the set of idempotents of 𝑆  (𝐸(𝑆)) forms a semilattice. It is obvious that regular 

semigroups are abundant semigroups while inverse semigroups are adequate semigroups. 

A semigroup 𝑆 is said to be lpp if every principal left ideal of 𝑆, regarded as an 𝑆-system is 

projective. An rpp semigroup is defined dually. In [11], a semigroup 𝑆 is lpp if and only if every 

 ℛ∗-class of 𝑆 contains at least one idempotent. Thus, an lpp semigroup 𝑆 is said to be left adequate 

if  𝐸(𝑆) forms a semilattice. Right adequate semigroups are defined dually. It is obvious that a 

semigroup is adequate if and only if it is both left and right adequate. Furthermore, it is obvious 

that each ℛ∗-class  ℛ𝑎
∗  of a left adequate semigroup contains a unique idempotent which is denoted 

by  𝑎†. A left adequate semigroup is said to be left type 𝐴 if for all  𝑒 𝜖 𝐸(𝑆) and  𝑎 𝜖 𝑆, 𝑎𝑒 =

(𝑎𝑒)†𝑎  (see [12]), and dually for  right type 𝐴 semigroups. A semigroup  𝑆 is said to be a type 𝐴 

if it is both left and right type 𝐴. 

It is worthy to note that all articles so far existing on rhotrix theory are classified into associative 

rhotrix theory and non-associative rhotrix theory. Therefore, the objective of this work is to give a 
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description of associative rhotrix theory in terms of type  𝐴 semigroups. Our results extend that of 

rhotrix semigroup given in [26]. 

 

2.   PRELIMINARIES 

In this section we recall some definitions as well as some known results which will be useful in 

this work. For notation and terminologies not mentioned in this paper, the reader is referred to 

[1], [26], [9] and [28] respectively. 

Throughout this paper, we will use  𝑅 to denote any rhotrix while  𝑅𝑛  is  𝑛-dimensional rhotrix. 

Definition 2.1. Suppose  𝑅𝑛 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 is an 𝑛-dimensional rhotrix, then the determinant of  𝑅𝑛 

is given by  det (𝑅𝑛) = det(𝐴𝑡) det (𝐶𝑡−1)  where  𝐴𝑡  and 𝐶𝑡−1   are two square matrices of 

dimension  (𝑡 × 𝑡) and (𝑡 − 1) × (𝑡 − 1) respectively which make up the rhotrix 𝑅𝑛  with  𝑡 =

𝑛+1

2
 and  𝑛 𝜖 2ℤ+ + 1. 

Definition 2.2.  The inverse of the rhotrix 𝑅𝑛 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉  is the rhotrix  𝑅𝑛
−1 = 〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉 such that 

𝑅𝑛 ∘ 𝑅𝑛
−1 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ∘ 〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉 = 〈𝐼𝑖𝑗 , 𝐼𝑙𝑘〉   where  [𝑞𝑖𝑗]

𝑡×𝑡
 and [𝑟𝑖𝑗]

𝑡−1×𝑡−1
 are the inverses of 

the two square matrices [𝑎𝑖𝑗]
𝑡×𝑡

  and  [𝑐𝑖𝑗]
𝑡−1×𝑡−1

 respectively, which make up the rhotrix  𝑅𝑛 

with  𝑡 =
𝑛+1

2
 and  𝑛 𝜖 2ℤ+ + 1. 

Remark 2.3.  A rhotrix  𝑅𝑛 is said to be invertible or non-singular if the determinant is non-zero. 

That is  𝑅𝑛  is invertible if  det (𝑅𝑛) ≠ 0. 

Theorem 2.4 [1].  For any rhotrix  𝑅 ≠ 0, 𝑅2 = 0 if and only if  ℎ(𝑅) = 0 where  0  is the zero 

rhotrix. 

Theorem 2.5 [19].  Let  𝑅 = ⟨
𝑎

𝑏    ℎ(𝑅)    𝑑
𝑒   

⟩  be any rhotrix of size 3, then for any integer  𝑚, 

𝑅𝑚 = (ℎ(𝑅))𝑚−1 ⟨
𝑚𝑎

𝑚𝑏    ℎ(𝑅)    𝑚𝑑
𝑚𝑒   

⟩. In particular,  𝑅0 and 𝑅−1 are the identity and inverse of  𝑅 

respectively, provided ℎ(𝑅) is non-zero. 

Proposition 2.6 [2]. Let  𝐴, 𝐵 and 𝐶 be three rhotrices of the same size with entries in ℝ, then the 

system of linear equations resulting from  𝐴 ∘ 𝐵 = 𝐶 has 

i) a unique solution if and only if  ℎ(𝐴) ≠ 0 and  ℎ(𝐶) ≠ 0. 

ii) an infinite solution if and only if  ℎ(𝐴) = ℎ(𝐶) = 0. 
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iii) no solution if and only if  ℎ(𝐴) = 0 and  ℎ(𝐶) ≠ 0. 

Theorem 2.7 [26]. The rhotrix semigroup  (𝑅𝑛(Ϝ),∘)  is embedded in the matrix semigroup 

(ℳ𝑛(Ϝ), . ) 

Remark 2.8 [26]. Given the map  𝜃 ∶  𝑅𝑛(Ϝ) → ℳ𝑛(Ϝ),  the image set  〈𝑅𝑛(Ϝ)〉𝜃   is a 

subsemigroup of  ℳ𝑛(Ϝ)  consisting of all filled coupled  𝑛 × 𝑛   matrices. Since ℳ𝑛(Ϝ), the 

semigroup of all square matrices over Ϝ is regular, then it is not difficult to see that  〈𝑅𝑛(Ϝ)〉𝜃  is 

a regular semigroup. Such a semigroup is denoted by  𝑅𝑛
∗ (Ϝ). 

Using the Green’s relations  ℒ, ℛ, ℋ, 𝒟 and 𝒥 defined in [14], the following results was obtained 

Theorem 2.9 [26]. Suppose  𝐴, 𝐵 𝜖 𝑅𝑛
∗ (Ϝ), then 

i)  𝐴 ℒ 𝐵 if and only if   𝑖𝑚 (𝐴) = 𝑖𝑚 (𝐵). 

ii) 𝐴 ℛ 𝐵 if and only if  ker(𝐴) = ker(𝐵). 

iii) 𝐴 ℋ 𝐵 if and only if  𝑖𝑚 (𝐴) = 𝑖𝑚 (𝐵) and  ker(𝐴) = ker(𝐵). 

Theorem 2.10 [26].  i) Suppose  𝐴 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 and 𝐵 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 belong to the semigroup  𝑅𝑛
∗ (Ϝ) 

then  𝐴 𝒟 𝐵 if and only if  rank (𝑎𝑖𝑗) = rank (𝑏𝑖𝑗) and rank (𝑐𝑙𝑘) = rank (𝑑𝑙𝑘). 

ii) In  𝑅𝑛
∗ (Ϝ),  𝒟 =  𝒥. 

The following Lemma is due to [11]. 

Lemma 2.11 [11].  Let 𝑆 be a semigroup and 𝑒 be an idempotent in 𝑆. Then the following are 

equivalent in 𝑆 

i)  𝑎 ℛ∗𝑒 

ii)  𝑒𝑎 = 𝑎  and for all  𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 = 𝑦𝑎 ⇒ 𝑥𝑒 = 𝑦𝑒. 

Definition 2.12. Let  𝑆 be a semigroup and let  𝑥 𝜖 𝑆. Then  𝑥 is said to be coregular and  𝑦 its 

coninverse if  𝑥 = 𝑥𝑦𝑥 = 𝑦𝑥𝑦.  𝑆 is coregular if all its elements are coregular.  𝑆 is said to be 

orthodox if it is regular and the set  𝐸(𝑆) of idempotents forms a subsemigroup. 

Lemma 2.13 [10].  Suppose  𝑎, 𝑏 are elements of an adequate semigroup 𝑆. Then we have: 

i)  𝑎 ℛ∗𝑏  if and only if  𝑎† = 𝑏† and  𝑎 ℒ∗𝑏  if and only if  𝑎∗ = 𝑏∗. 

ii) (𝑎𝑏)∗ = (𝑎∗𝑏)∗ and  (𝑎𝑏)† = (𝑎𝑏†)†. 

iii)  𝑎†(𝑎𝑏)† = (𝑎𝑏)† and  (𝑎𝑏)∗𝑏∗ = (𝑎𝑏)∗. 

Definition 2.14 [7]. Let  𝑆 be an adequate semigroup and let  𝜌 be a congruence on  𝑆. Then  𝜌 is 

said to be admissible if  𝑎𝑥 𝜌 𝑎𝑦 = 𝑎∗𝑥 𝜌 𝑎∗𝑦   and  𝑥𝑎 𝜌 𝑦𝑎 ⟹ 𝑥𝑎† 𝜌 𝑦𝑎†  for all  𝑎 𝜖 𝑆  and 

 𝑥, 𝑦 𝜖 𝑆1. 
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Lemma 2.15 [8].  If  𝜌 is an admissible congruence on the adequate semigroup  𝑆 and if   𝑎, 𝑏 are 

elements of  𝑆 such that  𝑎 𝜌 𝑏, then  𝑎∗ 𝜌 𝑏∗ and  𝑎† 𝜌 𝑏† .  

Remark 2.16 [8].  If  𝜌 is an admissible congruence on a type 𝐴 semigroup 𝑆, then  𝑆/𝜌 is a type 

𝐴 semigroup when * and † are defined on  𝑆/𝜌 by putting 

                              (𝑎𝜌)† = 𝑎†𝜌  and  (𝑎𝜌)∗ = 𝑎∗𝜌 . 

For more knowledge on admissible congruences, the reader is referred to [13] and [27]. 

Definition 2.17.  A homomorphism  𝜃 ∶ 𝑆 → 𝑇   of an adequate semigroup is admissible if  

𝑎 ℛ∗(𝑆)𝑏  implies  𝑎𝜃 ℛ∗(𝑇) 𝑏𝜃  and  𝑎 ℒ∗(𝑆) 𝑏  implies  𝑎𝜃 ℒ∗(𝑇) 𝑏𝜃 . 

Definition 2.18.  The relation 𝜎 on a type  𝐴 semigroup 𝑆 is defined by the rule that: 

                       (𝑎, 𝑏) 𝜖 𝜎 if and only if  𝑎𝑒 = 𝑏𝑒 for some 𝑒 𝜖 𝐸(𝑆). 

It is known in [18] that  𝜎 is the minimum cancellative congruence on  𝑆. It is important to note 

that  𝜎 can also be written as  𝑎 𝜎 𝑏 if and only if   𝑓𝑎 = 𝑓𝑏 for some 𝑓 𝜖 𝐸(𝑆). 

 

3.   RHOTRIX TYPE A SEMIGROUP 

This section focuses on the construction of a rhotrix type 𝐴  semigroup and the properties 

embedded in the semigroup constructed. 

Now let 𝑅𝑛(Ϝ) be a set of all rhotrices of size  𝑛 with entries from an arbitrary field  Ϝ. For any 

 𝐴𝑛, 𝐵𝑛  𝜖 𝑅𝑛(Ϝ), define a binary operation  ∘ on  𝑅𝑛(Ϝ) by the rule: 

    𝐴𝑛  ∘  𝐵𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 = 〈∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)𝑡
𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1
𝑑𝑙2𝑘2

)𝑡−1
𝑙2𝑘1=1 〉 , 𝑡 =

𝑛+1

2
 , 

where 𝐴𝑛 and 𝐵𝑛 denote  𝑛-dimensional rhotrices. 

Theorem 3.1.  𝑆 = (𝑅𝑛(Ϝ), ∘ ) is a semigroup. 

Proof.  Let  𝐴𝑛, 𝐵𝑛  𝜖 𝑆, we have that det(𝐴𝑛) ≠ 0 and  det(𝐵𝑛) ≠ 0, so that  𝐴𝑛  ∘  𝐵𝑛 𝜖 𝑆, since 

det(𝐴𝑛 ∘ 𝐵𝑛) = det  (𝐴𝑛) × det  (𝐵𝑛) ≠ 0. It follows that  𝑆 is closed under the binary operation. 

Next is to show that  𝑆  is associative. Suppose  𝐴𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉,  𝐵𝑛 = 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉, 𝐶𝑛 =

〈𝑢𝑖3𝑗3
, 𝑣𝑙3𝑘3

〉, then we have that 

      𝐴𝑛 ∘ (𝐵𝑛 ∘ 𝐶𝑛) = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉  ∘ (〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 ∘ 〈𝑢𝑖3𝑗3
, 𝑣𝑙3𝑘3

〉)   

                              = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉  ∘ (〈∑ (𝑏𝑖2𝑗2
𝑢𝑖3𝑗3

)𝑡
𝑖3𝑗2=1

, ∑ (𝑑𝑙2𝑘2
𝑣𝑙3𝑘3

)𝑡−1
𝑙3𝑘2=1 〉) 

                              = 〈∑ 𝑎𝑖1𝑗1

𝑡
𝑖2𝑗1=1 [∑ (𝑏𝑖2𝑗2

𝑢𝑖3𝑗3
)𝑡

𝑖3𝑗2=1 ], ∑ 𝑐𝑙1𝑘1
[∑ (𝑑𝑙2𝑘2

𝑣𝑙3𝑘3
)𝑡−1

𝑙3𝑘2=1 ]𝑡−1
𝑙2𝑘1=1  〉 

                               = 〈∑ ∑ 𝑎𝑖1𝑗1
(𝑏𝑖2𝑗2

𝑢𝑖3𝑗3
), ∑ ∑ 𝑐𝑙1𝑘1

(𝑑𝑙2𝑘2
𝑣𝑙3𝑘3

)𝑡−1
𝑙3𝑘2=1

𝑡−1
𝑙2𝑘1=1  𝑡

𝑖3𝑗2=1
𝑡
𝑖2𝑗1=1 〉 
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         = 〈∑ ∑ 𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

𝑢𝑖3𝑗3
 , ∑ ∑ 𝑐𝑙1𝑘1

𝑡−1
𝑙3𝑘2=1

𝑡−1
𝑙2𝑘1=1 𝑑𝑙2𝑘2

𝑣𝑙3𝑘3
 𝑡

𝑖3𝑗2=1
𝑡
𝑖2𝑗1=1 〉. 

Similarly, we have that 

          (𝐴𝑛 ∘ 𝐵𝑛) ∘ 𝐶𝑛 = (〈𝑎𝑖1𝑗1
, 𝑐𝑙1𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉) ∘ 〈𝑢𝑖3𝑗3
, 𝑣𝑙3𝑘3

〉 

                                   = (〈∑ 𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

, ∑ 𝑐𝑙1𝑘1

𝑡−1
𝑙2𝑘1=1 𝑑𝑙2𝑘2

 𝑡
𝑖2𝑗1=1 〉) ∘ 〈𝑢𝑖3𝑗3

, 𝑣𝑙3𝑘3
〉 

                                   = 〈∑ 𝑢𝑖3𝑗3
[∑ 𝑎𝑖1𝑗1

𝑏𝑖2𝑗2

𝑡
𝑖2𝑗1=1 ]𝑡

𝑖3𝑗2=1 , ∑ 𝑣𝑙3𝑘3
[∑ 𝑐𝑙1𝑘1

𝑡−1
𝑙2𝑘1=1 𝑑𝑙2𝑘2

]𝑡−1
𝑙3𝑘2=1 〉 

                                   = 〈∑ ∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)𝑢𝑖3𝑗3
,   ∑ ∑ (𝑐𝑙1𝑘1𝑑𝑙2𝑘2

) 𝑣𝑙3𝑘3

𝑡−1
𝑙2𝑘1=1

𝑡−1
𝑙3𝑘2=1

𝑡
𝑖2𝑗1=1

𝑡
𝑖3𝑗2=1 〉 

                                   = 〈∑ ∑ 𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

𝑢𝑖3𝑗3
, ∑ ∑ 𝑐𝑙1𝑘1𝑑𝑙2𝑘2

𝑡−1
𝑙2𝑘1=1

𝑡−1
𝑙3𝑘2=1 𝑣𝑙3𝑘3

 𝑡
𝑖2𝑗1=1

𝑡
𝑖3𝑗2=1 〉. 

Consequently, 

              𝐴𝑛 ∘ (𝐵𝑛 ∘ 𝐶𝑛) = (𝐴𝑛 ∘ 𝐵𝑛) ∘ 𝐶𝑛 . 

Therefore  𝑆 is a semigroup. 

Lemma 3.2.  Let  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆 = (𝑅𝑛(Ϝ), ∘ ). Then we have 

i)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℛ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 if and only if  𝑎𝑖𝑗 ℛ∗ 𝑏𝑖𝑗 and  𝑐𝑙𝑘 ℛ∗ 𝑑𝑙𝑘 . 

ii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℒ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 if and only if  𝑎𝑖𝑗 ℒ∗ 𝑏𝑖𝑗 and  𝑐𝑙𝑘 ℒ∗ 𝑑𝑙𝑘 . 

iii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℋ∗ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 if and only if  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℛ∗ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 and  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℒ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. 

Proof.  i) Suppose 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℛ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉, then for  〈𝑥𝑖𝑗 , 𝑥𝑙𝑘〉, 〈𝑦𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝑆 we have  

       〈𝑥𝑖𝑗 , 𝑥𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 = 〈𝑦𝑖𝑗, 𝑦𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ⟺ 〈𝑥𝑖𝑗, 𝑥𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑦𝑖𝑗, 𝑦𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

    ⟹ 〈𝑥𝑖𝑗𝑎𝑖𝑗, 𝑥𝑙𝑘𝑐𝑙𝑘〉 = 〈𝑦𝑖𝑗𝑎𝑖𝑗, 𝑦𝑙𝑘𝑐𝑙𝑘〉 ⟺ 〈𝑥𝑖𝑗𝑏𝑖𝑗, 𝑥𝑙𝑘𝑑𝑙𝑘〉 = 〈𝑦𝑖𝑗𝑏𝑖𝑗, 𝑦𝑙𝑘𝑑𝑙𝑘〉. 

Consequently, we have 

𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑦𝑖𝑗𝑎𝑖𝑗 ,   𝑥𝑙𝑘𝑐𝑙𝑘 = 𝑦𝑙𝑘𝑐𝑙𝑘 ⟺ 𝑥𝑖𝑗𝑏𝑖𝑗 = 𝑦𝑖𝑗𝑏𝑖𝑗 , 𝑥𝑙𝑘𝑑𝑙𝑘 = 𝑦𝑙𝑘𝑑𝑙𝑘 . 

This implies that  𝑎𝑖𝑗 ℛ∗ 𝑏𝑖𝑗 and  𝑐𝑙𝑘 ℛ∗ 𝑑𝑙𝑘 .  

Conversely, let 𝑎𝑖𝑗 ℛ∗ 𝑏𝑖𝑗 and  𝑐𝑙𝑘 ℛ∗ 𝑑𝑙𝑘 , then there exists arbitrary elements 𝑥𝑖𝑗 ,  𝑦𝑖𝑗  𝜖 ℳ𝑡(Ϝ) 

and  𝑥𝑙𝑘 ,  𝑦𝑙𝑘 𝜖 ℳ𝑡−1(Ϝ) such that  𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑦𝑖𝑗𝑎𝑖𝑗 ⟺ 𝑥𝑖𝑗𝑏𝑖𝑗 = 𝑦𝑖𝑗𝑏𝑖𝑗   and  𝑥𝑙𝑘𝑐𝑙𝑘 = 𝑦𝑙𝑘𝑐𝑙𝑘 ⟺

𝑥𝑙𝑘𝑑𝑙𝑘 = 𝑦𝑙𝑘𝑑𝑙𝑘 . 

It follows that  

               〈𝑥𝑖𝑗 , 𝑥𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 = 〈𝑦𝑖𝑗, 𝑦𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ⟺ 〈𝑥𝑖𝑗, 𝑥𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑦𝑖𝑗, 𝑦𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. 

Thus  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℛ∗ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉. 

ii) The proof is similar to i). 

iii) The proof is a routine check. 
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Lemma 3.3. Let  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 = (𝑅𝑛(Ϝ), ∘ ).  Then  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆)  if and only if  

𝑎𝑖𝑗 𝜖 𝐸(ℳ𝑡(Ϝ)) and 𝑐𝑙𝑘 𝜖 𝐸(ℳ𝑡−1(Ϝ)). 

Proof.  Let 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆), then we have that 

                       〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ∘ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 

                    ⟹ 〈𝑎𝑖𝑗𝑎𝑖𝑗, 𝑐𝑙𝑘𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉. 

Consequently, 

                   (𝑎𝑖𝑗)
2

= 𝑎𝑖𝑗         (where  𝑎𝑖𝑗 𝜖 ℳ𝑡(Ϝ) is a square matrix) 

                   (𝑐𝑙𝑘)2 = 𝑐𝑙𝑘         (where  𝑐𝑙𝑘 𝜖 ℳ𝑡−1(Ϝ) is a square matrix). 

Thus  𝑎𝑖𝑗 𝜖 𝐸(ℳ𝑡(Ϝ)) and 𝑐𝑙𝑘 𝜖 𝐸(ℳ𝑡−1(Ϝ)). 

The converse of the proof can be easily verified. 

Example 3.4. The following rhotrices are idempotents in 𝑅5(Ϝ); 

⟨

2    
−1       0         − 2

   1          0         3              0     − 4  
   −2         0              4     

 −3        

⟩ = 〈[
2 −2 −4

−1 3 4
1 −2 −3

] , [
0 0
0 0

]〉,   

⟨

2    
−1       3         − 2

   1            1        3         − 6     − 4  
      −2    − 2               4       

 −3        

⟩ = 〈[
2 −2 −4

−1 3 4
1 −2 −3

] , [
3 6
1 −2

]〉, 

      

⟨

2    
−1       4         − 2

   1            12      3         − 1     − 4  
      −2    − 3               4       

 −3        

⟩ = 〈[
2 −2 −4

−1 3 4
1 −2 −3

] , [
4 −1

12 −3
]〉. 

It is obvious that [
2 −2 −4

−1 3 4
1 −2 −3

]  𝜖 𝐸(ℳ𝑡(Ϝ)) while  

[
0 0
0 0

] , [
3 6
1 −2

] , [
4 −1

12 −3
]  𝜖 𝐸(ℳ𝑡−1(Ϝ)). 

Theorem 3.5.  𝑆 = (𝑅𝑛(Ϝ), ∘ ) is a type 𝐴  semigroup. 

Proof. We only prove that  𝑆 is a left type 𝐴 as the proof for right type 𝐴 is dual. Now let  𝑎 =

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑅𝑛(Ϝ), 𝑒 = 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆), then we have that 

                            𝑎𝑒 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉. 
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Suppose   (𝑎𝑒)† = 〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉, then we have that 

                 (𝑎𝑒)†𝑎 = 〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉. 

Thus  𝑎𝑒 = (𝑎𝑒)†𝑎. 

That  𝑆 is adequate follows from the fact that 

              〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉 

                                          = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉       (where  𝑎𝑖𝑗  𝜖 𝐸(ℳ𝑡(Ϝ)) and  𝑐𝑙𝑘 𝜖 𝐸(ℳ𝑡−1(Ϝ)).  

Remark 3.6.  It is important to note that  〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉 is the idempotent in the ℛ∗-class as well as the 

ℒ∗-class. For the sake of ambiguity, we will use 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† = 〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉 and  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ = 〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉 

to denote the respective idempotents. 

It has been shown in [26] that  𝑆 is a regular semigroup and in [27] that a particular kind of type 

 𝐴 semigroup is coregular namely *-bisimple type 𝐴 𝐼-semigroup. In our next Lemma, we show 

that 𝑆 belong to the class of type 𝐴 semigroup that is not coregular. 

Lemma 3.7.  𝑆 = (𝑅𝑛(Ϝ), ∘) is not a coregular  semigroup. 

Proof. Now let  𝐴 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 𝐵 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑅𝑛(Ϝ). It is known in [26] that 

                        𝐴 ∘ 𝐵 ∘ 𝐴 = (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ∘ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉) ∘ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 

                                        = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 𝐴. 

Since  (𝑏𝑖𝑗), (𝑎𝑖𝑗) 𝜖 (ℳ𝑡(Ϝ)) and  (𝑐𝑙𝑘), (𝑑𝑙𝑘) 𝜖 (ℳ𝑡−1(Ϝ)), where 𝑡 =
𝑛+1

2
, 𝑛 𝜖 2ℤ+ + 1 and 

                             (𝑏𝑖𝑗)(𝑎𝑖𝑗)(𝑏𝑖𝑗) = (𝑏𝑖𝑗), 

                             (𝑑𝑙𝑘)(𝑐𝑙𝑘)(𝑑𝑙𝑘) = (𝑑𝑙𝑘). 

It follows that  

                      𝐵 ∘ 𝐴 ∘ 𝐵 = (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 ∘ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) ∘ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

                                        = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 𝐵. 

So  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≠ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. Thus  𝑆 is not coregular by definition. 

It is important to note that Lemma 3.7 above is an example of a class of type 𝐴 semigroup that is 

not coregular while the class of type 𝐴 semigroup given in [27] is coregular. 

Lemma 3.8.  𝑆 = (𝑅𝑛(Ϝ), ∘) is an orthodox  semigroup. 

Proof. The proof is a routine check. 
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4.   THE STRUCTURE THEOREM 

In this section  𝑆 will denote a rhotrix type 𝐴 semigroup while ℳ𝑡(Ϝ) and ℳ𝑡−1(Ϝ) will denote 

set of two square matrices over an arbitrary field Ϝ  of sizes  (𝑡 × 𝑡)  and  (𝑡 − 1) × (𝑡 − 1) 

respectively. 

Let  𝑆1 = ⟨

𝑎11
𝑎21       𝑐11      𝑎12

−−−−−−−−−
𝑎𝑡1−−−−−−−−−−𝑎1𝑡

−−−−−−−−−−
𝑎𝑡(𝑡−1)  𝑤        𝑦
            𝑎𝑡𝑡            

⟩ , 𝑆2 = ⟨

𝑏11
𝑏21    𝑐11     𝑏12
−−−−−−−−−

𝑏𝑡1−−−−−−−−−−𝑏1𝑡
 −−−−−−−−−−
𝑏𝑡(𝑡−1)  𝑥      𝑧     

              𝑏𝑡𝑡            

⟩  𝜖 𝑆,   

where  𝑤 = 𝑐(𝑡−1)(𝑡−1),  𝑦 = 𝑎(𝑡−1)𝑡 , 𝑥 = 𝑑(𝑡−1)(𝑡−1) , 𝑧 = 𝑏(𝑡−1)𝑡 . 

Put  𝑆1𝑆1 = ⟨

𝑠11 
𝑠21    𝑠11

∗      𝑠12
−−−−−−−−−

𝑠𝑡1−−−−−−−−−−𝑠1𝑡
−−−−−−−−−

𝑠𝑡(𝑡−1)  𝑢      𝑣     
              𝑠𝑡𝑡            

⟩ 

where   𝑢 = 𝑠(𝑡−1)(𝑡−1)
∗   , 𝑣 = 𝑠(𝑡−1)𝑡 ,  

 
 𝑠𝑖𝑗

= ∑ 𝑎𝑖𝑘𝑏2𝑘−1𝑗
𝑡
𝑘=1  , 𝑠𝑖𝑗

∗ = ∑ 𝑐𝑖𝑘𝑑2𝑘−1𝑗
𝑡
𝑘=1   –  those entries for which  𝑖 assumes odd values, 

 
 𝑠𝑖𝑗

= ∑ 𝑎𝑖𝑘𝑏2𝑘𝑗
𝑡−1
𝑘=1  , 𝑠𝑖𝑗

∗ = ∑ 𝑐𝑖𝑘𝑑2𝑘𝑗
𝑡−1
𝑘=1   –  those entries for which  𝑖 assumes even values. 

Theorem 4.1.  Let  𝑅𝑛(Ϝ) be a set of all rhotrices of size  𝑛 with entries from an arbitrary field  Ϝ. 

For 𝐴𝑛, 𝐵𝑛 𝜖 𝑅𝑛(Ϝ), define a binary operation  ∘ on  𝑅𝑛(Ϝ) by the rule: 

𝐴𝑛  ∘  𝐵𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 = 〈 ∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)

𝑡

𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1
𝑑𝑙2𝑘2

)

𝑡−1

𝑙2𝑘1=1

〉 , 𝑡 =
𝑛 + 1

2
 

𝑎𝑖𝑗 𝜖 ℳ𝑡(Ϝ) and 𝑐𝑙𝑘 𝜖  ℳ𝑡−1(Ϝ). Then 𝑆 = (𝑅𝑛(Ϝ), ∘) is a rhotrix type 𝐴 semigroup. Conversely, 

every rhotrix type 𝐴 semigroup is isomorphic to one of such construction. 

Proof.  We have proved the direct part in section 3, and so we will only prove the converse part. 

Let 𝑆 be a rhotrix type 𝐴 semigroup. Define a map  𝜃 ∶ 𝑆 → 𝑅𝑛(Ϝ) by the rule that 

 𝑠𝜃 = ⟨

𝑎11
𝑎21       𝑐11      𝑎12

− − − − − − − − −
𝑎𝑡1

− − − − − − − − − −𝑎1𝑡
− − − − − − − − − −

𝑎𝑡(𝑡−1)  𝑤        𝑦
            𝑎𝑡𝑡            

⟩ 𝜃 = 〈[

𝑎11 𝑎12 ⋯ 𝑎1𝑡

⋮ ⋱ ⋮
𝑎𝑡1  𝑎𝑡2 ⋯ 𝑎𝑡𝑡

] , [

𝑐11 ⋯ 𝑐1(𝑡−1)

⋮ ⋱ ⋮
𝑐(𝑡−1) ⋯ 𝑐(𝑡−1)(𝑡−1)

]〉 

where  𝑡 =
𝑛+1

2
, 𝑛 𝜖 2ℤ+ + 1, 𝑎𝑡𝑡 𝜖 ℳ𝑡(Ϝ) and 𝑐(𝑡−1)(𝑡−1) 𝜖  ℳ𝑡−1(Ϝ)  and 𝜃 maps each element 

of  𝑆 to its corresponding  𝑡 × 𝑡 matrix and (𝑡 − 1)(𝑡 − 1) matrix in 𝑅𝑛(Ϝ) with the usual matrix 
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multiplication. Obviously, 𝜃 is well defined. It is also one-to-one since for 𝑠1, 𝑠2 𝜖 𝑆, 𝑠1𝜃 = 𝑠2𝜃 

which implies that 𝑠1 = 𝑠2. That  𝜃 is a homomorphism follows from the fact that  

                                (𝑠1𝑠2)𝜃 = 𝑠1𝜃𝑠2𝜃. 

Hence 𝜃 is an isomorphism from 𝑆 onto 𝑅𝑛(Ϝ). The proof of the theorem is then complete. 

Example 4.2.  Suppose 𝑆 = {𝑠1, 𝑠2} such that  𝑠1 = ⟨
     1    

  2         0          1
   3          1         0       −1        4  

     −2         5          1     
          3        

⟩  and 

 𝑠2 = ⟨
     2   

 −1          4         −2
   1        12         3         −1   −4  

     −2        −3            4     
        −3        

⟩. Then for  𝜃 ∶ 𝑆 → 𝑅5(Ϝ), we have that  

 𝑠1 𝑠2 = ⟨
     1    

  2         0          1
   3          1         0       −1        4  

     −2         5          1     
          3        

⟩ ⟨
     2   

 −1          4         −2
   1        12         3         −1   −4  

     −2        −3            4     
        −3        

⟩ = ⟨
     5   

    5      −12     −7
   11        64        −6         3   −12  

       −18       −16     −11     
           −29        

⟩  

⟹  (𝑠1𝑠2)𝜃 = 〈[
5 −7 −12
5 −6 −11

11 −18 −29
] , [

−12 3
64 −16

]〉. 

Also, 

       𝑠1𝜃𝑠2𝜃 = 〈[
1 1 4
2 0 1
3 −2 3

] , [
0 −1
1 5

]〉 〈[
2 −2 −4

−1 3 4
1 −2 −3

] , [
4 −1

12 −3
]〉 

                    = 〈[
1 1 4
2 0 1
3 −2 3

] [
2 −2 −4

−1 3 4
1 −2 −3

] , [
0 −1
1 5

] [
4 −1

12 −3
]〉 

                   = 〈[
5 −7 −12
5 −6 −11

11 −18 −29
] , [

−12 3
64 −16

]〉. 

Consequently,  (𝑠1𝑠2)𝜃 = 𝑠1𝜃𝑠2𝜃. 

 

5.   CONGRUENCES 

In this section, we give a description of congruences on rhotrix type  𝐴 semigroup  𝑆. The results 

and proofs are essentially the same as for the one in [8]. 

Now let 𝑆 be a rhotrix type  𝐴 semigroup and let  𝜌 be any congruence on 𝑆. Let  𝜌∕𝐸(𝑆)
 be the 

restriction of  𝜌 on 𝐸(𝑆)  which we will denote by  𝑡𝑟 𝜌  (trace of 𝜌).  Obviously, 𝑡𝑟 𝜌  is a 

congruence on  𝐸(𝑆). 
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 Suppose 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉, 〈𝑎𝑖𝑗 , 0𝑙𝑘〉 𝜖 𝐸(𝑆) such that  〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜌 〈𝑎𝑖𝑗, 0𝑙𝑘〉 and 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆, then we have 

that 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌 〈𝑎𝑖𝑗, 0𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉   and 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝜌 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 0𝑙𝑘〉 . It follows 

from Lemma 2.15 and that if  𝜌 is admissible, then we have that 

     (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉)
†

𝜌 (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 0𝑙𝑘〉)
†

 and  (〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
 𝜌 (〈𝑎𝑖𝑗, 0𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)

∗
. 

A congruence 𝛾  on  𝐸(𝑆)  is said to be normal if for any 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑎𝑖𝑗 , 0𝑙𝑘〉 𝜖 𝐸(𝑆)  and  

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆, 

〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝛾 〈𝑎𝑖𝑗, 0𝑙𝑘〉 implies  (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

 𝛾 (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 0𝑙𝑘〉)
†
 and  

(〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
 𝛾  (〈𝑎𝑖𝑗, 0𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)

∗
.  

Lemma 5.1.  Suppose  𝛾 is a normal congruence on 𝐸(𝑆), then for any 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆, the 

following conditions are equivalent: 

(i) 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ 𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗, 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉  for 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆), 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝛾 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗. 

(ii) 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† 𝛾  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†,   〈𝑎𝑖𝑗 , 0𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 0𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉  for  

〈𝑎𝑖𝑗, 0𝑙𝑘〉 𝜖 𝐸(𝑆), 〈𝑎𝑖𝑗, 0𝑙𝑘〉 𝛾 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†. 

Proof.  Let 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 𝜖 𝑆 and suppose (i) is true, then 𝑆 is type  𝐴 and we have that 

                     〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 

                  ⇒ (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 = (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉)
†

〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

and              (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

= (〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

. 

Consequently,  

                    〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝛾 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗  

         ⟹ (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

𝛾 (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗)
†
 or  (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)

†
𝛾 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†  

and             〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝛾 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉∗  

         ⟹ (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

𝛾 (〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗)
†
 or  (〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)

†
𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†. 

Since   (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

= (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)
†

, then we have that  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉† 𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 and 

(ii) holds.  

That (ii) implies (i) follows similarly. 

Theorem 5.2.  Let  𝑆 be a rhotrix type 𝐴 semigroup and let 𝛾 be a normal congruence on 𝐸(𝑆), 

then the relation defined by the rule that  
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𝜎𝛾 = {(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉) 𝜖 𝑆 × 𝑆 ∶  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉

= 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉  for some 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 ϵ 𝐸(𝑆), 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 γ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ } 

is the minimum congruence on 𝑆 whose restriction to 𝐸(𝑆) is 𝛾. Furthermore, 𝜎𝛾 is an admissible 

congruence. 

Proof. It can be easily shown that 𝜎𝛾 is an equivalence relation. To show that 𝜎𝛾 is a congruence, 

suppose 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 𝜎𝛾〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  and let 〈𝑔𝑖𝑗, ℎ𝑙𝑘〉 𝜖 𝑆.  Then we have that 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 𝜎𝛾  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗, 

                   〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉  

for  〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 ϵ 𝐸(𝑆), 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 γ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗, 〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑔𝑖𝑗 , ℎ𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉. 

So      (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 = (〈𝑔𝑖𝑗 , ℎ𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)

∗
〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉, 

         (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝛾 (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)

∗
〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗, 

         (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ = (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)

∗
, 

         (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉  𝛾 (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)

∗
〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗, 

         (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ = (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)

∗
. 

Consequently, 

                (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
𝛾 (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)

∗
  and 

               (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)(〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 

              = (〈𝑔𝑖𝑗 , ℎ𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)(〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 

              = (〈𝑔𝑖𝑗 , ℎ𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)(〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉,  

where  (〈𝑔𝑖𝑗 , ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)
∗
〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝛾 (〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)

∗
. 

Hence 〈𝑔𝑖𝑗 , ℎ𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 𝜎𝛾 〈𝑔𝑖𝑗, ℎ𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 and so  𝜎𝛾 is a left congruence. That  𝜎𝛾 is a right 

congruence follows similarly. Thus  𝜎𝛾 is a congruence on  𝑆. 

It is now clear that  〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝛾 〈𝑎𝑖𝑗, 0𝑙𝑘〉 if and only if  〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜎𝛾 〈𝑎𝑖𝑗, 0𝑙𝑘〉 and   𝑡𝑟 𝜎𝛾 = 𝛾. 

Let  𝜋 be a congruence 𝑆 such that 𝑡𝑟 𝜋 = 𝛾 and 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜎𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 for 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆, 

then we have that 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ 𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗  and  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉  for  

〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆), 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝛾 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ and so  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 𝜋 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜋 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉. 

Consequently, 

                    〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜋 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 𝜋 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉𝜋 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ 𝜋 

                                      = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜋 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜋 
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                                      =  (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉) 𝜋 = (〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉)𝜋 

                                      = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜋 〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜋 = 〈𝑏𝑖𝑗 , 𝑐𝑙𝑘〉𝜋 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜋  

                                      = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜋 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉𝜋 . 

Thus 𝜎𝛾 ⊆ 𝜋 and so  𝜎𝛾 is the minimum congruence on 𝑆 whose restriction to 𝐸(𝑆) is 𝛾. 

Lastly, we prove that 𝜎𝛾  is admissible. Since 𝜎𝛾  is a congruence, let 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 and 〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉,  

〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜖 𝑆  such that left congruence condition holds, i.e. 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜎𝛾〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 . 

Then we have that 

                 (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
∗
 𝛾 (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉)

∗
 and   

                  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 

for some 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆), 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 𝛾 (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
∗
. 

That is,  (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
∗
 𝛾 (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉)

∗
 and    

              〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑝𝑖𝑗 , 𝑞𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉,

〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝛾 (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
∗
. 

Hence  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜎𝛾 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉. 

Similarly, using the right congruence condition, that is 〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉  𝜎𝛾 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 

we have that  〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† 𝜎𝛾 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†. Therefore 𝜎𝛾 is an admissible congruence. 

Remark 5.3.  It is important to note that the relation 𝜎𝛾 can also be defined as follows: 

𝜎𝛾 = {(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉) 𝜖 𝑆 × 𝑆 ∶ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† 𝛾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†, 〈𝑎𝑖𝑗, 0𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉

= 〈𝑎𝑖𝑗, 0𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  for some 〈𝑎𝑖𝑗, 0𝑙𝑘〉 ϵ 𝐸(𝑆), 〈𝑎𝑖𝑗, 0𝑙𝑘〉 γ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† }. 
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