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Abstract. In this paper, we introduce the concepts of m-left-Γ-ideals, n-right-Γ-ideals and (m,n)-quasi-Γ-ideals in

ordered LA-Γ-semigroups and investigate about some properties of those ideals. We show that the intersection of

an m-left-Γ-ideal and an n-right-Γ-ideal of an ordered LA-Γ-semigroup is an (m,n)-quasi-Γ-ideal. In addition, we

introduce the notion of the (m,n) intersection property in ordered LA-Γ-semigroups and prove that every (m,n)-

quasi-Γ-ideal in an ordered LA-Γ-semigroup with left identity has the (m,n) intersection property.
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1. INTRODUCTION

The notion of quasi-ideals in semigroups is a generalization of the notion of one-sided-ideals

in semigroups. It was introduced by Steinfeld [12] in 1956. The notion of (m,n)-quasi-ideals in
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semigroups was introduced by Ansari, Khan and Kaushik [3]. In 1972, Kazim and Naseerudin

[6] gave the concept of an LA-semigroup (left almost semigroup). This algebraic structure

is a generalization of commutative semigroups. An LA-semigroup is also widely known as

an Abel-Grassmann’s groupoid or AG-groupoid [7, 10]. Later, an ordered LA-semigroups or

ordered AG-groupoids were considered in [11]. The notion of Γ-semigroups was introduced by

Sen [9] in 1981. The concept of an LA-Γ-semigroup (Γ-AG-groupoid) was introduced by Shah

and Rehman [10] in 2010. Every LA-semigroup under the operation {◦} is an LA-Γ-semigroup

if consider in case Γ = {◦}. Moreover, Khan, Amjid, Zaman and Yaqoob [7] gave the concept

of ordered LA-Γ-semigroups (ordered Γ-AG-groupoid) in 2014. This algebraic structure is a

generalization of LA-Γ-semigroups [2, 4]. Then the structure of ordered LA-Γ-semigroups is

also a generalization of commutative semigroups and LA-semigroups.

In this study, we introduce and examine the concept of m-left-Γ-ideals, n-right-Γ-ideals and

(m,n)-quasi-Γ-ideals in ordered LA-Γ-semigroups. We characterize m-left-Γ-ideals and n-right-

Γ-ideals in ordered LA-Γ-semigroups and explore the properties of (m,n)-quasi -Γ-ideals in

ordered LA-Γ-semigroups. Moreover, the properties of (m,n)-quasi-Γ-ideals in regular ordered

LA-Γ-semigroups are investigated.

2. PRELIMINARIES

For the sake of completeness, we recall some necessary definitions, notations and properties

which are used throughout the paper.

Definition 2.1. [10] Let S and Γ be non-empty sets, then S is called an LA-Γ-semigroup if there

exists a mapping S×Γ× S→ S, written (a,γ,b) and denoted by aγb such that S satisfied the

left invertive law (aγb)βc = (cγb)βa for all a,b,c ∈ S and γ,β ∈ Γ.

Definition 2.2. [10] An element e of an LA-Γ-semigroup S is called a left identity if eγa = a for

all a ∈ S and γ ∈ Γ.

Lemma 2.1. [10] If S is an LA-Γ-semigroup with left identity e, then SΓS = S and S = eΓS =

SΓe.
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Definition 2.3. [1] An LA-Γ-semigroup S is called a locally associative LA-Γ-semigroup if

(aγa)βa = aγ(aβa) for all a ∈ S and γ,β ∈ Γ.

Proposition 2.2. [1] Let S be an LA-Γ-semigroup.

(i) Every LA-Γ-semigroup with left identity satisfy the equalities aγ(bβc) = bγ(aβc) and

(aγb)β (cαd) = (dγc)β (bαa) for all a,b,c,d ∈ S and γ,β ,α ∈ Γ.

(ii) An LA-Γ-semigroup S is Γ-medial, i.e., (aγb)β (cαd) = (aγc)β (bαd) for all a,b,c,d ∈ S

and γ,β ,α ∈ Γ.

Definition 2.4. [2] An ordered LA-Γ-semigroup (po-LA-Γ-semigroup) is a structure (S,Γ, ·,≤)

in which the following conditions hold.

(i) (S,Γ, ·) is an LA-Γ -semigroup.

(ii) (S,≤) is a poset ( i.e. reflexive, anti-symmetric and transitive).

(iii) For all a, b and x ∈ S, a≤ b implies aαx≤ bαx and xαa≤ xαb for all α ∈ Γ.

Throughout this paper, unless stated otherwise, S stands for an ordered LA-Γ-semigroup. For

a non-empty subsets A and B of an ordered LA-Γ-semigroup S, we defined

AΓB = {aγb|a ∈ A, b ∈ B and γ ∈ Γ}

and

(A] = {t ∈ S|t ≤ a, for some a ∈ A}.

For A = {a}, we shall write (a]. For a positive integer m, the power of A is defined

Am = (...((AΓA)ΓA) . . .)ΓA (m times).

For A = {a}, we shall write am.

Proposition 2.3. [8] Let S be a locally associative LA-Γ-semigroup with left identity. Then

a1 = a,an+1 = anΓa and am+n = amΓan for all a ∈ S and m,n are positive integers.

Definition 2.5. [2] A non-empty subset A of an ordered LA-Γ-semigroup S, is called an LA-Γ-

subsemigroup of S if AΓA⊆ A.

Definition 2.6. [2] A non-empty subset A of an ordered LA-Γ-semigroup S is called a left (right)

Γ-ideal of S if
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(i) SΓA⊆ A (AΓS⊆ A),

(ii) if a ∈ A and b ∈ S such that b≤ a, then b ∈ A.

A non-empty subset A of an ordered LA-Γ-semigroup S is called a Γ-ideal of S if it is both a

left and a right Γ-ideal of S.

Definition 2.7. [2] A non-empty subset A of an ordered LA-Γ-semigroup S is called a quasi-Γ-

ideal of S if

(i) AΓS∩SΓA⊆ A,

(ii) if a ∈ A and b ∈ S such that b≤ a, then b ∈ A.

Lemma 2.4. [7] Let S be an ordered LA-Γ-semigroup, then the following are true.

(i) A⊆ (A], for all A⊆ S.

(ii) If A⊆ B⊆ S, then (A]⊆ (B].

(iii) (A]Γ(B]⊆ (AΓB], for all subsets A,B of S.

(iv) (A] = ((A]], for all A⊆ S.

(v) For every left (resp. right) Γ-ideal T of S, (T ] = T.

(vi) ((A]Γ(B]] = (AΓB], for all subsets A,B of S.

(vii)(A∩B]⊆ (A]∩ (B], for all subsets A,B of S.

(viii)(A∪B] = (A]∪ (B], for all subsets A,B of S.

3. MAIN RESULTS

In this section, we define and study m-left-Γ-ideal, n-right-Γ-ideal and (m,n)-quasi-Γ-ideal

in ordered LA-Γ-semigroups.

Definition 3.1. An LA-Γ-subsemigroup A of an ordered LA-Γ-semigroup S is called an m-left

(n-right) Γ-ideal of S if

(i) SmΓA⊆ A (AΓSn ⊆ A), where m,n are positive integers,

(ii) if a ∈ A and b ∈ S such that b≤ a, then b ∈ A.

Definition 3.2. An LA-Γ-subsemigroup A of an ordered LA-Γ-semigroup S is called an (m,n)-

quasi-Γ-ideal of S if
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(i) (SmΓA]∩ (AΓSn]⊆ A, where m,n are positive integers,

(ii) if a ∈ A and b ∈ S such that b≤ a, then b ∈ A.

Example 3.1. Consider S = {1,2,3}, Γ = {α,β} and the order ≤.

α 1 2 3

1 1 1 1

2 1 1 1

3 1 1 2

β 1 2 3

1 2 2 2

2 2 2 2

3 2 2 3

≤ := {(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)}.

Hence S is an ordered LA-Γ-semigroup because the elements of S satisfies left invertive law.

Let A = {1,2}, we have S1ΓA = {1,2} = A and AΓS2 = {1,2} = A. Also, for every 1,2 ∈ A

there exists 1,2 ∈ S such that 1≤ 1, 1≤ 2, 2≤ 2 implies that 1,2 ∈ A or (A] = A. Thus A is an

1-left-Γ-ideal and A is an 2-right-Γ-ideal of S.

Let A = {1,2}, we have (S1ΓA]∩ (AΓS2] = {1,2} ∩ {1,2} = {1,2} = A. Also, (A] = A.

Hence A is an (1,2)-quasi-Γ-ideal of S.

Lemma 3.1. Let S be an ordered LA-Γ-semigroup and let Ti be an LA-Γ-subsemigroup of S for

all i ∈ I. If
⋂

i∈I Ti 6=∅, then
⋂

i∈I Ti is also an LA-Γ-subsemigroup of S.

Proof. Assume that
⋂

i∈I Ti 6= ∅. Let a,b ∈
⋂

i∈I Ti. Since Ti is an LA-Γ-subsemigroup of S for

all i ∈ I, we have aγb ∈ Ti for all i ∈ I and γ ∈ Γ. Thus aγb ∈
⋂

i∈I Ti. Hence
⋂

i∈I Ti is an

LA-Γ-subsemigroup of S. �

Theorem 3.2. Let S be an ordered LA-Γ-semigroup and let Qi be an (m,n)-quasi-Γ-ideal of S

for all i ∈ I. If
⋂

i∈I Qi 6=∅, then
⋂

i∈I Qi is also an (m,n)-quasi-Γ-ideal of S .

Proof. Assume that
⋂

i∈I Qi 6=∅. By Lemma 3.1, we obtain that
⋂

i∈I Qi is an LA-Γ-subsemigroup

of S. Thus (SmΓ
⋂

i∈I Qi]∩(
⋂

i∈I QiΓSn]⊆ (SmΓQi]∩(QiΓSn]⊆Qi for all i∈ I. Also, we get that

(SmΓ
⋂

i∈I Qi]∩ (
⋂

i∈I QiΓSn] ⊆
⋂

i∈I Qi. Next, let a ∈
⋂

i∈I Qi and b ∈ S such that b ≤ a. Since
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a ∈
⋂

i∈I Qi, we have a ∈ Qi where Qi is an (m,n)-quasi-Γ-ideal of S for all i ∈ I. Hence b ∈ Qi

for all i ∈ I. Therefore, b ∈
⋂

i∈I Qi. Hence
⋂

i∈I Qi is an (m,n)-quasi-Γ-ideal of S. The proof is

completed. �

Theorem 3.3. Let S be an ordered LA-Γ-semigroup with left identity and a ∈ S. Then the

following statements are true:

(i) (SmΓa] is an m-left-Γ-ideal of S.

(ii) (a2ΓSn] is an n-right-Γ-ideal of S.

(iii) (SmΓa]∩ (a2ΓSn] is an (m,n)-quasi-Γ-ideal of S.

Proof. (i) First, we show that (SmΓa] is an LA-Γ-subsemigroup of S. We obtain

(Sm
Γa]Γ(Sm

Γa] ⊆ ((Sm
Γa)Γ(Sm

Γa)]

⊆ ((Sm
ΓS)Γ(Sm

Γa)]

= ((aΓSm)Γ(SΓSm)] Proposition 2.2(i)

⊆ ((aΓSm)ΓSm]

= ((Sm
ΓSm)Γa] Left invertive law

⊆ (Sm
Γa].

Hence (SmΓa] is an LA-Γ-subsemigroup of S. Next, we show that (SmΓa] is an m-left-Γ-ideal

of S, i.e., SmΓ(SmΓa]⊆ (SmΓa]. Let x ∈ SmΓ(SmΓa]. Then x = yγz for some y ∈ Sm, z ∈ (SmΓa]

and γ ∈ Γ. Since z ∈ (SmΓa], we have z ≤ sβa for some s ∈ Sm and β ∈ Γ. Since SΓS = S, so

let y = bαc for some b,c ∈ S and α ∈ Γ. Then

x = yγz

≤ (bαc)γ(sβa)

= (aαs)γ(cβb) Proposition 2.2(i)

= ((cβb)αs)γa Left invertive law

∈ Sm
Γa.
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Thus x ∈ (SmΓa]. Next, let x ∈ (SmΓa] and z ∈ S such that z ≤ x. Since x ∈ (SmΓa], we have

x≤ yγa for some yγa∈ SmΓa. So z≤ yγa for some yγa∈ SmΓa. Thus z∈ (SmΓa]. Hence (SmΓa]

is an m-left-Γ-ideal of S.

(ii) First, we show that (a2ΓSn] is an LA-Γ-subsemigroup of S. Consider

(a2
ΓSn]Γ(a2

ΓSn] ⊆ ((a2
ΓSn)Γ(a2

ΓSn)]

⊆ ((SΓSn)Γ(a2
ΓSn)]

⊆ (Sn
Γ(a2

ΓSn)]

= (a2
Γ(Sn

ΓSn)] Proposition 2.2(i)

⊆ (a2
ΓSn].

Hence (a2ΓSn] is an LA-Γ-subsemigroup of S. Next, we show that (a2ΓSn] is an n-right-Γ-ideal

of S, i.e., (a2ΓSn]ΓSn⊆ (a2ΓSn]. Let x∈ (a2ΓSn]ΓSn. Then x = yγz for some y∈ (a2ΓSn], z∈ Sn

and γ ∈ Γ. Since y ∈ (a2ΓSn], we have y≤ (aβa)αb for some b ∈ Sn and α,β ∈ Γ. Then

x = yγz

≤ ((aβa)αb)γz

= (zαb)γ(aβa) Left invertive law

= (aαa)γ(bβ z) Proposition 2.3(i)

∈ (aΓa)Γ(Sn
ΓSn)

⊆ a2
ΓSn.

So x∈ (a2ΓSn]. Next, let x∈ (a2ΓSn] and z∈ S such that z≤ x. Since x∈ (a2ΓSn], then x≤ a2γy

for some a2γy ∈ a2ΓSn. So z≤ a2γy for some a2γy ∈ a2ΓSn. Thus z ∈ (a2ΓSn]. Hence (a2ΓSn]

is an n-right-Γ-ideal of S.

(iii) Consider

((Sm
Γa]∩ (a2

ΓSn])Γ((Sm
Γa]∩ (a2

ΓSn]) ⊆ (Sm
Γa]Γ((Sm

Γa]∩ (a2
ΓSn])

= (Sm
Γa]Γ(Sm

Γa]∩ (Sm
Γa]Γ(a2

ΓSn]

⊆ (Sm
Γa]∩ (Sm

Γa]Γ(a2
ΓSn]⊆ (Sm

Γa].
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Then, we have that ((SmΓa]∩ (a2ΓSn])Γ((SmΓa]∩ (a2ΓSn])⊆ (SmΓa]. Next, consider

((Sm
Γa]∩ (a2

ΓSn])Γ((Sm
Γa]∩ (a2

ΓSn]) ⊆ (a2
ΓSn]Γ((Sm

Γa]∩ (a2
ΓSn])

= (a2
ΓSn]Γ(Sm

Γa]∩ (a2
ΓSn]Γ(a2

ΓSn]

⊆ (a2
ΓSn]Γ(Sm

Γa]∩ (a2
ΓSn]⊆ (a2

ΓSn]

Thus, we get that ((SmΓa] ∩ (a2ΓSn])Γ((SmΓa] ∩ (a2ΓSn]) ⊆ (a2ΓSn]. Now, we obtain that

((SmΓa]∩ (a2ΓSn])Γ((SmΓa]∩ (a2ΓSn])⊆ (SmΓa]∩ (a2ΓSn]. Hence (SmΓa]∩ (a2ΓSn] is an LA-

Γ-subsemigroup of S. Next, we show that (SmΓa]∩ (a2ΓSn] is an (m,n)-quasi-Γ-ideal of S.

Consider

(SmΓ((SmΓa]∩ (a2ΓSn])]∩ (((SmΓa]∩ (a2ΓSn])ΓSn]

= (Sm
Γ(Sm

Γa]∩Sm
Γ(a2

ΓSn]]∩ ((Sm
Γa]ΓSn∩ (a2

ΓSn]ΓSn]

⊆ ((Sm
Γa]∩Sm

Γ(a2
ΓSn]]∩ ((Sm

Γa]ΓSn∩ (a2
ΓSn]]

⊆ ((Sm
Γa]]∩ ((a2

ΓSn]] = (Sm
Γa]∩ (a2

ΓSn].

So, we have that (SmΓ((SmΓa]∩(a2ΓSn])]∩(((SmΓa]∩(a2ΓSn])ΓSn]⊆ (SmΓa]∩(a2ΓSn]. Next,

let x ∈ (SmΓa]∩ (a2ΓSn] and y ∈ S such that y ≤ x. Since x ∈ (SmΓa]∩ (a2ΓSn], we have x ∈

(SmΓa] and x ∈ (a2ΓSn]. Then x ≤ bγa for some bγa ∈ SmΓa and x ≤ a2βc for some a2βc ∈

a2ΓSn. So y ≤ x ≤ bγa for some bγa ∈ SmΓa and y ≤ x ≤ a2βc for some a2βc ∈ a2ΓSn. Thus

y ∈ (SmΓa] and y ∈ (a2ΓSn]. Therefore, y ∈ (SmΓa]∩ (a2ΓSn]. Hence (SmΓa]∩ (a2ΓSn] is an

(m,n)-quasi-Γ-ideal. This completes the poof. �

Theorem 3.4. Let S be an ordered LA-Γ-semigroup. Then the following statements are true:

(i) Let Li be an m-left-Γ-ideal of S for all i∈ I. If
⋂

i∈I Li 6=∅, then
⋂

i∈I Li is an m-left Γ-ideal

of S.

(ii) Let Ri be an n-right Γ-ideal of S for all i ∈ I. If
⋂

i∈I Ri 6= ∅, then
⋂

i∈I Ri is an n-right

Γ-ideal of S.

Proof. (i) Let Li be an m-left-Γ-ideal of S for all i ∈ I. We obtain that SmΓLi ⊆ Li. Assume

that
⋂

i∈I Li 6= ∅. By Lemma 3.1, we have
⋂

i∈I Li is an LA-Γ-subsemigroup of S. Consider
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SmΓ(
⋂

i∈I Li) ⊆ SmΓLi ⊆ Li for all i ∈ I. So SmΓ(
⋂

i∈I Li) ⊆
⋂

i∈I Li. Next, let a ∈
⋂

i∈I Li and

b ∈ S such that b≤ a. Since a ∈
⋂

i∈I Li, we get a ∈ Li where Li is an m-left Γ-ideal of S for all

i ∈ I. Thus b ∈ Li for all i ∈ I. Therefore, b ∈
⋂

i∈I Li. Hence
⋂

i∈I Li is an m-left-Γ-ideal of S.

(ii) The proof is similar to the proof of (i). �

Lemma 3.5. Let S be an ordered LA-Γ-semigroup. Then the following statements are true:

(i) Every m-left-Γ-ideal of S is an (m,n)-quasi-Γ-ideal of S.

(ii) Every n-right-Γ-ideal of S is an (m,n)-quasi-Γ-ideal of S.

Proof. (i) Let A be an m-left-Γ-ideal of S. We have SmΓA ⊆ A and A ⊆ S. Consider (SmΓA]∩

(AΓSn]⊆ (SmΓA]⊆ (A] = A. Clearly, if a ∈ A and b ∈ S such that b≤ a, then b ∈ A. Hence A is

an (m,n)-quasi-Γ-ideal of S.This shows that every m-left-Γ-ideal of S is an (m,n)-quasi-Γ-ideal

of S.

(ii) The proof of this statement is similar to the proof of (i). �

Theorem 3.6. Let S be an ordered LA-Γ-semigroup and let A be an m-left-Γ-ideal of S and B

be an n-right-Γ-ideal of S. Then A∩B is an (m,n)-quasi-Γ-ideal of S.

Proof. By Lemma 3.5, we obtain that A and B are an (m,n)-quasi-Γ-ideal of S. Therefore, A∩B

is an (m,n)-quasi-Γ-ideal of S by Theorem 3.2. �

Definition 3.3. An LA-Γ-subsemigroup Q of an ordered LA-Γ-semigroup S has the (m,n) in-

tersection property if Q is the intersection of an m-left-Γ-ideal and n-right-Γ-ideal of S.

Theorem 3.7. Every (m,n)-quasi-Γ-ideal Q of an ordered LA-Γ-semigroup S with left identity

is the intersection of some m-left-Γ-ideal of S and some n-right-Γ-ideal of S.

Proof. Let Q be an (m,n)-quasi-Γ-ideal of S. Let L = (Q∪ SmΓQ] and R = (Q∪QΓSn]. Now,

we show that L is an LA-Γ-subsemigroup of S.
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Consider

LΓL = (Q∪Sm
ΓQ]Γ(Q∪Sm

ΓQ]

⊆ ((Q∪Sm
ΓQ)Γ(Q∪Sm

ΓQ)]

= (QΓQ∪QΓ(Sm
ΓQ)∪ (Sm

ΓQ)ΓQ∪ (Sm
ΓQ)Γ(Sm

ΓQ)]

= (QΓQ∪Sm
Γ(QΓQ)∪ (QΓQ)ΓSm∪ (Sm

ΓSm)Γ(QΓQ)]

= (QΓQ∪Sm
Γ(QΓQ)∪ (QΓQ)Γ(Sm

ΓSm)∪Sm
Γ(QΓQ)]

= (QΓQ∪Sm
Γ(QΓQ)∪ (Sm

ΓSm)Γ(QΓQ)∪Sm
Γ(QΓQ)]

= (QΓQ∪Sm
Γ(QΓQ)∪Sm

Γ(QΓQ)∪Sm
Γ(QΓQ)]

⊆ (Q∪Sm
ΓQ∪Sm

ΓQ∪Sm
ΓQ] = (Q∪Sm

ΓQ] = L.

So LΓL⊆ L. Thus L is an LA-Γ-subsemigroup of S.

Consider

Sm
ΓL = Sm

Γ(Q∪Sm
ΓQ]

⊆ (Sm]Γ(Q∪Sm
ΓQ]

⊆ (Sm
Γ(Q∪Sm

ΓQ)]

= (Sm
ΓQ∪Sm

Γ(Sm
ΓQ)]

= (Sm
ΓQ∪ (Sm

ΓSm)Γ(Sm
ΓQ)]

= (Sm
ΓQ∪ (QΓSm)Γ(Sm

ΓSm)]

= (Sm
ΓQ∪ (QΓSm)ΓSm]

= (Sm
ΓQ∪ (Sm

ΓSm)ΓQ]

= (Sm
ΓQ]

⊆ (Q∪Sm
ΓQ] = L.

So SmΓL ⊆ L. Next, let x ∈ L = (Q∪SmΓQ] and y ∈ S such that y ≤ x. Since x ∈ (Q∪SmΓQ],

then x ≤ a for some a ∈ Q∪ SmΓQ. We have y ≤ x ≤ a for some a ∈ Q∪ SmΓQ. Therefore

y ∈ (Q∪SmΓQ]. Hence L is an m-left-Γ-ideal of S. In the same way, we can prove that R is an
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n-right-Γ-ideal of S. Next, we show that Q = L∩R. Since Q ⊆ Q∪ (SmΓQ] = (Q]∪ (SmΓQ] =

(Q∪ SmΓQ] and Q ⊆ Q∪ (QΓSn] = (Q]∪ (QΓSn] = (Q∪QΓSn]. Therefore, we obtain that

Q⊆ (Q∪SmΓQ]∩ (Q∪QΓSn]. Hence, Q⊆ L∩R. Next, consider

(Q∪Sm
ΓQ]∩ (Q∪QΓSn] = ((Q]∪ (Sm

ΓQ])∩ ((Q]∪ (QΓSn])

= ((Q]∩ ((Q]∪ (QΓSn]))∪ ((Sm
ΓQ]∩ ((Q]∪ (QΓSn]))

= (((Q]∩ (Q])∪ ((Q]∩ (QΓSn]))∪ (((Sm
ΓQ]∩ (Q])∪

((Sm
ΓQ]∩ (QΓSn]))

= (Q] = Q.

Therefore Q = L∩R. This shows that Q is the intersection of some m-left-Γ-ideal of S and some

n-right-Γ-ideal of S. �

Finally, we investigate about (m,n)-quasi-Γ-ideal in regular ordered LA-Γ-semigroups.

Definition 3.4. [7] An ordered LA-Γ-semigroup S is called regular if a ∈ ((aΓS)Γa] for every

a ∈ S, or

(i) for every a ∈ S there exist x ∈ S and β ,γ ∈ Γ such that a≤ (aβx)γa,

(ii) A⊆ ((AΓS)ΓA] for every A⊆ S.

Lemma 3.8. Let S be an ordered LA-Γ-semigroup with left identity. If S is regular and ∅ 6=

A⊆ S where A is an Γ-idempotent, then the following statements are true:

(i) A⊆ (SmΓA] for all m ∈ Z+.

(ii) A⊆ (AΓSn] for all n ∈ Z+.

Proof. (i) Let P(m) be the statement A ⊆ (SmΓA] for all m ∈ Z+ and let x ∈ A. Since S is

regular, then there exists y ∈ S and α,β ∈ Γ such that x ≤ (xαy)βx. We have (xαy)βx ∈ SΓA.

Thus x∈ (SΓA]. Therefore, A⊆ (SΓA]. Hence, we get P(1) holds. Let P(k) holds for all k ∈Z+.
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Then A⊆ (SkΓA]. Consider

SΓA ⊆ SΓ(Sk
ΓA]

= (S]Γ(Sk
ΓA]

⊆ (SΓ(Sk
ΓA)]

= ((SΓS)Γ(Sk
ΓA)]

= ((AΓSk)Γ(SΓS)] Proposition 2.2 (i)

= ((AΓSk)ΓS]

= ((SΓSk)ΓA] Left invertive law

= (Sk+1
ΓA].

Now, we have that A⊆ (SΓA] ⊆ (Sk+1ΓA]. So A⊆ (Sk+1ΓA]. Therefore, P(k+1) holds. Hence

A⊆ (SmΓA] for all m ∈ Z+.

(ii) Let P(n) be the statement A⊆ (AΓSn] for all n∈Z+ and let x ∈ A. Since S is regular, then

there exists y ∈ S and α,β ∈ Γ such that x≤ (xαy)βx. Consider

x ≤ (xαy)βx

∈ (AΓS)ΓA

= (AΓS)Γ(AΓA] Γ-idempotent

⊆ ((AΓS)Γ(AΓA)]

= ((AΓA)Γ(SΓA)] Proposition 2.2(i)

⊆ ((AΓA)ΓS]

⊆ ((AΓA]ΓS]

= (AΓS].
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So x ∈ (AΓS]. Thus A ⊆ (AΓS]. Hence P(1) holds. Let P(k) hold for all k ∈ Z+. Then A ⊆

(AΓSk]. Consider

AΓS ⊆ (AΓSk]ΓS

= (AΓSk]Γ(S]

⊆ ((AΓSk)ΓS]

⊆ ((SΓSk)ΓA] Left invertive law

= ((SΓSk]Γ(AΓA]] Γ-idempotent

= ((SΓSk)Γ(AΓA)]

= ((AΓA)Γ(Sk
ΓS)] Proposition 2.3(i)

⊆ ((AΓA]Γ(Sk
ΓS)]

= (AΓSk+1].

Thus A⊆ (AΓS]⊆ (AΓSk+1]. Therefore, P(k+1) holds. Hence A⊆ (AΓSn] for all n ∈ Z+. �

Theorem 3.9. Let S be an ordered LA-Γ-semigroup with left identity and let ∅ 6= A⊆ S. Then

A is an (m,n)-quasi-Γ-ideal of S if and only if it is the intersection of an m-left-Γ-ideal of S and

n-right-Γ-ideal of S.

Proof. (⇒) Let A be an (m,n)-quasi-Γ-ideal of S. By Theorem 3.7, A is the intersection of an

m-left-Γ-ideal of S and n-right-Γ-ideal of S.

(⇐) Let A be an intersection of an m-left-Γ-ideal of S and an n-right-Γ-ideal of S. By Theo-

rem 3.6 , A is an (m,n)-quasi-Γ-ideal of S. �
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