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Abstract. This article discusses SCPUR mathematical model for the spread of COVID-19 using data of people with 

COVID-19 in Makassar City. In this model, the population class is divided into five classes: susceptible, asymptomatic 

infectious, reported symptomatic infectious, unreported symptomatic infectious, and recovered classes. The 

proportion of body immunity to the increase of infected individuals, the proportion of large-scale social restrictions, 

and the proportion of quarantine as a healing process are also added. The research begins by determining the 

equilibrium point of the model, namely the disease-free equilibrium point and the endemic equilibrium point. Then, 

the stability test is carried out using linearization method and the eigenvalues are determined. The value of the basic 

reproduction number is obtained using next-generation matrix method, where the initial state of the basic reproduction 

number value 𝑅0 > 1 mean COVID-19 will still exist in Makassar City. Treatment is carried out so that 𝑅0 < 1 

which means Makassar City will be free of COVID-19. 
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1. INTRODUCTION 

There are various kinds of disease viruses in the world such as human immunodeficiency virus, 

ebola virus, dengue virus, etc. One of the viral diseases that is currently being discussed is the 

novel coronavirus. It is not a new virus in the health sector. The virus was first discovered in 2003 

and caused severe acute respiratory (SARS). Then, a new type of the virus was found in 2012 and 

caused middle east respiratory syndrome-corona virus (MERS-CoV) [1,2]. Lately, this virus 

mutated to a new type of coronavirus (SARS-CoV-2) and caused the emergence of a disease called 

coronavirus disease-19 (COVID-19) [3,4]. From the first case of COVID-19 in Wuhan, China in 

late December 2019 [5,6] until July 10, 2020, the virus had infected 12.015.193 individuals, caused 

549.247 death, and spread to 216 countries in the world. The highest cases were reported in the 

Americas with 6.264.626 cases. Asia was in the fourth place with 1.032.167 cases, 70.736 of which 

were from Indonesia with 32.651 recovered individuals and 3.417 deaths. It has been predicted 

that this number will increase given the absence of antivirus for this disease [7,8]. Based on these 

facts, as of March 11, 2020, the world health organization (WHO) decided that COVID-19 is a 

pandemic disease [9,10].  

The field of mathematics is one of the fields of science that can provide solutions in a 

phenomena, by modeling and formulating the phenomena. The phenomena are transformed into 

either an equation or an equation system, for example in dynamical populations [11,12,13,14] and 

the field of epidemiology [15,16,17]. With an assumption that COVID-19 is an epidemiology, the 

dynamics of COVID-19 spread can also be considered in mathematical modeling [18,19]. 

Based on studies in [20] discusses the SIRU mathematical model (Susceptible, Asymptomatic 

Infected, Reported Infected Case, Unreported Symptomatic infected) to predict the cumulative 

number of COVID-19 cases in China. Furthermore, from [20] researchers will make modification 

by adding one class of individual namely recovery class, with the consideration that an increasing 

number of individuals who recovery from disease by quarantine. Furthermore, the assumption is 

added that individuals who are infected without symptoms and have good immunity will recovery 
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from the disease without quarantine. Then, another treatment is also added, namely Large-Scale 

Social Restrictions. 

 

2. SCPUR MATHEMATICAL MODEL FOR THE SPREAD OF COVID-19  

SCPUR model is a development of SIRU model, namely an epidemiological model with 

compartments consisting of susceptible (𝑆) class which represents the number of individuals who 

are susceptible to COVID-19, asymptomatic infectious (𝐼) class which represents the number of 

individuals infected with COVID-19 without clinical symptoms, reported symptomatic infectious 

(𝑅) class which represents the number of individuals who show symptoms of being infected with 

COVID-19 and report it, and the unreported symptomatic infectious (𝑈) class which represents 

the number of individuals who show symptoms of being infected with COVID-19 but do not report 

it [20]. 

In this model, one individual class is added, namely recovery (𝑅) class which represents the 

number of individuals who have recovered from COVID-19, so that the individual class who 

shows symptoms of being infected with COVID-19 and reports it is symbolized as  (𝑃) . 

Furthermore, the class of asymptomatic infectious (𝐼) is termed a carrier (𝐶) which represents 

the number of individuals who are infected with COVID-19 but do not show symptoms of infection. 

Then, the proportion of the effect of body immunity to the increase of infected individuals, the 

proportion of large-scale social restrictions, and the proportion of quarantine as a healing process 

are also added. 

The assumptions used in constructing the mathematical model of COVID-19 are as follows:  

1. The entire population is assumed to be susceptible to COVID-19 infection  

2. The population is assumed constant  

3. Population density and geographic location of the population are ignored. 

4. Every individual has the same opportunity to make contact with individuals infected with 

COVID-19.  
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5. Individuals are infected by the virus if they make direct or indirect contact with infected 

individuals.  

6. Asymptomatic infectious (𝐶)  and unreported symptomatic infectious (𝑈)  are the 

classes that could transmit the disease. 

7. Reported symptomatic infectious are immediately quarantined so as not to spread the 

disease.  

8. Carriers that have a good level of body immunity will recover without being given 

quarantine treatment.  

Based on the above assumptions, a dynamic for the spread of COVID-19 is obtained as shown in 

Figure 1.  

 

Figure 1. Transmission diagram of the mathematical model of the spread of COVID-19 

Based on Figure 1., the nonlinear differential equation is obtained as follows  

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 + 𝛾𝑅(𝑡) − (1 − 𝜌1)(1 − 𝜌2)𝛽

𝑆(𝑡)

𝑁
(𝐶(𝑡) + 𝑈(𝑡)) − 𝜇𝑆(𝑡) 

𝑑𝐶

𝑑𝑡
= (1 − 𝜌1)(1 − 𝜌2)𝛽

𝑆(𝑡)

𝑁
(𝐶(𝑡) + 𝑈(𝑡))  − (𝛿 + 𝜎 + 𝜇)𝐶(𝑡) 

𝑑𝑃

𝑑𝑡
= 𝛿1𝐶(𝑡) − (𝑞𝛼 + (1 − 𝑞)𝜔 + 𝜇)𝑃(𝑡) 

𝑑𝑈

𝑑𝑡
= 𝛿2𝐶(𝑡) − (𝜔 + 𝜇)𝑈(𝑡) 

𝑑𝑅

𝑑𝑡
= 𝜎𝐶(𝑡) +  𝑞𝛼𝑃(𝑡) − (𝜇 + 𝛾)𝑅(𝑡) 

(1) 

(2) 

(3) 

(4) 

(5) 
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with initial conditions 𝑆(0) = 𝑆0 > 0, 𝐶(0) = 𝐶0 ≥ 0, 𝑃(0) = 𝑃0 ≥ 0,𝑈(0) = 𝑈0 ≥ 0, 𝑅(0) =

𝑅0 ≥ 0. The variables and parameters used in the model are presented in Table 1. 

Table 1. Variables and parameters of COVID-19 model 

Symbols Descriptions Requirements Unit 

𝑁(𝑡) The total population at time t 𝑁(𝑡) > 0 Population 

𝑆(𝑡) 
Size of sub-population who susceptible to 

COVID-19 infection at time t 
𝑆(𝑡) > 0 Population 

𝐶(𝑡) 
Size of sub-population who asymptomatic 

infectious at time t 
𝐶(𝑡) ≥ 0 Population 

𝑃(𝑡) 
Size of sub-population who reported 

symptomatic infectious at time t 
𝑃(𝑡) ≥ 0 Population 

𝑈(𝑡) 
Size of sub-population who unreported 

symptomatic infectious at time t 
𝑈(𝑡) ≥ 0 Population 

𝑅(𝑡) 
Size of sub-population recovered individuals at 

time t 
𝑅(𝑡) ≥ 0 Population 

𝜇 Natural death rate 𝜇 > 0 1/day 

1 − 𝜌1 
Proportion of carrier individuals with bad 

immunity 
0 ≤ 𝜌1 ≤ 1 - 

1 − 𝜌2 
Proportion with no large-scale social 

restrictions 
0 ≤ 𝜌2 ≤ 1 - 

𝛽 

Transition rate from susceptible individuals to 

asymptomatic infected individuals due to 

interactions with infected individuals. 

𝛽 ≥ 0 
1/(population

∙ day) 

𝛿 Transition rate due to symptoms 𝛿 > 0 population/day 

𝜎 
Transition rate from asymptomatic infectious to 

recovered from the disease 
𝜎 > 0 population/day 

𝑞 
Proportion of infected to recovered individuals 

due to quarantine 
0 ≤ 𝑞 ≤ 1 - 

1 − 𝑞 
Proportion of failure of quarantine treatment in 

the healing process 
0 ≤ 𝑞 ≤ 1 - 

𝛼 
Transition rate from reported symptomatic 

infectious to recovered 
𝛼 > 0 population/day 

𝛾 
Transition rate from recovered to susceptible 

reinfection 
𝛾 > 0 population/day 

𝜔 Death rate due to COVID-19 𝜔 > 0 population/day 
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Furthermore, the equation (1) – (5) will be formed into a system of normalized equations by 

substituting non-dimension variables as follows:  

𝑠 =
𝑆(𝑡)

𝑁(𝑡)
, 𝑐 =

𝐶(𝑡)

𝑁(𝑡)
, 𝑝 =

𝑃(𝑡)

𝑁(𝑡)
, 𝑢 =

𝑈(𝑡)

𝑁(𝑡)
, 𝑟 =

𝑅(𝑡)

𝑁(𝑡)
. 

So that the following non-dimension nonlinear differential equation system is obtained:  

𝑑𝑠

𝑑𝑡
= 𝜇 + 𝛾𝑟 − (1 − 𝜌1)(1 − 𝜌2)𝛽𝑠(𝑐 + 𝑢) − 𝜇𝑠 

𝑑𝑐

𝑑𝑡
= (1 − 𝜌1)(1 − 𝜌2)𝛽𝑠(𝑐 + 𝑢) − (𝛿 + 𝜎 + 𝜇)𝑐 

𝑑𝑝

𝑑𝑡
= 𝛿1𝑐 − (𝑞𝛼 + (1 − 𝑞)𝜔 + 𝜇)𝑝 

𝑑𝑢

𝑑𝑡
= 𝛿2𝑐 − (𝜔 + 𝜇)𝑢 

𝑑𝑟

𝑑𝑡
= 𝜎𝑐 +  𝑞𝛼𝑝 − (𝜇 + 𝛾)𝑟 

 

3. EQUILIBRIUM POINTS AND THEIR STABILITIES 

The equilibrium point of SCPUR model is obtained when 
𝑑𝑠

𝑑𝑡
= 0,

𝑑𝑐

𝑑𝑡
= 0,

𝑑𝑝

𝑑𝑡
= 0,

𝑑𝑢

𝑑𝑡
= 0,

𝑑𝑟

𝑑𝑡
= 0. So 

that the equation (11) – (15) becomes: 

𝜇 + 𝛾𝑟 − (1 − 𝜌1)(1 − 𝜌2)𝛽𝑠(𝑐 + 𝑢) − 𝜇𝑠 = 0  

(1 − 𝜌1)(1 − 𝜌2)𝛽𝑠(𝑐 + 𝑢) − (𝛿 + 𝜎 + 𝜇)𝑐 = 0  

𝛿1𝑐 − (𝑞𝛼 + (1 − 𝑞)𝜔 + 𝜇)𝑝 = 0  

𝛿2𝑐 − (𝜔 + 𝜇)𝑢 = 0  

𝜎𝑐 +  𝑞𝛼𝑝 − (𝜇 + 𝛾)𝑟 = 0  

Solutions, termed as disease-free equilibrium solution and endemic equilibrium solution, will 

be sought. The disease-free equilibrium solution is marked with 𝑐 = 0 and 𝑢 = 0 meaning that 

no infected individual can transmit the COVID-19 to other individuals. If it is assumed that  𝑐 =

0 and 𝑢 = 0 and the value is substituted into equation (11) - (15), then it is obtained that 𝑠 = 1, 

𝑝 = 0, 𝑟 = 0. Thus, the disease-free equilibrium point 𝐸0 = (𝑠, 𝑐, 𝑝, 𝑢 , 𝑟) = (1,0,0,0,0). Then, 

(6) 

(11) 

(12) 

(13) 

(14) 

(15) 

(7) 

(8) 

(9) 

(10) 
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we will look for the endemic equilibrium point. The condition in which 𝑐 ≠ 0 and 𝑢 ≠ 0 means 

that there are individuals who are infected and transmit the COVID-19 to other individuals so that 

if the value is substituted into equation (11) - (15) the endemic equilibrium point obtained is 𝐸1 =

(𝑠∗, 𝑐∗, 𝑝∗, 𝑢∗, 𝑟∗)  where 𝑠∗ =
𝜇+𝛾𝑟∗

(1−𝜌1)(1−𝜌2)(𝛽(𝑐∗+𝑢∗)+𝜇)
 , 𝑐∗ =

(1−𝜌1)(1−𝜌2)𝛽𝑠∗𝑢∗

𝛿+𝜎+𝜇−(1−𝜌1)(1−𝜌2)𝛽𝑠∗ , 𝑝∗ =

𝛿1𝑐∗

𝛼+(1−𝑞)𝜔+𝜇
, 𝑢∗ =

𝛿2𝑐∗

(𝜔+𝜇)
, 𝑟∗ =

𝜎𝑐∗+𝑞𝛼𝑝∗

𝜇+𝛾
.  

After obtaining the equilibrium points, disease-free and endemic equilibrium stability analysis will 

be carried out. The first step is to linearize the equation system for the non-linear spread of COVID-

19 using the Jacobi matrix [21]. The Jacobi matrix equation (6) – (10) is 























−−

−−

−−−−

−−−−−−−

−−−−−−−+−−

=











00

000

00))1(0

0)1)(1(0)1)(1(0

)1)(1(0)1)(1()()1)(1(

2

1

2121

212121

q

qq

s

ssuc

JE

 

If the disease-free equilibrium point 𝐸0 = (𝑠, 𝑐, 𝑝, 𝑢, 𝑟) = (1,0,0,0,0) is substituted to the Jacobi 

matrix (16), we get 

  .























+−

+−

+−+−

−−−−−−−

−−−−−−−

=

)(00

0)(00

00))1((0

0)1)(1(0)1)(1(0

)1)(1(0)1)(1(

2

1

2121

2121

0











q

qqJ E  

Then, we will look for the eigenvalues of the matrix 𝐽𝐸0
. Characteristic equation of the matrix  

𝐽𝐸0
is 

0

)(00

0)(00

00))1((0

0)1)(1(0)1)(1(0

0

det

2

1

2121

=























++

++

+−++

−−+++−−−

−−+











q

qq

 

or 

(16) 



4089 

SCPUR MATHEMATICAL MODEL FOR THE SPREAD OF COVID-19 

(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝛾)(𝜆2 + (𝛽𝜌1𝜌2 − 𝛽𝜌1 − 𝛽𝜌2 + 𝛽 − 𝛿 − 2𝜇 − 𝜔 − 𝜎)𝜆 + 𝛽𝛿2𝜌1𝜌2 +

𝛽𝜇𝜌1𝜌2 + 𝛽𝜔𝜌1𝜌2 − 𝛽𝛿2𝜌1 − 𝛽𝛿2𝜌2 − 𝛽𝜇𝜌1 − 𝛽𝜇𝜌2 − 𝛽𝜔𝜌1 − 𝛽𝜔𝜌2 + 𝛿2𝛽 + 𝛽𝜇 + 𝛽𝜔 −

𝛿𝜇 − 𝛿𝜔 − 𝜇2 − 𝜇𝜔 − 𝜇𝜎 − 𝜔𝜎)(𝜆 + 𝑞𝛼 + (1 − 𝑞)𝜔 + 𝜇) = 0.  

From the characteristic equation, the eigenvalues are: 

 𝜆1 = −𝜇, 𝜆2 = −𝜇 − 𝛾, 𝜆3 = −𝑞𝛼 − (1 − 𝑞)𝜔 − 𝜇, and other eigenvalues are the solution of 

polynomial equation  

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0  

where 

𝑎1 = 𝛽𝜌1𝜌2 + 𝛽 − 𝛽𝜌1 − 𝛽𝜌2 − 𝛿 − 2𝜇 − 𝜔 − 𝜎, 

𝑎2 = 𝛽𝛿2𝜌1𝜌2 + 𝛽𝜇𝜌1𝜌2 + 𝛽𝜔𝜌1𝜌2 + 𝛿2𝛽 + 𝛽𝜇 + 𝛽𝜔 − 𝛽𝛿2𝜌1 − 𝛽𝛿2𝜌2 − 𝛽𝜇𝜌1 − 𝛽𝜇𝜌2 −

𝛽𝜔𝜌1 − 𝛽𝜔𝜌2 − 𝛿𝜇 − 𝛿𝜔 − 𝜇2 − 𝜇𝜔 − 𝜇𝜎 − 𝜔𝜎. 

Based on the routh-Hurwitz criteria [22], the roots of the equation (17) have a negative real part 

if and only if   

𝐻1 = 𝑎1 > 0, 𝐻2 = |
𝑎1 0

1 𝑎2

| = 𝑎1𝑎2 > 0. 

Because it is assumed that all parameters are positive, then 𝑎1 > 0   if 𝛽𝜌1𝜌2 + 𝛽 > 𝛽𝜌1 +

𝛽𝜌2 + 𝛿 + 2𝜇 + 𝜔 + 𝜎  and 𝑎2 > 0  if 𝛽𝛿2𝜌1𝜌2 + 𝛽𝜇𝜌1𝜌2 + 𝛽𝜔𝜌1𝜌2 + 𝛿2𝛽 + 𝛽𝜇 + 𝛽𝜔 >

𝛽𝛿2𝜌1 + 𝛽𝛿2𝜌2 + 𝛽𝜇𝜌1 + 𝛽𝜇𝜌2 + 𝛽𝜔𝜌1 + 𝛽𝜔𝜌2 + 𝛿𝜇 + 𝛿𝜔 + 𝜇2 + 𝜇𝜔 + 𝜇𝜎 + 𝜔𝜎. As a result 

if 𝑎1 > 0 and 𝑎2 > 0 then 𝑎1𝑎2 > 0. If these conditions are met, 𝜆4 < 0 and 𝜆5 < 0 will be 

obtained. The values of  𝜆𝑖 < 0, 𝑖 = 1,2,3,4,5. So that the disease-free equilibrium point 𝐸0 =

(1,0,0,0,0) is locally asymptotically stable. 

The endemic equilibrium point 𝐸1 = (𝑠∗, 𝑐∗, 𝑝∗, 𝑢∗, 𝑟∗) is substituted to the Jacobi matrix (16), so 

that the result is  

𝐽𝐸1
=

[
 
 
 
 
−𝑎 −𝑟ℎ1     0 −𝑟ℎ1 𝑟ℎ2

𝑟ℎ3 −𝑏 0  𝑟ℎ4   0

0
0
0

𝑟ℎ5

𝑟ℎ6

𝑟ℎ7

−𝑐
0

𝑟ℎ8

0
−𝑑
0

0
0

−𝑒 ]
 
 
 
 

 

(17) 



4090 

ALVIONI BANI, SYAMSUDDIN TOAHA, KASBAWATI 

where 𝑎 = 𝛽(𝑐∗ + 𝑢∗) − 𝜇 ,  𝑏 = 𝛿 + 𝜎 + 𝜇 + (1 − 𝜌1)(1 − 𝜌2)𝛽𝑠∗ ,  𝑐 = (𝛼 + (1 − 𝑞)𝜔 +

𝜇) ,  𝑑 = (𝜔 + 𝜇) , 𝑒 = (𝜔 + 𝛾) , 𝑟ℎ1 = 𝛽𝑠∗ , 𝑟ℎ2 = 𝛾 , 𝑟ℎ3 = (1 − 𝜌1)(1 − 𝜌2)𝛽(𝑐∗ + 𝑢∗) , 

𝑟ℎ4 = (1 − 𝜌1)(1 − 𝜌2)𝛽𝑠∗, 𝑟ℎ5 = 𝛿1, 𝑟ℎ6 = 𝛿2, 𝑟ℎ7 = 𝜎, 𝑟ℎ8 = 𝑞𝛼. 

Based on the Jacobi matrix, we define the characteristic equation as  det(𝜆𝐼 − 𝐽𝐸1
) = 0  or 

𝜆5 + 𝐴1𝜆
4 + 𝐴2𝜆

3 + 𝐴3𝜆
2 + 𝐴4𝜆 + 𝐴5 = 0, 

where 

𝐴1 = 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒  

𝐴2 = 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑 + 𝑎𝑒 + 𝑏𝑐 + 𝑏𝑑 + 𝑏𝑒 + 𝑐𝑑 + 𝑐𝑒 + 𝑑𝑒 + 𝑟ℎ1𝑟ℎ3 − 𝑟ℎ4𝑟ℎ6  

𝐴3 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑏𝑒 + 𝑎𝑐𝑑 + 𝑎𝑐𝑒 + 𝑎𝑑𝑒 − 𝑎𝑟ℎ4𝑟ℎ6 + 𝑏𝑐𝑑 + 𝑏𝑐𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒 +

𝑐𝑟ℎ1𝑟ℎ3 − 𝑐𝑟ℎ4𝑟ℎ6 + 𝑑𝑟ℎ1𝑟ℎ3 − 𝑒𝑟ℎ1𝑟ℎ3 − 𝑒𝑟ℎ4𝑟ℎ6 − 𝑟ℎ2𝑟ℎ3𝑟ℎ7 + 𝑟ℎ1𝑟ℎ3𝑟ℎ6  

𝐴4 = 𝑎𝑏𝑐𝑑 + 𝑎𝑏𝑐𝑒 + 𝑎𝑐𝑑𝑒 + 𝑎𝑐𝑟ℎ4𝑟ℎ6 − 𝑎𝑒𝑟ℎ4𝑟ℎ6 + 𝑏𝑐𝑑𝑒 + 𝑐𝑑𝑟ℎ1𝑟ℎ3 +

𝑐𝑒𝑟ℎ1𝑟ℎ3 − 𝑐𝑒𝑟ℎ4𝑟ℎ6 − 𝑐𝑟ℎ2𝑟ℎ3𝑟ℎ7 − 𝑐𝑟ℎ2𝑟ℎ3𝑟ℎ6 + 𝑑𝑒𝑟ℎ1𝑟ℎ3 −

𝑑𝑟ℎ2𝑟ℎ3𝑟ℎ7 + 𝑒𝑟ℎ!𝑟ℎ3𝑟ℎ6 − 𝑟ℎ2𝑟ℎ3𝑟ℎ5𝑟ℎ8  

𝐴5 = 𝑎𝑏𝑐𝑑𝑒 − 𝑎𝑐𝑒𝑟ℎ4𝑟ℎ6 + 𝑐𝑑𝑟ℎ1𝑟ℎ3 − 𝑐𝑑𝑟ℎ2𝑟ℎ3𝑟ℎ7 + 𝑐𝑒𝑟ℎ1𝑟ℎ3𝑟ℎ6 −

𝑑𝑟ℎ2𝑟ℎ3𝑟ℎ5𝑟ℎ8  

Based on the routh-Hurwitz criteria, the endemic equilibrium point of the model is locally 

asymptotically stable if 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 > 0  and 𝐴1𝐴2𝐴3𝐴4𝐴5 − 𝐴1
2𝐴2

2𝐴5
2 − 𝐴1

2𝐴4
2𝐴5 +

2𝐴1𝐴4𝐴5
2 − 𝐴3

2𝐴4𝐴5 + 𝐴3𝐴2𝐴5
2 − 𝐴5

3 > 0 [23]. 

 

4. BASIC REPRODUCTION NUMBER AND SENSITIVITY ANALYSIS 

The basic reproductive number is the threshold for the transmission of a disease caused by 

infected individuals in a population who are susceptible to infection, which is usually denoted by 

𝑅0 [24]. 

𝑑𝑐

𝑑𝑡
= (1 − 𝜌1)(1 − 𝜌2)𝛽𝑠(𝑐 + 𝑢) − (𝛿 + 𝜎 + 𝜇)𝑐  

𝑑𝑝

𝑑𝑡
= 𝛿1𝑐 − (𝑞𝛼 + (1 − 𝑞)𝜔 + 𝜇)𝑝  
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𝑑𝑢

𝑑𝑡
= 𝛿2𝑐 − (𝜔 + 𝜇)𝑢  

Suppose ℱ𝑖(𝑥) is the addition rate of new infections in compartment  𝑐 and 𝒱𝑖(𝑥) is the rate 

of individual displacement in compartment 𝑐, so that ℱ𝑖(𝑥) and 𝒱𝑖(𝑥) are as follows:  

ℱ𝑖(𝑥) = (
𝐹1

𝐹2

𝐹3

) = (
(1 − 𝜌1)(1 − 𝜌2)𝛽𝑠(𝑐 + 𝑢)

0
0

),  

𝒱𝑖(𝑥) = (
𝑉1

𝑉2

𝑉3

) = (

(𝛿 + 𝜎 + 𝜇)𝑐 

−𝛿1𝑐 + (𝑞𝛼 + (1 − 𝑞)𝜔 + 𝜇)𝑝
−𝛿2𝑐 + (𝜔 + 𝜇)

). 

Furthermore, from equations (18) and (19) the matrix 𝐹 and 𝑉 are evaluated in point 𝐸0 as 

follow:  

𝐹 =
𝜕ℱ𝑖(𝐸1)

𝜕(𝑐,𝑝,𝑢)
=

(

 
 

𝜕𝐹1

𝜕𝑐

𝜕𝐹1

𝜕𝑝

𝜕𝐹1

𝜕𝑢

𝜕𝐹2

𝜕𝑐

𝜕𝐹2

𝜕𝑝

𝜕𝐹2

𝜕𝑢

𝜕𝐹3

𝜕𝑐

𝜕𝐹3

𝜕𝑝

𝜕𝐹3

𝜕𝑢)

 
 

= (
(1 − 𝜌1)(1 − 𝜌2)𝛽 0 (1 − 𝜌1)(1 − 𝜌2)𝛽

0 0 0
0 0 0

),  

𝑉 =
𝜕𝒱𝑖(𝐸1)

𝜕(𝑐,𝑝,𝑢)
=

(

 
 

𝜕𝑉1

𝜕𝑐

𝜕𝑉1

𝜕𝑝

𝜕𝑉1

𝜕𝑢

𝜕𝑉2

𝜕𝑐

𝜕𝑉2

𝜕𝑝

𝜕𝑉2

𝜕𝑢

𝜕𝑉3

𝜕𝑐

𝜕𝑉3

𝜕𝑝

𝜕𝑉3

𝜕𝑢 )

 
 

= (

𝛿 + 𝜎 + 𝜇 0 0

−𝛿1 (𝛼 + (1 − 𝑞)𝜔 + 𝜇) 0
−𝛿2 0 𝜔 + 𝜇

). 

Then the generation matrix 

𝐹𝑉−1 = (

(1−𝜌1)(1−𝜌2)𝛽

𝐴
+

(1−𝜌1)(1−𝜌2)𝛽𝛿2

𝐴𝐶
0

(1−𝜌1)(1−𝜌2)𝛽

𝐶

0 0 0
0 0 0

), 

where 𝐴 =  𝛿 + 𝜎 + 𝜇 , 𝐵 = 𝛼 + (1 − 𝑞)𝜔 + 𝜇 , and  𝐶 = 𝜔 + 𝜇 . Equation of characteristics 

𝐹𝑉−1 is as follows:  

det(𝜆𝐼 − 𝐹𝑉−1) = 0  

|
𝜆 −

(1 − 𝜌1)(1 − 𝜌2)𝛽

𝐴
−

(1 − 𝜌1)(1 − 𝜌2)𝛽𝛿2

𝐴𝐶
0 −

(1 − 𝜌1)(1 − 𝜌2)𝛽

𝐶
0 𝜆 0
0 0 𝜆

| = 0 

(18) 

(19) 
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or 

(𝜆 −
(1−𝜌1)(1−𝜌2)𝛽

𝐴
−

(1−𝜌1)(1−𝜌2)𝛽𝛿2

𝐴𝐶
) 𝜆2 = 0. 

From the characteristic equation, we get the roots of the equation, namely 𝜆1,2 = 0 and 𝜆3 =

(1−𝜌1)(1−𝜌2)𝛽

𝐴
+

(1−𝜌1)(1−𝜌2)𝛽𝛿2

𝐴𝐶
, where 𝐴 =  𝛿 + 𝜎 + 𝜇 and  𝐶 = 𝜔 + 𝜇. 

Because the value of the basic reproduction number is the radius spectral of 𝐹𝑉−1 [21]. Then 

the value of the basic reproduction number is 

𝑅0 =
𝛽(1 − 𝜌1)(1 − 𝜌2)(𝛿2 + 𝜔 + 𝜇)

(𝜎 + 𝛿 + 𝜇)(𝜔 + 𝜇)
. 

Sensitivity of the basic reproduction number is analyzed to determine the effect of parameters 

on the basic reproduction number.   

Definition 1. [25] Normalization of the sensitivity index is obtained by normalization of the 

variable V which is differentiated in the parameter p, defined as follows:  

𝐶𝑝
𝑣 =

𝜕𝑉

𝜕𝑝
×

𝑝

𝑉
 

where V is the variable to be analyzed and p is the parameter. 

Definition 1 shows that the sensitivity index can be determined using the concept of the 

changing rate which is then measured. The greater the parameter index value, the greater the 

influence of these parameters on the measured variable value. Suppose the variable being 

measured is the basic reproduction number of the COVID-19 spread model, with respect to the 

influencing parameters. Then we assume 𝜇 = 3.22 × 10−3 , 𝜌1 = 0.3 , 𝜌2 = 0.08 , 𝛽 = 0.75 , 

𝛿 = 0.2 ,  𝛿2 = 0.04 , 𝜎 = 0.17 , 𝜔 = 0.5 . Elasticity values obtained from the parameters 

affecting the value of the basic reproduction number are presented in Table 1.  

 

 

 

(20) 
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Table 1. Parameter elasticity values that affect the 𝑅0 

Parameters Values 

𝛽 𝐶𝛽
𝑅0 = 1 

𝜌1 𝐶𝜌1

𝑅0 = −0.428571 

𝜌2 𝐶𝜌2

𝑅0 = −0.869565 

𝛿2 𝐶𝛿2

𝑅0 = 0.06631 

𝜔 𝐶𝜔
𝑅0 = 1.30347 

𝜇 𝐶𝜇
𝑅0 = −1.421729 

𝜎 𝐶𝜎
𝑅0 = −0.455495 

𝛿 𝐶𝛿
𝑅0 = −0.53587 

 

Based on Table 1, it can be concluded that some of the parameters have a negative relation to 

𝑅0, which means, if the parameter value is increased then the value of 𝑅0 will decrease. These 

parameters are displacement rate due to symptoms (𝛿) , transition rate from asymptomatic 

infectious to natural recovering from disease (𝜎), natural death rate (𝜇), the proportion of body 

immunity (𝜌1) and the implementation of large-scale social restrictions (𝜌2). On the other hand, 

the parameters which have a positive relation to  𝑅0 mean that if the parameter value is increased 

then the value of  𝑅0 will also increase. These parameters are the interaction rate (𝛽), transition 

rate from asymptomatic infectious to unreported symptom infected individuals (𝛿2), and death 

rate due to COVID-19 (𝜔). As an example, the relation between the interaction parameter (𝛽) 

and the implementation of large-scale social restrictions (𝜌2) when 𝑅0 = 1 is shown in Figure 

2. 
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Figure 2. Relational function between 𝛽 and 𝜌2 when 𝑅0 = 1 

 

5. NUMERICAL SIMULATION 

Suppose 𝛿1 = 0.16 , 𝑞 = 0.96 , 𝛼 = 0.1 , 𝛾 = 0.01 , and the previously assumed parameter 

values are substituted into the equation system (2). Then the disease-free equilibrium point 

obtained  is 𝐸0 = (1,0,0,0,0)  and the endemic equilibrium point is 𝐸1 = (0.734 , 0.006 , 

0.0079, 0.00027, 0.134), the eigenvalues of the disease-free equilibrium point is (−0.0032, 

−0.01322,−0.1216, −0.5907, 0.13735) and the eigenvalues of the endemic equilibrium point 

is (−0.5880, −0.00769, −0.00769, −0.00509, −0.12189).  

The value of the basic reproduction number is 𝑅0 = 1.386. Based on the results obtained, it 

can be concluded that the disease-free equilibrium point is unstable due to a positive eigenvalue. 

Furthermore, for the stable endemic equilibrium point, it can be seen from the eigenvalues which 

are all negative and 𝑅0 > 1. Then, we will observe four parameter values for the implementation 

of large-scale social restrictions and their effects on the basic reproduction number, namely 𝜌2 =

0.08, 0.2, 0.342, 0.6. The results are presented in Table 2. 

 

 

 

 

𝑅0 > 1 

𝑅0 < 1 
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Table 2. The effect of the implementation of large-scale social restrictions (𝜌2) on the value of 𝑅0 

𝜌2 𝑅0 
Eigenvalues of disease-free 

𝜆4, 𝜆5 and their stabilities 

Endemic equilibrium point and 

its stability 

0.08 1.386 
𝜆4 = −0.5907,    𝜆5 = 0.13735 

and 𝐸0 unstable 
𝐸1 exist and stable 

0.2 1.2052 
𝜆4 = −0.5896 , 𝜆5 = 0.0731 

and 𝐸0 unstable 
𝐸1 exist and stable 

0.3423 0.9908 
𝜆4 = −0.5878 , 𝜆5 = −0.0032 

and 𝐸0 stable 
𝐸1 does not exist 

0.6 0.6026 
𝜆4 = −0.5832 , 𝜆5 = −0.1432 

and 𝐸0  stable 
𝐸1 does not exist 

 

Based on Table 2, the results show that COVID-19 will still exist in Makassar City when 

parameter 𝜌2 or the parameter for the implementation of large-scale social restrictions is given a 

value of 0.08, which means that only 8% section of Makassar City applying large-scale social 

restrictions. This can be seen from the value 𝑅0 = 1.386 or 𝑅0 > 1. In addition, the endemic 

equilibrium point exists and is stable. It is the same when the parameter value is increased to 0.2. 

However, when the parameter value is increased to 0.3423, which means 34.23% section of 

Makassar City apply the large-scale social restrictions, then Makassar City will be free of COVID-

19. This can be seen from the value of 𝑅0 = 0.9908 or 𝑅0 < 1. In addition, all eigenvalues 𝐸0 

are negative, which means that the disease-free equilibrium point of the model is stable. And so 

on, greater parameter value of the implementation of large-scale social restrictions causes 𝑅0 ≪

1, which means it causes a greater chance of freeing Makassar City from COVID-19. To evaluate 

the effect of the implementation of large-scale social restrictions (𝜌2) , we plot the different 

parameter values which are prensented in figure 3 and 4 
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Figure 3. Graph of population when 𝜌2 = 0.08 
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Figure 4. Graph of population when 𝜌2 = 0.3423 
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Figure 3 shows that the population of Carrier, Reported Symptoms, and Unreported Symptoms 

with different initial values, the graph converge to the stabil equilibrium point (endemic 

equilibrium point). It means when we give parameter value of large-scale social restrictions is 

0.08, COVID-19 does not disappear from Makassar City. Otherwise in Figure 4, when we give 

parameter value of large-scale social restrictions is 0.3423 , the graph converge to the stabil 

equilibrium point (disease-free equilibrium point) or COVID-19 will disappear from Makassar 

City. 

Furthermore, four parameter values for the interaction rate and their effects on the basic 

reproduction number, namely 𝛽 = 0.75 , 0.65 , 0.536 , 0.3 , will be observed. The results are 

presented in Table 3.  

Table 3. The effect of interaction rate (𝛽) on the value of 𝑅0  

𝛽 𝑅0 
Eigenvalues of disease-free  

𝜆4, 𝜆5 and their stabilities 
Endemic equilibrium point and 

its stability 

0.75 1.386 
𝜆4 = −0.5907 , 𝜆5 = 0.13735 

and 𝐸0 unstable 
𝐸1 exist dan stable 

0.65 1.201 
𝜆4 = −0.5895 , 𝜆5 = 0.0717 , 

and 𝐸0 unstable 
𝐸1 exist dan stable 

0.536 0.9906 
𝜆4 = −0.5879 , 𝜆5 = −0.0037 , 

and 𝐸0 stable 
𝐸1 does not exist 

0.3 0.5544 
𝜆4 = −0.5824 , 𝜆5 = −0.1608 , 

and 𝐸0  stable 
𝐸1 does not exist 

Based on Table 3, the results show that COVID-19 will still exist in Makassar City when the 

interaction rate (𝛽) is given the value of 0.75, which means that the people in Makassar City 

continue to interact intensely. It can be seen from the value of 𝑅0 = 1.386 . In addition, the 

endemic equilibrium point of the model exists and is stable. It is the same when the parameter 

value is lowered to a value of 0.65. However, when the parameter value is lowered to 0.536, which 

means the interaction between individuals in Makassar City is minimized, Makassar City will be 

free of COVID-19. This can be seen from the value of 𝑅0 = 0.9906. In addition, all eigenvalues 

𝐸0 are negative, which means that the disease-free equilibrium point of the model is stable. And 

so on, smaller value of the interaction parameter causes 𝑅0 ≪ 1, which means the less contact the 

people of Makassar City has with each other, the greater the chance of freeing Makassar City from 

COVID-19. To evaluate the effect of interaction rate (𝛽), we plot the different parameter values 
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which are prensented in figure 5 and 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Graph of population when 𝛽 = 0.65 
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Figure 6. Graph of population when 𝛽 = 0.3 
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Based on Figure 5 and 6, with different initial values, the graph will converge to the stable 

equilibrium point. In Figure 5 when we give parameter value of interaction rate is 0.65 or people 

in Makassar City continues interact intensly without social distancing, the stable equilibrium point 

is the endemic equilibrium point, meaning that COVID-19 still exist in Makassar City. Otherwise 

in Figure 6, when we give parameter value of interaction rate is 0.3 or people in Makassar City 

reduce intraction with other individual, the stable equilibrium point is the free-disease equilibrium 

point, meaning that COVID-19 will disappear from Makassar City. 

 

6. CONCLUSIONS 

SCPUR mathematical model for the spread of COVID-19 is an extension of the previous model. 

In this model, a new compartment is added, namely the compartment of individuals who have 

recovered from disease. Then, the proportion of body immunity to the increase of infected 

individuals, the proportion of the implementation of large-scale social restrictions to prevent the 

spread of the disease in Makassar City, and the proportion of quarantine as a healing process are 

also added. This SCPUR model has two equilibrium points, namely the disease-free equilibrium 

point and the endemic equilibrium point. The disease-free equilibrium point is stable, if the 

eigenvalues of the disease-free equilibrium point are all negative, so is the endemic equilibrium 

point. In the initial state, the basic reproduction number is 1.386. After we analysis the sensitivity, 

the value of the basic reproduction number can be lowered to 0.9908 and beyond. Then, based on 

the numerical simulations carried out, the results show that the best solution in reducing the spread 

of the COVID 19 in Makassar City is by increasing the implementation of large-scale social 

restrictions so that interaction or contact between individuals could be reduced. In this study, 

applying large-scale social restrictions on at least 34.23% of areas in Makassar City can free 

Makassar City from COVID-19.  
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