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Abstract. In a graph G, a set S ⊆ V (G) is called a geodetic set if every vertex of G lies on a shortest u− v

path for some u,v ∈ S, the minimum cardinality among all geodetic sets is called the geodetic number and is

denoted by gn(G). A set C ⊆ V (G) is called a chromatic set if C contains all vertices of different colors in G,

the minimum cardinality among all chromatic sets is called the chromatic number and is denoted by χ(G). A

geochromatic set Sc ⊆ V (G) is both a geodetic set and a chromatic set. The geochromatic number χgc(G) of

G is the minimum cardinality among all geochromatic sets of G. In this paper we determine the geochromatic

number of cartesian product of standard graphs and derive general results, that prove some of the existing results

on products as particular cases. Also some of the existing results are shown to be incorrect.

Keywords: geodetic number; chromatic number; geochromatic number; Cartesian product; chromatic set; geo-

detic set.
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1. INTRODUCTION

It is a natural phenomenon in Mathematics, especially in Graph Theory to combine two dif-

ferent concepts under a single umbrella and study it in contrast to the individual parameters. We

see in literature that, the concepts of geodomination [6], distance domination [6], independent
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domination [6], connected domination [6], biconnected domination [11], harmonious coloring

[9], eccentric coloring [10], etc, dealing with more than one concept. One more such a param-

eter is that of geochromaticity. The geochromatic number of a graph intertwines coloring and

geodeticity, the two most important, widely applied graph parameters individually, which have

been studied by researchers extensively. This concept was introduced in [14] and was further

studied by [15].

The geodetic number of a graph was mainly introduced to study the distance convexity, and

studied in detail by numerous researchers [5], [4], [7], etc. The history of coloring and chro-

matic number is not new to mankind either, as it dates back to the late 19th century, with the

formal quoting of the famous Four Color Theorem. Since then, there has been a flooding of

articles to prove it. But till today an elegant proof is awaited. Adding to it, many variations of

coloring, chromatic polynomial, have enriched the area beyond one’s imagination. Thousands

of research papers speak volume of growth in the chromatic number related concepts. Several

open problems, conjectures make people work on these areas till date. Major reason is that of its

applicability in wide variety of fields such as computer science, communication network, sched-

uling problems, storage problems, placement problems, etc. find many non-graph theorists to

show interest in the field.

In this paper we determine the geochromatic number of cartesian product of some standard

graphs. Since the geochromatic number is a combination of geodeticity and chromaticity, it

acts as a double layered measure that covers all the vertices in a graph containing all color class

representations. In a real world network model, a geochromatic set acts as the minimum number

of all kinds of facility (emergency service) centers to be located in such a way that every node in

the network can be reached using shortest distance paths (geodesics) from these facility centers.

2. DEFINITIONS AND PRELIMINARY RESULTS

All the terms undefined here are in the sense of Buckley and Harary [3].

Here we consider a finite graph without loops and multiple edges. For any graph G the set of

vertices is denoted by V (G) and the edge set by E(G). The order and size of G are denoted by

p and q respectively.

Let u and v be vertices of a connected graph G. A shortest u− v path is also called a u,v -
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geodesic.

The distance between two vertices u and v is defined as the length of a u,v- geodesic in G and

is denoted by dG(u,v) or d(u,v) if G is clear from the context.

The eccentricity of vertex v in a graph G denoted by ecc(v) is the maximum distance from v to

any other vertex of G. The diameter of G, denoted by diam(G) is the maximum eccentricity of

vertices in G, and radius is the minimum such eccentricity denoted by rad(G).

Definition 2.1. [3] A vertex v of G is a peripheral vertex if ecc(v) = diam(G).

Definition 2.2. [3] The set of all peripheral vertices of G is called the periphery and is denoted

by P(G). That is, P(G) = {v ∈V (G) : e(v) = diam(G)}.

Definition 2.3. [3] A graph G is said to be self-centered if diam(G) = rad(G).

Definition 2.4. [1] If each vertex of a graph G has exactly one eccentric vertex, then G is called

a unique eccentric vertex graph.

Definition 2.5. [5] The (geodesic) interval I(u,v) between u and v is the set of all vertices on

all shortest u−v paths. Given a set S⊆V (G)), its geodetic closure I[S] is the set of all vertices

lying on some shortest path joining two vertices of S. Thus,

I[S] = {v ∈V (G) : v ∈ I(x,y),x,y ∈ S} =
⋃

x,y I(x,y).

A set S ⊆ V (G) is called a geodetic set in G if I[S] = V (G) ; that is every vertex in G lies on

some geodesic between two vertices from S. The geodetic number gn(G) of a graph G is the

minimum cardinality of a geodetic set in G.

Definition 2.6. [12] A n-vertex coloring of G is an assignment of n colors 1,2,3,....n to the

vertices of G. The coloring is proper if no two adjacent vertices have the same color.

Definition 2.7. [12] A set C ⊆V (G) is called chromatic set if C contains all vertices belonging

to each color class. Chromatic number of G is the minimum cardinality among all the chromatic

sets of G, that is, χ(G)={ min|Ci|/Ci is a chromatic set of G}.

If χ(G) = n, then G is said to be n-chromatic where n≤ p.
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Definition 2.8. [14] A set Sc of vertices in G is said to be geochromatic set, if Sc is both a

geodetic set and a chromatic set. The minimum cardinality of a geochromatic set of G is its

geochromatic number (GCN) and is denoted by χgc(G). A geochromatic set of size χgc(G) is

said to be χgc-set.

Definition 2.9. [4] A vertex v in G is an extreme vertex if the subgraph induced by its neighbor-

hood is complete.

Definition 2.10. [5] Let G be a graph and let S = {x1,x2, ...,xk} be a geodetic set of G, then S is

a linear geodetic set if for any x∈V (G) there exists an index i, 1 < i < k such that x∈ I[xi,xi+1].

Examples of graphs having linear geodetic sets are odd cycles.

Definition 2.11. [5] Let G be a graph. If S is a geodetic set of G such that, for all u ∈V (G)\S,

for all v,w ∈ S : u ∈ I[v,w] then S is a complete geodetic set of G.

Examples of graphs having complete minimum geodetic sets are paths, even cycles, complete

graphs.

The following results are used in proving our results:

Theorem 2.1. [2] Every geodetic set of a graph contains its extreme vertices.

Theorem 2.2. [5] If G is a non trivial connected graph of order p and diameter d, then gn(G)≤

p−d +1.

Theorem 2.3. [1] If every chromatic set of a graph G contains k vertices, then G has k vertices

of degree at least k−1.

Theorem 2.4. [10] Every minimum chromatic set of a graph G contains at most (∆(G)+ 1)

vertices.

Theorem 2.5. [10] If G=Kt , a complete graph on t vertices, then V (G) is the unique chromatic

set of G.
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3. GEOCHROMATIC NUMBER OF CARTESIAN PRODUCT OF GRAPHS

We establish the geochromatic number of graphs resulting from cartesian product of two

graphs. The cartesian product of graphs is one of the fundamental types of graph products. We

first give the definitions and preliminary results pertaining to cartesian products on chromaticity

and geodeticity, then get the results on geochromatic number.

Definition 3.1. [8] The cartesian product G�H of graphs G and H is the graph with vertex set

V (G)×V (H) in which vertices (g,h) and (g′,h′) are adjacent whenever gg′ ∈ E(G) and h = h′

or g = g′ and hh′ ∈ E(H).

By [13] the most important metric property of the cartesian product operation can be written

for any two graphs G and H as

dG�H((g,h),(g′,h′)) = dG(g,g′)+dH(h,h′).

Theorem 3.1. [8] For any two graphs G and H, χ(G�H) = max{χ(G),χ(H)}.

Remark 1. In the cartesian product color assignment is given as follows, whenever χ(G) ≥

χ(H), let g : V (G)→{0,1, ...,χ(G)−1} be a coloring of G and h : V (H)→{0,1, ...,χ(H)−1}

be a coloring of H. Hence a color assignment can be given for G�H as f : V (G�H)→

{0,1, ...,χ(G)−1}, defined by f (a,x) = g(a)+h(x)(mod χ(G)).

Theorem 3.2. [13] Let X = G�H be the cartesian product of connected graphs G and H and

let (g,h), (g
′
,h
′
) be vertices of X then, IX [(g,h),(g

′
,h
′
)] = IG[(g,g

′
)]× IH [(h,h

′
)]. Moreover,

IX [(g,h),(g
′
,h
′
)] = IX [(g

′
,h),(g,h

′
)].

Theorem 3.3. [2] For any graphs G and H, gn(G) =m≥ gn(H) = n≥ 2, then m≤ gn(G�H)≤

mn−n.

Theorem 3.4. [2] Let G and H be graphs on at least two vertices with gn(G) = m and let

gn(H) = n. Suppose that both G and H contain linear minimum geodetic sets, then gn(G�H)≤⌊
mn
2

⌋
.

Theorem 3.5. [5] Let G be a graph on at least two vertices that admits a linear minimum

geodetic set and let H be a graph with gn(H) = 2, then gn(G�H) = gn(G).
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Theorem 3.6. [2] Let G and H be non trivial graphs, both being non trivial graphs hav-

ing complete minimum geodetic sets. Let H be a graph with gn(H) = 2 then gn(G�H) =

max{gn(G),gn(H)}.

Theorem 3.7. [2] For any two trees T1 and T2, gn(T1�T2) = max{gn(T1),gn(T2)}.

Now we prove results on cartesian product of graphs and establish geochromatic number.

First one for the simplest grid graphs.

Theorem 3.8. For the cartesian product of two paths, that is, the grid graphs, the geochromatic

number is given by,

χgc(Pm�Pn) =

 2, for m 6= n, and one of m or n is even,

3, for m = n, and for m 6= n, with both m and n odd or both even.

Proof. We know that the cartesian product of two paths is the grid graph. Let G denote Pm�Pn.

By the structure of G, it is clear that it has mn vertices and 2mn−m−n edges, with ∆(G) = 4

and δ (G) = 2. And there are exactly four vertices of degree 2 (the corner vertices) and the

remaining of degree 3 and 4.

By Theorem 3.1 [8], we know that χ(Pm�Pn) = 2. From Theorem 3.7 [2], we have

gn(Pm�Pn) = 2. Now to find the geochromatic number and sets, we use the similar notation

as in [2] and get them depending on the values of m and n. We label the vertices of Pm by

{a1,a2, .....,am} and vertices of Pn by {b1,b2, .....,bn}.

Case 1. m 6= n, and one of them is odd.

In this case we get two possible geodetic bases {(a1,b1),(am,bn)} or {(a1,bn),

(am,b1)} as Pm and Pn have complete minimum geodetic sets. We know that the periphery P(G)

is {(a1,b1),(am,bn)} or {(a1,bn),(am,b1)}. And hence the pair of vertices forming the geo-

detic bases are at diameter distance. Since m or n is odd, G is bipartite and hence bi-colorable.

Also the pairs of vertices in each of the geodetic bases belongs to different color classes, as

diameter(G) is odd, thereby forming a chromatic set also, proving χgc(Pm�Pn) = 2, with the

same geodetic and chromatic sets.

Case 2. m = n or m 6= n, both m and n either odd or even.

As in Case 1, here also we get the geodetic bases as {(a1,b1),(am,bn)} or {(a1,bn),
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(am,b1))}. For the values of m and n chosen, we see that the diameter of G is even. Hence the

vertices of each geodetic base lie in the same color class, not resulting in a chromatic set. As

G is bi-colorable, we see that one color class representation will be missed in both the geodetic

bases. To get the same, we pick a vertex belonging to the other color class to make a chromatic

set. Hence χgc(Pm�Pn) = 3.

Remark 2. In [15], the authors have claimed that χgc(P2�Pn) = 2 and 4, for the ladder graph,

for all n. But by referring to the above result, we see that it is a particular case of the above

theorem. Therefore, the result proved by [15] stands incorrect, because depending on the value

of n, whether it is odd or even, χgc(P2�Pn) = 2 or 3 respectively. Hence we get the following

corollary.

Corollary 3.1. For the ladder graph P2�Pn, χgc(P2�Pn) =

 2, for n odd,

3, for n even.

�

Next result deals with one of the famous class of graphs which arise from cartesian product

of K′2s, namely the hypercubes.

Theorem 3.9. For the hypercube of dimension n, the geochromatic number is given by

χgc(Qn) =

 2, for n even,

3, for n odd.

Proof. It is clear that χ(Qn) = 2, as Qn is bipartite. Also gn(G) = 2, since Qn is a unique

eccentric vertex graph in which the geodetic base consists of a vertex and its eccentric vertex.

We can get geochromatic sets with two different cases, based on the value of n.

Case 1. If n is odd.

Whenever n is odd, the geodetic base consists of the vertices of different color classes as they

are at odd distance, making a chromatic set also. Therefore χgc(Qn) = 2.

Case 2. If n is even.

Whenever n is even, the diameter is even, hence a geodetic base consists of vertices of the same

color class not making a chromatic set. And no pair of vertices belonging to both the color
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classes make a geodetic set. Hence, we add a vertex from the second color class to a geodetic

base, to get a geochromatic set. Therefore, χgc(Qn) = 3. �

Theorem 3.10. For the cartesian product of cycle Cm with path Pn, the geochromatic number is

given by, χgc(Cm�Pn) = 2 or 3.

Proof. We label the vertices of Cm by {a1,a2,a3, ...,am} and the vertices of Pn by {b1,b2,b3, ...,

bn}. The cycle Cm is bi-colorable, if m is even, containing complete minimum geodetic set and

it is 3 colorable if m is odd, containing linear minimum geodetic set. Pn is bi-colorable having

a complete minimum geodetic set. The cartesian product Cm�Pn has ∆(G) = 4 and δ (G) = 3.

We find the geochromatic set of Cm�Pn based on the values of m and n.

Case 1: For m = 2k, k ≥ 2.

By using Theorem 3.1 [8], we get χ(C2k�Pn) = 2, as both are bipartite. The complete min-

imum geodetic sets are S = {ai,ai+k}, where ai+k is the eccentric vertex of ai, for 1 ≤ i ≤ k

and T = {b1,bn}, respectively. Then, S×T = {(ai,b1),(ai+k,bn)} or {(ai,bn),(ai+k,b1)} is the

geodetic set of C2k�Pn. Since C2k is self-centered, unique eccentric vertex graph, all vertices

are eccentric vertices and diam(C2k) = d(ai,ai+k) = k.

Referring to Remark 1 the color assignments are given by mappings g : V (C2k)→{0,1} and

h : V (Pn)→{0,1}. Hence f : V (C2k�Pn)→{0,1}, defined by f (a,x) = g(a)+h(x)(mod 2).

The color pattern can be written as follows:

g(ai) =

 0, for all odd i,

1, for all even i.

h(ai) =

 0, for all odd i,

1, for all even i.
The color assignment for the vertices of S× T can be obtained by using the distances as

follows, d((ai,b1),(a j,bn)) = d(ai,ai+k)+d(b1,bn) = k+n−1. Here we get two sub cases to

find the geochromatic set.

Subcase (i): If d((ai,b1),(ai+k,bn)) or d((ai,bn),(ai+k,b1)) is odd, then the geodetic pair of

vertices lie in both color classes, making it a chromatic set too. This happens if the following

conditions are satisfied by the values i, j, k and n:
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(i) k even, i odd, n even; since and f (ai,b1) = g(ai)+h(b1) = 0+0 = 0 and f (ai+k,bn) =

g(ai+k)+h(bn) = 0+1 = 1.

(ii) k even, i even, n even; since, and f (ai,b1) = 1, f (ai+k,bn) = 0.

(iii) k odd, i odd, n odd; since, and f (ai,b1) = 0, f (ai+k,bn) = 1.

(iv) k odd, i even, n even; since, and f (ai,b1) = 1 and f (ai+k,bn) = 0.

Hence, in all the above conditions χgc(C2k�Pn) = 2.

Subcase (ii): If d((ai,b1),(ai+k,bn)) or d((ai,bn),(ai+k,b1)) is even, then these geodetic pair

of vertices lie in the same color class, thereby not forming a chromatic set. This happens if the

following conditions are satisfied by the values i, j, k and n:

(i) k even, i odd, n odd; since, and f (ai,b1) = g(ai)+h(b1) = 0+0 = 0 and f (ai+k,b1) =

g(ai+k)+h(bn) = 0+0 = 0.

(ii) k even, i even, n odd; since, and f (ai,b1) = 1 and f (ai+k,bn) = 1.

(iii) k odd, i odd, n even; since, and f (ai,b1) = 0 and f (ai+k,bn) = 0.

(iv) k odd, i even, n odd; since, and f (ai,b1) = 1 and f (ai+k,bn) = 1.

Hence we add a vertex from the missed color class to make it geochromatic set. There-

fore, in all the above cases χgc(C2k�Pn) = 3.

Case 2 : For m = 2k+1, k ≥ 1.

By using Theorem 3.1 [8], we have χ(Cm�Pn) = 3. The coloring pattern is defined as follows:

g(ai) =


0, for all odd i, and i 6= m,

1, for all even i,

2, for i = m.

h(bi′ ) =

 0, for all odd i
′
, i
′ 6= n,

1, for all even i
′
and i

′
= n.

We know that, for m = 2k+ 1, the odd cycle has a geodetic set S = {ai,ai+1,ai+k+1} con-

sisting of three vertices, a vertex ai and its two eccentric vertices ai+k and ai+k+1, such that

d(ai,ai+k) = d(ai,ai+k+1) = k. But the geodetic set T of Pn remains unchanged as T = {b1,bn}.

Then, the geodetic set of C2k+1�Pn is given by

{(ai,b1),(ai+k,bn),(ai+k+1,bn)} or {(ai,bn),(ai+k,b1),(ai+k+1,b1)}. Hence gn(C2k+1�Pn) =
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3 and the diam(C2k+1�Pn) = k+(n−1). Now we check whether the geodetic sets formed are

chromatic sets or not, based on the values of i, k, n.

Subcase (i): Suppose d((ai,b1),(ai+k,bn)) and d((ai,b1),(ai+k+1,bn)) or d((ai,bn), (ai+k,b1))

and d((ai,bn),(ai+k+1,b1)) are odd, that is the diameter k+ n− 1 is odd. This means that the

following cases arise depending on the values of i and in each case we show that the color

assignment is at most 3, so as to prove the geochromatic number to be 3.

(i) For k even, n even, i odd and i=m, we have, f (ai,b1)= g(ai)+h(b1)= 2; f (a(i+k),bn)=

g(a(i+k))+h(bn) = 1; f (a(i+k+1),bn) = g(a(i+k+1))+h(bn) = 2.

(ii) k even, n even, i odd and i 6= m, we have, f (ai,b1) = 0, f (ai+k,bn) = 1, f (ai+k+1,bn) =

2.

(iii) k even, n even, i even, we have, f (ai,b1) = 1, f (ai+k,bn) = 2, f (ai+k+1,bn) = 1.

(iv) k odd, n odd, i odd and i = m, we have, f (ai,b1) = 2 = f (ai+k,bn),

f (ai+k+1,bn) = 0.

(v) k odd, n odd, i odd i 6= m, we get, f (ai,b1) = 0, f (ai+k,bn) = 1,

f (ai+k+1,bn) = 2.

(vi) k odd, n odd, i even, we get, f (ai,b1) = 1, f (ai+k,bn) = 0, f (ai+k+1,bn) = 1.

Observing all the above cases we see that all sets are not geochromatic sets. Hence, we consider

the sets containing all color classes. So we get only two chromatic sets (shown in bold, above)

to get χgc(C2k+1�Pn) = 3.

Subcase (ii): If k+n−1 is even, as in the above case, we get the following depending on i.

(i) For k even, n odd, i odd and i = m, we have, f (ai,b1) = 2 = f (ai+k,bn), f (ai+k+1,bn) =

1.

(ii) k even, n odd, i even and i 6= m, we have f (ai,b1) = 2, f (ai+k,bn) = 1, f (ai+k+1,bn) =

0.

(iii) k even, n odd, i even, f (ai,b1) = 1, f (ai+k,bn) = 1, f (ai+k+1,bn) = 0.

(iv) k odd, n even, i odd and i = m, we get f (ai,b1) = 2 = f (ai+k,bn), f (ai+k+1,bn) = 1.

(v) k odd, n even, i odd, i 6= m, we get, f (ai,b1) = 2 = f (ai+k,bn), f (ai+k+1,bn) = 1.
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(vi) k even, n even, i even we get, f (ai,b1) = 1= f (ai+k,bn), f (ai+k+1,bn) = 2.

Here also all sets are not geochromatic sets, we consider the sets containing all color classes for

minimality. Hence in this case we get χgc(C2k+1�Pn) = 3.

�

Theorem 3.11. For the cartesian product of cycle Cm with cycle Cn the geochromatic number

is given by, χgc(Cm�Cn) = 2,3 or 5.

Proof. We label the vertices of Cm by V (Cm) = {a1,a2,a3, ...,am} and the vertices of Cn by

V (Cn) = {b1,b2,b3, ...,bn}. It is clear that Cm�Cn is a 4 regular graph, self-centered graph. The

geochromatic sets can be obtained depending on the values of m and n as follows:

Case 1. Both m and n are even.

Let m = 2k, k ≥ 2 and n = 2l, l ≥ 2 using Theorem 3.1 [8], we get the χ(C2k�C2l) = 2, as

both are bipartite. Using Theorem 3.7 [2], we get gn(C2k�C2l) = 2, as both C2k and C2l have

complete minimum geodetic sets.

Let the geodetic base of C2k be denoted as S = {ai,ai+k}, where ai+k is the eccentric vertex

of ai as diam(C2k) = k. Similarly, T = {bi′ ,bi′+l} where bi′+l is the eccentric vertex of bi′ as

diam(C2k) = l, is the geodetic base of C2l .

Now a geodetic base of C2k�C2l is of the form {(ai,bi′ ),(ai+k,bi′+l)} or {(ai,bi′+l),(ai+k,bi′ )}

with d((ai,bi′ ),(ai+k,bi′+l)) = d((ai,ai+k)+ d(bi′ ,bi′+)) = d((ai,bi′+l),(ai+k,bi′+l)) = k + l.

The color assignment is as follows to find the chromatic number as well as chromatic sets:

g(ai) =

 0, for all odd i,

1, for all even i.

h(bi′ ) =

 0, for all odd i
′
,

1, for all even i
′
.

Subcase (i): If d((ai,bi′ ), (ai+k,bi′+l)) or d((ai,bi′+l), (ai+k,bi′ )), that is, the

diam(C2k�C2l) = k+ l is odd, then the geodetic pair of vertices lie in both color classes, making

it a chromatic set too. This happens if the following conditions are satisfied by i, i
′
, k, l.

(i) For k even, l odd, i odd, i
′

odd, we have, f (ai,bi′ ) = g(ai) + h(bi′ )(mod 2) = 0,

f (ai+k,bi′+l) =g(ai+k)+h(bi′+l)(mod 2) = 1.

(ii) For k even, l odd, i odd, i
′
even, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 0.
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(iii) For k even, l odd, i even, i
′
even, we have, f (ai,bi′ ) = 0, f (ai+k,bi′+l) = 1.

(iv) For k even, l odd, i odd, i
′
odd, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 0.

Similar argument holds good if k is odd, l is even. Hence in this case we get χgc(Cm�Cn) = 2.

If d((ai,bi′ ),(ai+k,bi′+l)) or d((ai,bi′+l),(ai+k,bi′ )) is even, then we get two more subcases,

one in which both k and l are even and the other in which both k and l are odd.

Subcase (ii): Both k and l even the following conditions are satisfied by i, i
′
, k, l.

(i) For k even, l even, i odd, i
′

odd, we have, f (ai,bi′ ) = g(ai) + h(b
′
i)(mod 2) = 0,

f (ai+k,bi′+l) = g(ai+k)+h(bi′+l)(mod 2) = 0.

(ii) For k even, l even, i odd, i
′
even, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 1.

(iii) For k even, l even, i even, i
′
odd, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 1.

(iv) For k even, l even, i even, i
′
even, we have, f (ai,bi′ ) = 0, f (ai+k,bi′+l) = 0.

Hence the geodetic set is not a chromatic set, as geodetic sets contain the same color class

vertices. Hence, to get representation from both color classes we add a vertex from the other

color class, and to get χgc(Cm�Cn) = 3.

Subcase (iii): Both k and l odd, the following conditions are satisfied by i, i
′

(i) For i and i
′

odd, we have, f (ai,bi′ ) = g(ai) + h(b
′
i)(mod 2) = 0, f (ai+k,bi′+l) =

g(ai+k)+h(bi′+l)(mod 2) = 0.

(ii) For i odd, i
′
even, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 1.

(iii) For i even, i
′
even, we have, f (ai,bi′ ) = 0, f (ai+k,bi′+l) = 0.

(iv) For i even, i
′
odd, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 1.

From these cases it is clear that the geodetic sets do not form chromatic sets, since for any value

of i, i
′
, k, l we do not get both color class representation. To form a geochromatic set, we add a

vertex from the missing color class, therefore, we get χgc(Cm�Cn) = 3.

Case 2. m odd and n even.

Let m = 2k + 1, k ≥ 1 and n = 2l, l ≥ 2. Again by using Theorem 3.1 [8], we have

χgc(C2k+1�C2l) = 3 and the color assignment is as follows:
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g(ai) =


0, for all odd i, and i 6= m,

1, for all even i,

2, for i = m.

h(bi′ ) =

 0, for all odd i
′
,

1, for all even i
′
.

In C2k+1, the geodetic set is S = {ai,ai+k,ai+k+1}, as gn(C2k+1) = 3 and in C2l we get T =

{bi,bi′+l} as the geodetic set. By using Theorem 3.7 [2] we get gn(C2k+1�C2l)

= max{gn(C2k+1),gn(C2l)}= 3. The geodetic set of C2k+1�C2l is given by {(ai,bi′ ), (ai+k,bi′+l),

(ai+k+1,bi′+l)} or {(ai,bi′+l), (ai+k,bi′ ), (ai+k+1,bi′ )}with d((ai,bi′ ), (ai+k,bi′+l)) = d(ai,ai+k)

+ d(bi′ ,bi′+l) = d((ai,ai+k+1) + d(bi′ ,bi′+l)) = k+ l.

Here also subcases arise depending on the parity of k and l.

Subcase (i): If k+ l is odd then either k is even and l is odd or vice versa.

First let us consider k even, l odd, then values of i, i
′
give rise to the following.

(i) For i odd and i 6= m, i
′ odd, we have, f (ai,bi′ ) = g(ai) + h(bi′ )(mod 2) = 0,

f (ai+k,bi′+l) = g(ai+k)+h(bi′+l)(mod 2) = 1, f (ai+k+1,bi′+l) = g(ai+k+1)+h(bi′+l)

(mod 2) = 2.

(ii) For i odd i = m, i
′

odd, we have, f (ai,bi′ ) = 2, f (ai+k, bi′+l) = 1, f (ai+k+1,bi′+l) = 2

= f (ai+k+1,bi′+l).

(iii) For i odd i 6= m, i
′
even, we have, f (ai,bi′ ) = f (ai+k+1,bi′+l) = 1, f (ai+k,bi′+1) = 0.

(iv) For i odd i = m, i
′
even, we have, f (ai,bi′ ) = 0 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 1.

(v) For i even i
′ even, we have, f (ai,bi′ ) = 2, f (ai+k,bi′+l) = 1, f (ai+k+1,bi′+l) = 0.

(vi) For i even i
′
odd, we have, f (ai,bi′ ) = 1, f (ai+k,bi′+l) = 2, f (ai+k+1,bi′+l) = 1.

Hence in two of the above cases a geodetic set is a chromatic set to give χgc(C2k+1�C2l) = 3.

Similar argument holds when k is odd and l is even.

If k+ l is even, then we get again two more subcases, k and l both even and k and l both odd.

Subcase (ii): Both k and l are even, we have the following conditions for i, i
′

(i) For i odd and i 6= m, i
′

odd, we have, f (ai,bi′ ) = g(ai) + h(bi′ )(mod 2) = 0,

f (ai+k,bi′+l) = g(ai+k) + h(bi′+l)(mod 2) = 0, f (ai+k+1,bi′+l) =

g(ai+k+1 +h(bi′+l)(mod 2) = 1.
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(ii) For i odd, i = m, i
′
odd, we have, f (ai,bi′ ) = 2 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 1.

(iii) For i odd, i 6= m, i
′
even, we have, f (ai,bi′ )=1 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 2.

(iv) For i odd, i = m, i
′
even, we have, f (ai,bi′ ) =0 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 2.

(v) For i even, i
′
even, we have, f (ai,bi′ )=2 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 1.

(vi) For i even i
′
odd, we have, f (ai,bi′ ) = 1 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 0.

Here no geodetic set is a chromatic set. To make it a chromatic set we need to add one more

vertex of missed color class. But, observing all the conditions for k, l, i, i
′
, such an assignment

results in a chromatic set having at least 4 vertices. Hence for the values chosen a geochromatic

set of minimum cardinality is not possible.

Subcase (iii): Both k and l odd, we have the following conditions for i, i
′
.

(i) For i odd and i 6= m, i
′ odd, we have, f (ai,bi′ ) =g(ai) + h(bi′ )(mod 2) = 0,

f (ai+k,bi′+l) =g(ai+k)+h(bi′+l)(mod 2) = 2, f (ai+k+1,bi′+l)

= g(ai+k+1)+h(bi′+l)(mod 2) = 1.

(ii) For i odd, i = m, i
′
odd, we have, f (ai,bi′ ) = 2 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 0.

(iii) For i odd, i 6= m, i
′
even, we have, f (ai,bi′ )=1 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 0.

(iv) For i odd, i=m, i
′ even, we have, f (ai,bi′ ) = 0, f (ai+k,bi′+l) = 1, f (ai+k+1,bi′+l) = 2.

(v) For i even, i
′
even, we have, f (ai,bi′ ) = 2, f (ai+k,bi′+l)= 1 = f (ai+k+1,bi′+l).

(vi) For i even, i
′
odd, we have, f (ai,bi′ ) = 1 = f (ai+k,bi′+l), f (ai+k+1,bi′+l) = 2.

By choosing a geodetic set containing all three color classes (in bold) we get a geochromatic

set χgc(Cm�Cn) = 3.

Case 3: If m is even and n odd.

The analysis is similar to Case 2, hence we can prove χgc(Cm�Cn) = 3 = χgc(C2k�C2l+1).

Case 4: Both m and n odd.

By using [8], the coloring pattern is given by,

g(ai) = h(bi) =


0, for all odd i, and i 6= m, and for all i

′
, i
′ 6= n,

1, for all even i and i
′
,

2, for i = m, i 6= n.
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By using [2] for any two graphs G and H, with gn(G) = k1 ≥ gn(H) = k2 ≥ 2, then we get

gn(G�H) ≤ k1k2− k2. Since we have G ≈ Cm and H ≈ Cn where both Cm and Cn have lin-

ear minimum geodetic sets, we get the geodetic number as gn(Cm�Cn) ≤ 3.3− 3 = 6. Hence

gn(Cm�Cn)≤ 6.

In C2k+1, the geodetic set is S = {ai,ai+k,ai+k+1}, as gn(C2k+1) = 3, where ai is any arbi-

trary vertex and ai+k and ai+k+1 are its two eccentric vertices. Similarly, in C2l+1 we have

T = {bi′ ,bi′+l,bi′+l+1} as a geodetic set. Then by using Theorem 3.7 [2], the geodetic set

of C2k+1�C2l+1 is given by S× T = {(ai,bi′ ), (ai+k,bi′+l), (ai+k,bi′+l+1), (ai+k+1,bi′+l+1),

(ai+k+1,bi′+l+1)} with d((ai,bi′ ), (ai+k,bi′+l)) = k + l = d((ai,bi′ ),

(ai+k+1,bi′+l+1)) =d((ai,bi′ ), (ai+k,bi′+l+1)) = d((ai,bi′ ), (ai+k+1,bi′+l)). Here also subcases

arise depending on the parity of k and l.

Subcase (i): If k+ l is odd, then either k is even and l is odd or vice versa. First let us consider

k even, l odd, then values of i, i
′
give rise to the following.

(i) For i odd and i 6= m, i
′
odd, i

′ 6= n, we have, f (ai,bi′ ) = g(ai)+h(bi′ ) = 0, f (ai+k,bi′+l)

= g(ai+k)+ h(bi′+l) = 2, f (ai+k,bi′+l+1) =g(ai+k)+ h(bi′+l+1) = 0, f (ai+k+1,bi′+l) =

g(ai+k+1)+h(bi′+l) = 2, f (ai+k+1,bi′+l+1) = g(ai+k+1)+h(bi′+l+1) = 1.

(ii) For i odd and i 6= m, i
′

odd, i
′
= n, we have, f (ai,bi′ ) = 2, f (ai+k,bi′+l) = 1,

f (ai+k,bi′+l+1) = 2 = f (ai+k+1,bi′+l), f (ai+k+1,bi′+l+1) = 0.

(iii) For i odd and i = m, i
′

odd and i
′ 6= n, we have, f (ai,bi′ ) = 2 = f (ai+k+1,bi′+l),

f (ai+k,bi′+l) = 0 = f (ai+k,bi′+l+1), f (ai+k+1,bi′+l+1) = 1.

(iv) For i odd and i = m, i
′

odd and i
′
= n, we have, f (ai,bi′ ) =1 = f (ai+k,bi′+l),

f (ai+k,bi′+l+1) = 1, f (ai+k+1,bi+l) = 2, f (ai+k+1,bi′+l+1) = 0.

(v) For i odd and i 6= m, i
′

even, we have f (ai,bi′ ) =0 = f (ai+k,bi′+l) = f (ai+k,bi′+l+1),

f (ai+k+1,bi′+l) = 1, f (ai+k+1,bi′+l+1) = 2.

(vi) For i odd and i = m, i
′

even, we have f (ai,bi′ ) = 0, (ai+k+1,bi′+l) = 1, f (ai+k,bi′+l)

= 2 = f (ai+k,bi′+l+1) = f (ai+k+1,bi′+l+1).

(vii) For i even and i
′

odd, i
′ 6= n, we have, f (ai+k+1,bi′+l+1) = 0, f (ai,bi′ )=1 = f (ai+k,

bi′+l+1)= f (ai+k+1,bi′+l), f (ai+k,bi′+l) = 2.
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(viii) For i even and i
′
odd, i

′
= n, we have, f (ai,bi′ )= 0, f (ai+k,bi′+l+1) =1= f (ai+k+1,bi′+l),

f (ai+k+1,bi′+l+1) = f (ai+k,bi′+l) = 2.

(ix) For i even and i
′

even, we have, f (ai,bi′ )=2 = f (ai+k,bi+l+1), f (ai+k+1,bi′+l) = 0,

f (ai+k+1,bi′+l+1)=1 = f (ai+k,bi′+l).

Subcase (ii): If k+ l is even with k even and l even.

(i) For i odd and i 6= m, i
′
odd, i

′ 6= n, we have f (ai,bi′ )=0= f (ai+k,bi′+l), f (ai+k,bi′+l+1)

=1 = f (ai+k+1,bi′+l), f (ai+k+1,bi′+l+1) = 2.

(ii) For i odd and i 6= m, i
′

odd and i
′
= n, we have, f (ai,bi′ ) =2 = f (ai+k,bi′+l),

f (ai+k,bi′+l+1) = 1, f (ai+k+1,bi′+l) = 0, f (ai+k+1,bi′+l+1) = 2.

(iii) For i odd and i=m, i
′
odd and i

′ 6= n, we have, f (ai+k,bi′+l+1) = 0, f (ai+k+1,bi′+l) = 1,

f (ai,bi′ )=2= f (ai+k,bi′+l) = f (ai+k+1,bi′+l+1).

(iv) For i odd and i = m, i
′
odd and i

′
= n, we have f (ai,bi′ ) =1 = f (ai+k,bi′+l), f (ai+k,bi′+l)

= 0 = f (ai+k+1,bi′+l), f (ai+k+1,bi′+l+1) = 2.

(v) For i odd and i 6= m, i
′

even, we have, f (ai,bi′ ) =1 = f (ai+k,bi′+l) = f (ai+k+1,bi′+l+1),

f (ai+k,bi′+l+1) = 0, f (ai+k+1,bi′+l) = 2.

(vi) For i odd and i = m, i
′
even, we have, f (ai,bi′ ) = f (ai+k,bi′+l) = 0, f (ai+k+1,bi′+l) = 1

= f (ai+k+1,bi′+l+1), f (ai+k,bi′+l+1) = 2.

(vii) For i even and i
′
odd, 6= n, we have, f (ai+k+1,bi′+l) = 0, f (ai+k,bi′+l+1) = 2, f (ai,bi′ )

= 1 = f (ai+k,bi′+l) = f (ai+k+1,bi′+l+1).

(viii) For i even and i
′
odd, i

′
= n, we have, f (ai,bi′ ) = 0 = f (ai+k,bi′+1), f (ai+k,bi′+l+1) = 2

= f (ai+k+1,bi′+l), f (ai+k+1,bi′+l+1) = 1.

(ix) For i even and i
′
even, we have, f (ai,bi′ ) = 2 = f (ai+k,bi′+l), f (ai+k,bi′+l+1) = 1,

f (ai+k+1,bi′+l) = 1, f (ai+k+1,bi′+l+1) = 0.

Subcase (iii): If k+ l is even with k odd and l odd.

(i) For i odd and i 6=m, i
′
odd, i

′ 6= n, we have, f (ai,bi′ ) = 0 = f (ai+k+1),bi′+l+1), f (ai+k,bi′+l+1)

= 1 = f (ai+k+1,bi′+l), f (ai+k,bi′+l) = 2.

(ii) For i odd and i 6=m, i
′
odd and i

′
= n, we have, f (ai,bi′ ) = 2 = f (ai+k,bi′+l), f (ai+k,bi′+l+1)=

0, f (ai+k+1,bi′+l) = 1, f (ai+k+1,bi′+l+1) = 2.
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(iii) For i odd and i = m, i
′
odd and i

′ 6= n, we have, f (ai,bi′ ) = 0 = f (ai+k+1,bi′+l),

f (ai+k,bi′+l+1) = 1, f (ai+k,bi′+l) = 2 = f (ai+k+1,bi′+l+1).

(iv) For i odd and i = m, i
′

odd and i
′
= n, we have, f (ai+k,bi′+l) = 2, f (ai,bi′ ) = 0 =

f (ai+k,bi′+l+1) = f (ai+k+1,bi′+l), f (ai+k+1,bi′+l+1) = 1.

(v) For i odd and i 6= m, i
′

even, we have, f (ai,bi′ ) = 1 = f (ai+k+1,bi′+l+1), f (ai+k,bi′+l) = 0 =

f (ai+k+1,bi′+l), f (ai+k,bi′+l+1) = 2.

(vi) For i odd and i = m, i
′

even, we have, f (ai,bi′ ) = 0 = f (ai+k+1,bi′+l+1), f (ai+k,bi′+l) = 1,

f (ai+k,bi′+l+1) = 2 = f (ai+k+1,bi′+l).

(vii) For i even and i
′

odd, i
′ 6= n, we have, f (ai,bi′ ) = 1 = f (ai+k,bi′+l), f (ai+k,bi′+l+1) = 0,

f (ai+k+1,bi′+l) = 2, f (ai+k+1,bi′+l+1) = 1.

(viii) For i even and i
′
odd, i

′
= n, we have, f (ai,bi′ ) = 0 = f (ai+k+1,bi′+l+1), f (ai+k,bi′+l) = 1,

f (ai+k,bi′+l+1) = 2 = f (ai+k+1,bi′+l).

(ix) For i even and i
′

even, we get, f (ai,bi′ ) = 2 = f (ai+k+1,bi′+l+1), f (ai+k,bi′+l) = 0,

f (ai+k,bi′+l+1) = 1 = f (ai+k+1,bi′+l).

Here all the geodetic sets have cardinality 5 and are chromatic sets. But, χ(Cm�Cn) = 3. Hence

in all three subcases we have χgc(Cm�Cn) = 5. �

Theorem 3.12. For the cartesian product of complete graph Km with path Pn the geochromatic

number is given by, χgc(Km�Pn) =

 m, for n odd,

m+1, for n even.

Proof. We label the vertices of Km by {a1,a2,a3, ...am} and the vertices of Pn by {b1,b2,b3, ....,

bn}. In the cartesian product of Km�Pn, we have ∆(Km�Pn) = m+1 and δ (Km�Pn) = m. The

complete graph is m colorable and the path is bicolorable. The complete graph Km and path Pn

contain complete minimum geodetic sets. By Theorem 3.1 [8] χ(Km�Pn) = max{m,2} = m,

for m≥ 2 and by Theorem 3.7 [2] gn(Km�Pn)= max{m,2}= m, for m≥ 2.

Now to find geochromatic sets we use the structure of Km�Pn containing m copies of Pn

and n copies of Km. The minimum degree vertices form the periphery, and the periphery is

{(ai,b1),(a j,bn)} or {(ai,bn),(a j,b1)} for 1 ≤ i ≤ m,1 ≤ j ≤ n and i 6= j. It is clear that the

periphery forms a geodetic set. Now we check whether such a geodetic set is a chromatic set or

not. Here two cases arise based on the value of n.
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Case 1: If n is odd.

If n is odd then, d((ai,b1),(a j,bn)) = n or d((ai,bn),(a j,b1)) = n, we see that the diameter

of Km�Pn is odd. The geodetic base consists of all color classes resulting in a chromatic set

becoming a geochromatic set too. Hence χgc(Km�Pn) = m.

Case 2: If n is even.

If n is even then, d((ai,b1),(a j,bn)) = n or d((ai,bn),(a j,b1)) = n, we see that the diameter is

even. Hence the geodetic set is not a chromatic set as it contains vertices from repeated color

classes to make it a chromatic set forming a geochromatic set. Hence χgc(Km�Pn) = m+1. �

Theorem 3.13. For the cartesian product of complete graph Km with cycle Cn the geochromatic

number is given by, χgc(Km�Cn) =


m, for n even and n/2 even,

m+1, for n even and n/2 odd,

2m−1, for n odd.

Proof. Let the vertices of Km be {a1,a2,a3, ...,am} and the vertices of cycle Cn be {b1,b2,b3, ..,

bn}. It is clear from the structure that Km�Cn is a regular graph with regularity (m+ 1) and a

self-centered graph.

The complete graph Km is m colorable having a complete minimum geodetic set. Cn has a

complete minimum geodetic set if n is even and has a linear minimum geodetic set if n is odd.

And also if n is even then Cn is bicolorable where as Cn is 3 colorable if n is odd.

By Theorem 3.1 [8], we have χ(Km�Cn) =

 max{m,2}= m, if n is even,

max{m,3}= m, if n odd.

By Theorem 3.7 [2], we have gn(Km�Cn) =

 max{m,2}= m, if n is even,

max{m,3}= m, if n odd.
Case 1: If n is even.

In thus case the periphery of Km�Pn is {(ai,b j),(ai′ ,b j′ )} for i 6= i
′
,1 ≤ i, i

′ ≤ m and b j is

eccentric to b j′ ,1≤ j, j
′ ≤ n. Here two cases arise based on the value of n

2 .

Subcase (i): If n
2 is even.

Suppose n
2 is even then d((ai,b j),(ai′ ,b j′ )) is odd. Hence the vertices of geodetic base consist

of all color classes resulting in a chromatic set. Therefore χgc(Km�Cn) = m.



3884 MEDHA ITAGI HUILGOL, B. DIVYA

Subcase (ii): If n
2 is odd.

Suppose n
2 is odd then d((ai,b j),(ai′ ,b j′ )) is even. Hence the vertices of geodetic set do not

form a chromatic set as one of the color class vertex will be missing. Hence we add that to make

a geochromatic set, therefore χgc(Km�Cn) = m+1.

Case 2: If n is odd.

If n is odd, then d((ai,b j),(ai′ ,b j′ )), and d((ai,b j),d(ai′ ,b j′+1)) is even if m odd. And d((ai,b j),

(ai′ ,b j′ )), and d((ai,b j),d(ai′ ,b j′+1)) is odd if m even. Hence, the geodetic sets formed contain

all the color class vertices which make a chromatic set, thus forming a geochromatic set. Hence

χgc(Km�Cn) = 2m−1.

�

Theorem 3.14. For the cartesian product of complete graphs Km with m vertices and Kn with n

vertices the geochromatic number is given by,

χgc(Km�Kn) =


m, for m = n, m odd,

m+1, for m = n, m even,

max{m,n}, for m 6= n.

Proof. The cartesian product of two complete graphs is a regular, self-centered graph with ra-

dius 2. We label the vertices of Km by {a1,a2,a3, ...,am} and the vertices of Kn by {b1,b2,b3, ..,

bn}. Being complete graphs Km,Kn are m colorable and n colorable with complete minimum

geodetic sets respectively.

By Theorem 3.1 [8], χ(Km�Kn) = max{m,n}, for m≥ 2 and by Theorem 3.7 [2] gn(Km�Kn)

= max{m,2} for m≥ 2.

In Km�Kn the coloring pattern will be followed as in Remark 1. We have m copies of Kn and n

copies of Km such that each layer of V (Km�Kn) is a Km. Hence we get 0,1,2, ....,(m−1) colors

in each layer and m such layers exist. Therefore it is an arrangement of 0,1,2,3, .....(m− 1)

in each row and in each column such that no value repeats in that row or column. That is, it

is a permutation of 0,1,2,3, .....(m− 1) m times. A cyclic permutation results in a repetitive

m×m grid. Now we need to select m values from this array. Since a complete graph has a

complete minimum geodetic set, from [2], a minimum geodetic set is comprised of the vertices



GEOCHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS 3885

lying on the main diagonal of such a grid. Hence each chromatic set is a geodetic set too, to

give χgc(Km�Kn) = m.

If m = n and m is even, then it is impossible to get all distinct m vertices from each color class

along the main diagonal. In such a condition, one color class representation is missed. Hence

adding it to a chromatic set gives χgc(Km�Kn) = m+1.

If m 6= n, then a chromatic set is considered first, and checked for its geodeticity. From[8], it

is clear that χ(Km�Kn) = max{m,n}, whenever m 6= n. Without loss of generality, let m > n,

a chromatic set is as formed in such a way that each color class contains n number of vertices

by following the coloring pattern using Remark 1. Hence we need to choose m vertices from n

classes, having each set representation to result in a geochromatic set. This is possible by using

the Pigeon hole principle and hence χgc(Km�Kn) = max{m,n}. �

CONCLUSION

In this paper we have determined the exact value of geochromatic number of Cartesian product

of graphs. The present study gives insights and works as a powerful tool in modeling real world

facility location problems such that any node in a network can be reached in a shortest possible

route.
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