
Available online at http://scik.org

J. Math. Comput. Sci. 11 (2021), No. 3, 3464-3481

https://doi.org/10.28919/jmcs/5777

ISSN: 1927-5307

ON CHROMATIC D-POLYNOMIALS OF MYCIELSKIAN OF PATHS AND
CYCLES

SMITHA ROSE1, SUDEV NADUVATH2,∗

1Department of Mathematics, St. Mary’s College, Thrissur, India

2Department of Mathematics, CHRIST(Deemed to be University), Bangalore, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Graph colouring is an assignment of colours, labels or weights to elements of a graph subject to certain

constraints. Coloring the vertices of a graph in such a way that adjacent vertices are having different colours

is called proper vertex colouring. A proper vertex colouring using minimum parameters of colours is studied

extensively in recent literature. In this paper, we define new polynomials called chromatic D-polynomial and

modified chromatic D-polynomial in terms of minimal parameter colouring and structural characteristics of graphs

such as distances and degrees of vertices.
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1. INTRODUCTION

For all terms and definitions, not defined specifically in this paper, we refer to [1, 2, 5, 12].

Moreover, for notions and norms in graph colouring, see [3, 6, 7]. Unless mentioned otherwise,

all graphs considered here are undirected, simple, finite and connected.

1.1. Graph Colouring. Graph colouring is an assignment of colours, labels or weights to

the elements of graphs subject to certain conditions. The field of graph colouring has been a
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fascinating research area for mathematicians since its inception. A vertex colouring consisting

of the colours with minimum subscripts may be called a minimum parameter colouring (see

[9]). By graph colouring, we mean vertex colouring of graphs in this paper.

If we colour the vertices of G in such a way that c1 is assigned to maximum possible number

of vertices, then c2 is assigned to maximum possible number of remaining uncoloured vertices

and proceed in this manner until all vertices are coloured, then such a colouring is called a

χ−-colouring of G. In a similar manner, if c` is assigned to maximum possible number of

vertices, then c`−1 is assigned to maximum possible number of remaining uncoloured vertices

and proceed in this manner until all vertices are coloured, then such a colouring is called a

χ+-colouring of G.

1.2. Mycielskian of a Graph. The notion of Mycielski graph of a given graph G is defined

in [8] as given below.

Definition 1.1 (Mycielskian of a Graph). [8] Let G be a graph with the vertex set V (G) =

{v1, . . . ,vn}. The Mycielski graph or the Mycielskian of a graph G, denoted by µ(G), is the

graph with vertex set V (µ(G))= {v1,v2, . . . ,vn,u1,u2, . . . ,un,w} such that viv j ∈E(µ(G)) ⇐⇒

viv j ∈ E(G), viu j ∈ E(µ(G)) ⇐⇒ viv j ∈ E(G) and uiw ∈ E(µ(G)) for all i = 1, . . . ,n.

The Mycielskian of a graph G is usually denoted by µ(G). But for the sake of usage we use

the notation Ğ instead.

1.3. Chromatic D-Polynomial of Graphs. The notion of the chromatic D-polynomial of

graphs, with respect to a given colouring, has been introduced in [10] as follows:

Definition 1.2 (Chromatic D-Polynomial of a Graph). [10] Let G be a connected graph with

chromatic number χ(G), then the chromatic D-polynomial of G, denoted by Dφ (G,x,y), is

defined as

Dφ (G,x,y) = ∑
vi,v j∈V (G)

d(vi,v j)xζ (vi)yζ (v j), i < j.

The chromatic D-polynomials corresponding to χ−-colouring and χ+-colouring of a graph

G are denoted by Dϕ−(Ğ,x,y) and Dϕ+(Ğ,x,y) respectively.
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The chromatic D-polynomials of certain graph classes have been determined in [10]. Moti-

vated by the studies mentioned above, in this paper, we determine the chromatic D-polynomials

of the Mycielskian of two fundamental graph classes.

2. CHROMATIC D-POLYNOMIALS OF MYCIELSKI GRAPHS

In this section, we discuss the chromatic D-polynomial of Mycielskian of paths and cycles,

using the ϕ− and ϕ+colouring.

Theorem 2.1. For the Mycielskian of a path Pn, we have

Dϕ−(P̆n,x,y) =



n(n−1)xy+nxy2 + 3n2−7n+8
2 (x2y+ x3y)+ n2−2n+4

2 x2y2+

n2−2n+2
2 x2y3 + n2−6n+10

2 x3y2 + n2−4n+4
2 x3y3, if n is even,

n(n−1)xy+nxy2 +(13n+16)x2y+ n2+3
2 x2y2 +(13n−11)x3y+

7n2−36n+69
8 x3y2 + 7n2−40n+65

8 x2y3 + n2−6n+9
2 x3y3, if n is odd.

Proof. Consider the Mycielskian of a path, P̆n on 2n+ 1 vertices and 4n− 3 edges. It is clear

that χ(P̆n) = 3. The largest independent set {vn+1,vn+2, · · · ,v2n} is named as U and the root

vertex is v2n+1. The vertices of the path {v1,v2, . . . ,vn} are named V . Since P̆n has diameter 4,

the distance d(vi,v j) can vary from 1 to 4. Now consider the following cases:

Part (i): When n is even. Then, according to the rules of ϕ− colouring, the independent set

U = {vn+1,vn+2, · · · ,v2n} is coloured with the colour c1. Now, the vertices in V are alternatively

coloured with c2 and c3. Since the root vertex v2n+1 is adjacent to all other vertices of U and

v2n+1 is not adjacent to any vertex in V , v2n+1 can have the colour c2. For the Mycielskian of

the path, θ(c1) = n, θ(c2) =
n+2

2 and θ(c3) =
n
2 . The possible colour pairs with appropriate

distances and their numbers in P̆n are listed in the following table.

When n is even, the chromatic D-polynomial can be determined from the values of the Ta-

ble - 1. Thus, we have Dϕ−(P̆n,x,y) = nxy2 + n− 1(x2y+ x3y) + n
2x2y3 + (n−2)

2 x3y2 + n(n−

1)xy+(3n−4)(x2y+x3y)+2(n−1)x2y2+(n−2)x3y3+ 3(n−2)(n−3)
2 (x2y+x3y)+ 3(n−2)

2 x2y3+

(n−4)(n−6)
2 x3y2 + 3(n−4)

2 x3y2 + (n−2)(n−4)
2 (x2y2 + x3y3 + x2y3).

Further simplifications gives the result as Dϕ−(P̆n,x,y) = n(n−1)xy+nxy2+ 3n2−7n+8
2 (x2y+

x3y)+ n2−2n+4
2 x2y2 + n2−2n+2

2 .
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(B) The Mycielski graph P̆8 with ϕ−colouring

FIGURE 1

Part (ii): Assume n is odd. According to the rules of ϕ− colouring, the independent set

U = {vn+1,vn+2, · · · ,v2n} is coloured with the colour c1. Now, the vertices in V are alternatively

coloured with c2 and c3. Also, v2n+1 can have the colour c2. Thus, θ(c1) = n, θ(c2) =
n+3

2 and

θ(c3) =
n−1

2 . The following table analyses the possible distances in terms of the colour pairs

required.

From the Table - 2, and the definitions of chromatic D-polynomials the result follows as:

Dϕ−(P̆n,x,y)= nxy2+(n−1)(x2y+x3y)+ n−1
2 (x2y3+x3y2)+n(n−1)xy+(3n−1)x2y+2nx2y2

+(3n−7)x3y+2(n−2)x3y2 +(n−3)x3y3 +9(n+2)x2y+ 3(n−1)(n−3)
8 x2y3 +3(3n−1)x3y

+ 3(n−3)(n−5)
8 x3y2 + (n−1)(n−3)

2 x2y2 + (n−3)(n−5)
2 (x2y3 + x3y2 + x3y3).

Further simplifications gives the result as Dϕ−(P̆n,x,y)= n(n−1)xy+nxy2+ 7n2−36n+69
8 x3y2+

n2+3
2 x2y2 + 7n2−40n+65

8 x2y3 +(13n−11)x3y+(13n+16)x2y+ n2−6n+9
2 x3y3. �
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c1,c2) n

(c2,c1) n−1

(c3,c1) n−1

(c2,c3)
n
2

(c3,c2)
n−2

2

2

(c1,c1)
n(n−1)

2

(c2,c1)
3n−4

2

(c3,c1)
3n−4

2

(c2,c2) n−1

(c3,c3)
n−2

2

3

(c2,c1)
(n−2)(n−3)

2

(c3,c1)
(n−2)(n−3)

2

(c2,c3)
n−2

2

(c3,c2)
n−4

2

4

(c2,c2)
(n−2)(n−4)

8

(c3,c3)
(n−2)(n−4)

8

(c2,c3)
(n−2)(n−4)

8

(c3,c2)
(n−4)(n−6)

8

TABLE 1. Table (CDP) for P̆n when n even, with ϕ−colouring

The following theorem discourses about the chromatic D-polynomial of the Mycielskian of

paths with ϕ+colouring.

Theorem 2.2. For the Mycielskian of a path Pn, we have

Dϕ+(P̆n,x,y) =



n(n−1)x3y3 +nx3y2 + 3n2−7n+8
2 (x2y3 + xy3)+ n2−2n+4

2 x2y2+

n2−2n+2
2 x2y+ n2−6n+10

2 xy2 + n2−4n+4
2 xy, if n is even,

n(n−1)x3y3 +nx3y2 + 7n2−36n+69
8 xy2 + n2+3

2 x2y2 + 7n2−40n+65
8 x2y

+(13n−11)xy3 +(13n+16)x2y3 + n2−6n+9
2 xy, if n is odd.
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c1,c2) n

(c2,c1) n−1

(c3,c1) n−1

(c2,c3)
n−1

2

(c3,c2)
n−1

2

2

(c1,c1)
n(n−1)

2

(c2,c1)
3n−1

2

(c2,c2) n

(c3,c1)
3n−7

2

(c3,c2) n−2

(c3,c3)
(n−3)

2

3

(c2,c1) 3(n+2)

(c3,c1) 3n−1

(c2,c3)
(n−1)(n−3)

8

(c3,c2)
(n−3)(n−5)

8

4

(c2,c2)
(n−1)(n−3)

8

(c2,c3)
(n−3)(n−5)

8

(c3,c2)
(n−3)(n−5)

8

(c3,c3)
(n−3)(n−5)

8

TABLE 2. Table (CDP) for P̆n when n odd, with ϕ−colouring

Proof. Consider the Mycielskian of a path, P̆n on 2n+ 1 vertices and 4n− 3 edges. It is clear

that χ(P̆n) = 3. The largest independent set {vn+1,vn+2, · · · ,v2n} is named as U and the root

vertex is v2n+1. The vertices of the path {v1,v2, . . . ,vn} are named V . Since P̆n has diameter 4,

the distance d(vi,v j) can vary from 1 to 4. Now consider the following cases:

Part (i): When n is even. Then according to the rules of ϕ+ colouring, the independent set U

is coloured with the colour c3. Now, the vertices in V are alternatively coloured with c2 and c1.

Since the root vertex v2n+1 is adjacent to all vertices of U and v2n+1 is not adjacent to any vertex
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FIGURE 2

in V , v2n+1 can have the colour c2. For the Mycielskian of the path, θ(c3) = n, θ(c2) =
n+2

2

and θ(c1) =
n
2 . The possible colour pairs with appropriate distances and their numbers in P̆n are

listed in the following table.

When n is even, the chromatic D-polynomial can be determined from the values of the Table

- 3. Thus, Dϕ+(P̆n,x,y) = nx3y2 +n−1(x2y3 + xy3)+ n
2x2y+ (n−2)

2 xy2 +n(n−1)x3y3 +(3n−

4)(x2y+ x3y)+2(n−1)x2y2 +(n−2)x3y+ 3(n−2)(n−3)
2 (x2y3 + x3y3)+ 3(n−2)

2 x2y+ 3(n−4)
2 xy2 +

(n−2)(n−4)
2 (x2y2 + xy+ x2y)+ (n−4)(n−6)

2 xy2.

Further simplifications gives the result as: Dϕ+(P̆n,x,y) = n(n−1)x3y3 +nx3y2

+ 3n2−7n+8
2 (x2y3 + xy3)+ n2−2n+4

2 x2y2 + n2−2n+2
2 x2y+ n2−6n+10

2 xy2 + n2−4n+4
2 xy.

Part (ii): When n is odd. According to the rules of ϕ+colouring, the independent set U

is coloured with the colour c3. Now, the vertices in V are alternatively coloured with c2 and

c1. Also, v2n+1 can have the colour c2. Thus, θ(c3) = n, θ(c2) =
n+3

2 and θ(c1) =
n−1

2 . The

following table analyses the possible distances in terms of the colour pairs required.
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c3,c2) n

(c2,c3) n−1

(c1,c3) n−1

(c2,c1)
n
2

(c1,c2)
n−2

2

2

(c3,c3)
n(n−1)

2

(c2,c3)
3n−4

2

(c1,c3)
3n−4

2

(c2,c2) n−1

(c1,c1)
n−2

2

3

(c2,c3)
(n−2)(n−3)

2

(c1,c3)
(n−2)(n−3)

2

(c2,c1)
n−2

2

(c1,c2)
n−4

2

4

(c2,c2)
(n−2)(n−4)

8

(c1,c1)
(n−2)(n−4)

8

(c2,c1)
(n−2)(n−4)

8

(c1,c2)
(n−4)(n−6)

8

TABLE 3. Table (CDP) for P̆n when n even, with ϕ+colouring

From the Table - 4, and the definitions of chromatic D-polynomials will give the result as

follows: Dϕ+(P̆n,x,y) = nx3y2 +(n− 1)(x2y3 + xy3)+ n−1
2 (x2y+ xy2)+ n(n− 1)x3y3 +(3n−

1)x2y3+2nx2y2+(3n−7)xy3+2(n−2)xy2+(n−3)xy+9(n+2)x2y3+ 3(n−1)(n−3)
8 x2y+3(3n−

1)xy3 + 3(n−3)(n−5)
8 xy2 + (n−1)(n−3)

2 x2y2 + (n−3)(n−5)
2 (x2y+ xy2 + xy).

Further simplifications gives the result as Dϕ+(P̆n,x,y) = n(n−1)x3y3 +nx3y2

+ 7n2−36n+69
8 xy2 + n2+3

2 x2y2 + 7n2−40n+65
8 x2y + (13n− 11)xy3 + (13n + 16)x2y3 + n2−6n+9

2 xy.

This completes the proof. �
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c3,c2) n

(c2,c3) n−1

(c1,c3) n−1

(c2,c1)
n−1

2

(c1,c2)
n−1

2

2

(c3,c3)
n(n−1)

2

(c2,c3)
3n−1

2

(c2,c2) n

(c1,c3)
3n−7

2

(c1,c2) n−2

(c1,c1)
(n−3)

2

3

(c2,c3) 3(n+2)

(c1,c3) 3n−1

(c2,c1)
(n−1)(n−3)

8

(c1,c2)
(n−3)(n−5)

8

4

(c2,c2)
(n−1)(n−3)

8

(c2,c1)
(n−3)(n−5)

8

(c1,c2)
(n−3)(n−5)

8

(c1,c1)
(n−3)(n−5)

8

TABLE 4. Table (CDP) for P̆n when n odd, with ϕ+colouring

Theorem 2.3. For the Mycielskian of a cycle Cn, we have

Dϕ−(C̆n,x,y) =



nxy2 + 3n2−7n
2 x2y+ n(n−2)

2 x2y2 + 3n(n−3)
2 x3y+ n(n−6)

2 x3y3+

n2−18
2 x3y2 + n2−2n−14

2 x2y3, if n is even,

n(n−1)xy+nxy2 + 3n2−10n+7
2 (x2y+ x3y)+ n2−4n+5

2 x2y2 + n2−4n−9
2 x2y3+

2(n−4)x2y4 + n2−2n−13
2 x3y2 + n2−6n+1

2 x3y3 +2(n−5)x3y4 +3n−7x4y+

5x4y2, if n is odd.
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Proof. Consider the Mycielskian of a cycle, C̆n on 2n+1 vertices and 4n edges. When n is even,

χ(C̆n) = 3 and when n is odd, χ(C̆n) = 4. The largest independent set {vn+1,vn+2, · · · ,v2n} is

named as U and the root vertex is v2n+1. The vertices {v1,v2, . . . ,vn} on the rim of the cycle Cn

are named V . Since C̆n has diameter 4, the distance d(vi,v j) can vary from 1 to 4. Now consider

the following cases:

Part (i): When n is even. Then according to the rules of ϕ−colouring, the independent set

of inner vertex set U = {vn+1,vn+2, · · · ,v2n} is coloured with the colour c1. Now, the vertices

in V are alternatively coloured with c2 and c3. Since the root vertex v2n+1 is adjacent to all

vertices of U and v2n+1 is not adjacent to any vertex in V , v2n+1 can have the colour c2. For

the Mycielskian of the cycle, θ(c1) = n, θ(c2) =
n+2

2 and θ(c3) =
n
2 . The possible colour pairs

with appropriate distances and their numbers in C̆n are listed in the following table.

When n is even, the chromatic D-polynomial can be determined from the values of the Table -

5. Thus, Dϕ−(C̆n,x,y) = nxy2+ 3n2−7n
2 x2y+ n(n−2)

2 x2y2+ 3n(n−3)
2 x3y+ n(n−6)

2 x3y3+ n2−18
2 x3y2+

n2−2n−14
2 x2y3.

Part (ii): When n is odd. We apply the ϕ−colouring to the graph C̆n as follows: In this case

the largest independent set U receives the colour c1 and the root vertex is coloured with c2.
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c1,c2) n

(c2,c1) n

(c3,c1) n

(c2,c3)
n+2

2

(c3,c2)
n−2

2

2

(c1,c1)
n(n−1)

2

(c2,c1) n

(c2,c2) n

(c3,c1) n

(c3,c2)
n
2

(c2,c1)
n
2

3

(c2,c1)
n(n−5)

2

(c3,c1)
n(n−5)

2

(c2,c3)
n
2

(c3,c2)
n
2

4

(c2,c2)
n(n−6)

8

(c3,c3)
n(n−6)

8

(c2,c3)
(n+2)(n−8)

8

(c3,c2)
(n+2)(n−8)

8

TABLE 5. Table (CDP) for C̆n when n even, with ϕ−colouring

Now, Cn is 3 colourable and we can colour the vertices in V using three colours, say c2,c3,c4

such that bn
2c vertices have colours c2 and c3, while one vertex has colour c4. Thus, θ(c1) = n,

θ(c2) =
n+1

2 , θ(c3) =
n−1

2 and θ(c4) = 1. The following table analyses the possible distances

in terms of the colour pairs required.
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c1,c2) n

(c2,c1) n−1

(c3,c1) n−1

(c2,c3)
n−1

2

(c3,c2)
n−3

2

(c4,c1) 2

(c3,c4) 1

(c2,c4) 1

2

(c1,c1)
n(n−1)

2

(c2,c1)
3(n−1)

2

(c3,c1)
3(n−1)

2

(c3,c2)
(n−1)

2

(c3,c3)
(n−3)

2

(c2,c2) n−2

(c4,c1) 3

(c2,c4) 1

(c4,c2) 1

(c2,c3) 1

3

(c2,c1)
(n−1)(n−5)

2

(c3,c1)
(n−1)(n−5)

2

(c2,c3)
(n−5)

2

(c3,c2)
(n−5)

2

(c4,c1) n−5

(c2,c2) 1

(c2,c4) 1

(c3,c4) 1

(c4,c2) 1
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4

(c2,c2)
(n−1)(n−7)

8

(c2,c3)
(n−1)(n−7)

8

(c3,c2)
(n−1)(n−7)

8

(c3,c3)
(n−1)(n−7)

8

(c2,c4)
(n−7)

2

(c3,c4)
(n−7)

2

TABLE 6. Table (CDP) for C̆n when n odd, with ϕ−colouring

The Table - 6 and the definitions of chromatic D-polynomials will give the result as follows:

Dϕ−(C̆n,x,y) = n(n−1)xy+nxy2+ 3n2−10n+7
2 (x2y+x3y)+ n2−4n+5

2 x2y2+ n2−4n−9
2 x2y3+2(n−

4)x2y4+ n2−2n−13
2 x3y2+ n2−6n+1

2 x3y3+2(n−5)x3y4+(3n−7)x4y+5x4y2. This completes the

proof. �

Theorem 2.4. For the Mycielskian of a cycle Cn, we have

Dϕ+(C̆n,x,y) =



nx3y2 + 3n2−7n
2 x2y3 + n(n−2)

2 x2y2 + 3n(n−3)
2 xy3 + n(n−6)

2 xy+

n2−18
2 xy2 + n2−2n−14

2 x2y, if n is even,

n(n−1)x4y4 +nx4y3 + 3n2−10n+7
2 (x3y4 + x2y4)+ n2−4n+5

2 + x3y3

+n2−4n−9
2 x3y2 +2(n−4)x3y+ n2−2n−13

2 x2y3 + n2−6n+1
2 x2y2+

2(n−5)x2y+(3n−7)xy4 +5xy3, if n is odd.
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c2

c2

c1

c2

c1

c2

c1 C̆8

c2

c1

c3

c3
c3

c3

c3
c3

c3

c3

(A) The Mycielski graph C̆8 with ϕ+colouring

c3

c3

c2
c3

c2

c3

c2
c3 C̆9

c2

c1

c4

c4c4

c4

c4

c4 c4

c4

c4

(B) The Mycielski graph C̆9 with ϕ+colouring

FIGURE 4

Proof. Consider the Mycielskian of a cycle, C̆n on 2n+ 1 vertices and 4n edges. When n is

even, χ(C̆n) = 3 and when n is odd, χ(C̆n) = 4. Since C̆n has diameter 4, the distance d(vi,v j)

can vary from 1 to 4. Now consider the following cases:

Part (i): When n is even. Then according to the rules of ϕ+ colouring, the independent set

of inner vertex set U = {vn+1,vn+2, · · · ,v2n} is coloured with the colour c3. Now, the vertices

in V are alternatively coloured with c2 and c1. The vertex v2n+1 can have the colour c2. For

the Mycielskian of the cycle, θ(c3) = n, θ(c2) =
n+2

2 and θ(c1) =
n
2 . The possible colour pairs

with appropriate distances and their numbers in C̆n are listed in the following table.
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Distance d(vi,v j) Colour pairs Number of pairs

1

(c3,c2) n

(c2,c3) n

(c1,c3) n

(c2,c1)
n+2

2

(c1,c2)
n−2

2

2

(c3,c3)
n(n−1)

2

(c2,c3) n

(c2,c2) n

(c1,c3) n

(c1,c2)
n
2

(c2,c3)
n
2

3

(c2,c3)
n(n−5)

2

(c1,c3)
n(n−5)

2

(c2,c1)
n
2

(c1,c2)
n
2

4

(c2,c2)
n(n−6)

8

(c1,c1)
n(n−6)

8

(c2,c1)
(n+2)(n−8)

8

(c1,c2)
(n+2)(n−8)

8

TABLE 7. Table (CDP) for C̆n when n even, with ϕ+colouring

When n is even, the chromatic D-polynomial can be determined from the values of the Table

- 7. Thus, we have Dϕ+(C̆n,x,y) = nx3y2 + 3n2−7n
2 x2y3 + n(n−2)

2 x2y2 + 3n(n−3)
2 xy3 + n(n−6)

2 xy+
n2−18

2 xy2 + n2−2n−14
2 x2y.

Part (ii): When n is odd. We apply the ϕ+colouring to the graph C̆n as follows: In this case

the largest independent set U receives the colour c4 and the root vertex is coloured with c3.

Now, Cn is 3 colourable and we can colour the vertices in V using three colours, say c3,c2,c1
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such that bn
2c vertices have colours c3 and c2, while one vertex has colour c1. Thus, θ(c4) = n,

θ(c3) =
n+1

2 , θ(c2) =
n−1

2 and θ(c1) = 1. The Table - 8 analyses the possible distances in terms

of the colour pairs required and the definitions of chromatic D-polynomials will give the result

completing the proof as follows:

Distance d(vi,v j) Colour pairs Number of pairs

1

(c4,c3) n

(c3,c4) n−1

(c2,c4) n−1

(c3,c2)
n−1

2

(c2,c3)
n−3

2

(c1,c4) 2

(c2,c1) 1

(c3,c1) 1

2

(c4,c4)
n(n−1)

2

(c3,c4)
3(n−1)

2

(c2,c4)
3(n−1)

2

(c2,c3)
(n−1)

2

(c2,c2)
(n−3)

2

(c3,c3) n−2

(c1,c4) 3

(c3,c1) 1

(c1,c3) 1

(c3,c2) 1

3

(c3,c4)
(n−1)(n−5)

2

(c2,c4)
(n−1)(n−5)

2

(c3,c2)
(n−5)

2

(c2,c3)
(n−5)

2

(c1,c4) n−5

(c3,c3) 1
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(c3,c1) 1

(c2,c1) 1

(c1,c3) 1

4

(c3,c3)
(n−1)(n−7)

8

(c3,c2)
(n−1)(n−7)

8

(c2,c3)
(n−1)(n−7)

8

(c2,c2)
(n−1)(n−7)

8

(c3,c1)
(n−7)

2

(c2,c1)
(n−7)

2

TABLE 8. Table (CDP) for C̆n when n odd, with ϕ+colouring

Dϕ+(C̆n,x,y)= n(n−1)x4y4+nx4y3+ 3n2−10n+7
2 (x3y4+x2y4)+ n2−4n+5

2 x3y3+ n2−4n−9
2 x3y2+

2(n−4)x3y+ n2−2n−13
2 x2y3 + n2−6n+1

2 x2y2 +2(n−5)x2y+(3n−7)xy4 +5xy3. �

3. CONCLUSION

In this article, we have discussed two particular types of colouring related polynomials,

called chromatic D-polynomials, of the Mycielskian of paths and cycles. The study seems

to be promising for further studies as the polynomial can be computed for many graph classes

and classes of derived graphs. The chromatic D-polynomial can be determined for graph op-

erations, graph products and graph powers also. The study on chromatic D-polynomials with

respect to different types of graph colourings also seem to be much promising. The concept can

be extended to edge colourings and map colourings also.

The chromatic D-polynomials have numerous applications in various fields like Mathematical

Chemistry, Distribution Theory, Optimization Techniques etc. Similar studies are possible in

various other fields. All these facts highlight the wide scope for further research in this area.
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