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Abstract. In this paper, the concepts of C -ideal are defined and explored the various properties C -ideals in posets.

The equivalent conditions for an ideal to be a C -ideal is obtained. Further the relations between strongly prime

ideals and C -ideals are discussed.
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1. INTRODUCTION

The concept of z-ideals, which are both algebraic and topological objects played a funda-

mental role in studying the ideal theory of C(X), the ring of continuous real-valued functions

on a completely regular Hausdorff space X .

In 1973, Mason[6] studied z-ideals of commutative rings and he proved that maximal ideals,

minimal prime ideals and some other important ideals in commutative rings are z-ideals.

An ideal I of a commutative ring R is called a z-ideal if for each a ∈ I, the intersection of all

maximal ideals containing a is contained in I.

The concept of z0-ideals is nothing but the generalization of z-ideals. In 2006, K.Samei[7]

studied z0 -ideals and some special commutative ring.
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Let I and J be two ideals of a commutative ring R. I is said to be a zJ -ideal if Ma∩J ⊆ I, for

every a ∈ I, where Ma is the intersection of all maximal ideals containing a.

Whenever J * I and I is a zJ-ideal, we say that I is a relative z-ideal. This special kind of

z-ideals introduced and investigated by F. Azarpanah and A. Taherifar in [2].

In 2013, A.R. Aliabad, et.al., have shown that I is a relative z-ideal and the converse is also

true for each finitely generated ideal in C(X).

Hence it is natural to study the analogues concept of z-ideals and Z0-deal in lattices and

posets. In this paper, we introduced and studied C -ideals in posets. We discussed the relation

between zJ ideal and C -ideals in posets and obtained some characterizations.

2. PRELIMINARIES

Throughout this paper (X , ≤) denotes a poset with least element 0. For basic terminology

and notation for posets, we refer [5] and [4]. For E ⊆ X , let E l = {x ∈ X : x ≤ e for all e ∈ E}

denotes the lower cone of E in X and dually, let Eu = {x ∈ X : e≤ x for all e ∈ E} be the upper

cone of E in X .

Let E,F ⊆ X , we shall write (E,F)l instead of (E ∪F)l and dually for the upper cones. If

E = {e1,e2, ...,en} is finite, then we use the notation (e1,e2, ...,en)
l instead of ({e1,e2, ...,en})l

(and dually).

It is clear that for any subset E of X , we have E ⊆ Eul and E ⊆ E lu. If E ⊆ F , then F l ⊆ E l

and Fu ⊆ Eu. Moreover, E lul = E l and Eulu = Eu.

Following [8], a non-empty subset K of X is called semi-ideal if b∈K and a≤ b, then a∈K.

A subset K of X is called ideal if a,b ∈ K implies (a,b)ul ⊆ K[5].

A proper semi-ideal (ideal) K of X is called prime if (a,b)l ⊆ K implies that either a ∈ K or

b ∈ K [4].

An ideal K of X is called semi-prime if (a,b)l ⊆K and (a,c)l ⊆K together imply (a,(b,c)u)l ⊆

K[5]. Given e ∈ X , (e] = L(e) = {x ∈ X : x≤ e} is the principal ideal of X generated by e.

Following [3], an ideal K of X is called strongly prime if (A∗,B∗)l ⊆ K implies that either

A⊆ K or B⊆ K for any different proper ideals A,B of K, where A∗ = A\{0}.

Following [3], a non-empty sub-set E of X is called m-system if for any e1,e2 ∈ E, there

exists r ∈ (e1,e2)
l such that r ∈ E.
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As a generalization of m-system, we define the notion of strongly m-system as follows, a

non-empty subset E of X is called strongly m-system if A∩ E 6= φ and B∩ E 6= φ implies

(A∗,B∗)l ∩E 6= φ for any proper ideals A,B of X .

It is clear that an ideal K of X is strongly prime if and only if X\K is a strongly m- system of

X . Also every strongly m-system is m-system. But the converse need not be true in general.

For an ideal K of X , a strongly prime ideal Q of X is said to be a minimal strongly prime

ideal of K if K ⊆ Q and there exists no strongly prime ideal R of X such that K ⊂ R⊂ Q.

The set of all strongly prime ideal of X is denoted by Sspec(X) and the set of minimal strongly

prime ideals of X is denoted by Smin(X). For any ideal K of X , SP(K) denotes the intersection

of all strongly prime ideals of X containing K and SP(X) denotes the intersection all strongly

prime ideal of X .

If K = {0}, then we denote SP(K) = SP(X). From [4], the intersection of all prime semi-ideal

of X containing K is K for any semi-ideal K of X . But the intersection of all strongly prime

ideal of X containing K need not to be Kfor any ideal K of X[3].

For any subset K of X , we define ψ(K) = {Q∈ Sspec(X) : K ⊆Q}, φ(K) = Sspec(X)\ψ(K),

ψ
′
(K)=ψ(K)∩Smin(X), φ

′
(K)= φ(K)∩Smin(X) and [K] is the smallest ideal of X containing

K. Also SP(a) =
⋂

a∈ψ

ψ .

For each a ∈ X and an ideal K of X , we define Xa(K) = ∩{Q ∈ Sspec(X) : Q ∈ ψ
′
(K)∩

ψ
′
(a)}.

Following [3], let J be an ideal of X . An ideal I of X containing J is called zJ-ideal if for each

a ∈ I, we have Xa(J) ⊆ I. Also if I is a zJ - ideal of X , then Xa(J) 6= X for any a ∈ I. Clearly

every strongly prime ideal of X is zJ-ideal. But the converse need not be true always.

3. MAIN RESULTS

Definition 3.1. Let X be a poset and I be an ideal of X. Then I is called C -ideal of X if

ψ(a)⊆ ψ(b) and a ∈ I implies b ∈ I.

Theorem 3.1. Every strongly prime ideal is a C -ideal of X.
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Proof: Let S be a strongly prime ideal of X and ψ(a) ⊆ ψ(b), a ∈ S. Since a ∈ S, we have

S ∈ ψ(a) which implies S ∈ ψ(b). Then b ∈ S. Hence S is C -ideal. �

Corollary 3.1. Let I be a maximal strongly semi-prime ideal of X. Then I is C -ideal.

The following example gives the converse of the theorem 3.1 is need not be true in general.

Example 3.1. Consider X = {0,1,2,3,4} and define a relation ≤ on X as follows.

b

b

b

b

b
0

1

23

4

Then (X ,≤) is a poset and I1 = {0,1} is a C -ideal of X. But not a Strongly prime ideal as

we take I2 = {0,1,2} and I3 = {0,1,3}, we have L(I2, I3)⊆ I1 with I2 * I1 and I3 * I1. �

Theorem 3.2. Let S be a unique strongly prime ideal of X and an ideal I of X such that I ⊂ S.

Then I is not a C -ideal of X.

Proof: Let I ⊂ S. Then there exists a x ∈ S\I. Since I is a unique strongly prime ideal of X , we

have ψ(x) = ψ(i) for all i ∈ I which gives I is not a C -ideal of X . �

Example 3.2. Consider X = {0,a,b,c,d,e} and define a relation ≤ on X as follows.

b

b

b

b

b

b

0

a b

cd

e

Then (X ,≤) is a poset and I1 = {0,a,b,c} is the only strongly prime ideal of X and if we take

any proper ideal I1 like K = {0,b} ⊂ I which is not C -ideal. �
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Theorem 3.3. Let X be a poset and a,b ∈ X. Then the following statements hold.

(i) SP((a,b)l) = SP(a)∩SP(b).

(ii) If ψ(b)⊆ ψ(a), then ψ((b,c)l)⊆ ψ((a,c)l) for any c ∈ X.

Proof: (i) Let t ∈ SP((a,b)l) and t /∈ SP(a)∩ SP(b). Without loss of generality, assume that

t /∈ Q1 for a strongly prime ideal Q1 containing a. Since t ∈ SP((a,b)l) ⊆ Q1, a contradiction.

Hence SP((a,b)l)⊆ SP(a)∩SP(b).

Now, let r ∈ SP(a)∩SP(b) and r /∈ SP((a,b)l). Then there exists a strongly prime ideal Q2

containing (a,b)land r /∈ Q2. Since Q2 is strongly prime ideal and ((a]∗,(b]∗)l ⊆ (a,b)l ⊆ Q2,

we have (a]⊆ Q2 or (b]⊆ Q2. Without loss of generality, assume that a ∈ Q2. As r ∈ SP(a)⊆

Q2, a contradiction. Hence SP((a,b)l) = SP(a)∩SP(b).

(ii) Let ψ(b) ⊆ ψ(a) for a,b ∈ X and S be a strongly prime ideal of X containing (b,c)l .

Then S ∈ ψ((b,c)l) which implies ((b]∗,(c]∗)l ⊆ S. Since S is a strongly prime ideal of X , we

have (b]⊆ S or (c]⊆ S.

Case 1: If (c]⊆ S, then (a,c)l ⊆ S which implies S ∈ ψ((a,c)l).

Case 2: If (b] ⊆ S, then S ∈ ψ(b) ⊆ ψ(a) which gives a ∈ S and (a,c)l ⊆ S. Hence S ∈

ψ((a,c)l). �

Theorem 3.4. Let X be a poset and a,b ∈ X. Then a ∈ SP(b) if and only if SP(a) ⊆ SP(b) if

and only if Ψ(b)⊆ ψ(a).

Proof: Let SP(a)⊆ SP(b). Since a ∈ SP(a), we have a ∈ SP(b).

Now, suppose that a ∈ SP(b) =
⋂

b∈Q∈Ψ

Q and t ∈ SP(a).

Then t ∈
⋂

a∈Q∈Ψ

Q.

Let Q1 be any strongly prime ideal of X and b ∈ Q1.

As a ∈ SP(b), we have a ∈ Q1 which implies t ∈ Q1 for all strongly prime ideals containing

b. Hence t ∈ SP(b) and SP(a)⊆ SP(b).

Let SP(a)⊆ SP(b)⇔
⋂

a∈Q1

Q1 ⊆
⋂

b∈Q2

Q2

⇔{Q2 : b ∈ Q2} ⊆ {Q1 : a ∈ Q1}

⇔ ψ(b)⊆ ψ(a) �
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Theorem 3.5. Let J be an ideal of X.Then the following statements are equivalent

(i) J is a C -ideal of X.

(ii) If ψ(a) = ψ(b) and b ∈ J implies a ∈ J.

(iii) SP(a)⊆ J for all a ∈ J.

(iv) If SP(b)⊆ SP(a) and a ∈ J implies b ∈ J.

Proof: (i)⇒ (ii) It is Obvious.

(ii)⇒ (iii) Let t ∈ SP(a). Then by Theorem 3.4, SP(t) ⊆ SP(a). Hence SP(t) = SP(t)∩

SP(a) and by Theorem 3.3, SP(t) = SP(L(a, t)) which implies ψ(t) = ψ(L(a, t)). If a ∈ J, then

L(a, t)⊆ J. By (ii), t ∈ J.

(iii)⇒ (iv) Let a ∈ J. Then by (iii), SP(a)⊆ J. Suppose SP(b)⊆ SP(a), then b ∈ SP(b)⊆ J

(i)⇒ (ii) It follows from Theorem 3.4. �

Theorem 3.6. Let X be a poset. If I∩M = Φ for a C -ideal I and a strongly m-system M of X.

Then there exists a C -ideal K of X containing I and disjoint from M and K is a strongly prime

ideal of X.

Proof: Let F = {J : J is an C -ideal containing I and J∩M = φ}. Since I ∈F , F 6= Φ.

Let X be a chain F and R =
⋃

J∈X
J.

To show that R is a C -ideal of X , let ψ(a)⊆ ψ(b) and a ∈ R. Then a ∈ Ji for some i. Since

Ji is a C -ideal of X , we have b ∈ Ji and b ∈ R. Thus R is a C -ideal of X .

By Zorn’s Lemma, there exists a maximal C -ideal K such that K∩M = Φ.

Let (A∗,B∗)l ⊆K and A,B*K. Then [K∪A]∩M 6=Φ and [K∪B]∩M 6=Φ. Since M is strongly

m-system we have ([K ∪A], [K ∪B])l ∩M 6= Φ which implies K ∩M 6= Φ, a contradiction. So

A⊆ K or B⊆ K. Hence K is a strongly prime ideal of X . �

Theorem 3.7. Every C -ideal is a zJ - ideal of X .

Proof: Let I be a C -ideal of X . To prove I is zJ - ideal, for all a ∈ I and J ⊆ I, let x ∈ Xa(J).

Then x ∈ ∩{Q ∈ Sspec(X) : Q ∈ ψ
′
(J)∩ψ

′
(a)}

⇒ x ∈ Q for all Q ∈ ψ
′
(J)∩ψ

′
(a)⊆ ψ

′
(a).
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⇒ x ∈ ψ(a) for all a ∈ I

⇒ x ∈ SP(a) for all a ∈ I.

By Theorem 3.4, SP(x) ⊆ SP(a) which gives ψ(a) ⊆ ψ(x). Since I is a C -ideal of X and

a ∈ I, we have x ∈ I. Hence Xa(J)⊆ I for all a ∈ I. So I is zJ - ideal. �

Remark 3.1.

(1) In the above Example 3.1, I1 = {0,1} is both C -ideal and zJ-ideal of X if we take

J = {0}.

(2) In Example 3.2, I1 = {0,a,d} is neither C -ideal nor zJ-ideal of X. �

The converse of the Theorem 3.7 need not be true in general. The below example gives a zJ-

ideal of X which is not C -ideal.

Example 3.3. Consider X = {0,a,b,c,d,e} and define a relation ≤ on X as follows.

b b

b

b b

bb
0

a b

d c

e

Then (X ,≤) is a poset and I1 = {0,a,b,c} and I2 = {0,a,b,d} are the strongly prime ideals

of X. I = {0,b} is a zJ-ideal of X for J = {0}. But I is not a C -ideal of X as ψ(b)⊆ ψ(a) with

b ∈ I and a /∈ I. �

Remark 3.2. For any ideal J of X, JC =
⋂
{K : K is a C -ideal of X and K ⊇ J}.

Theorem 3.8. For an ideal J of X, JC is the least C -ideal Containing J.

Proof: Let ψ(b) ⊆ ψ(a) and b ∈ JC . Then any arbitrary C -ideal Q1 containing J and b ∈ Q1

which implies a ∈ Q1. So a ∈ JC . Hence JC is a C -ideal of X .

Let R be any C -ideal of X such that R ⊂ JC and x ∈ JC . Then x ∈ R. So JC ⊆ R for all R.

Hence JC is the least C -ideal of X . �
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Theorem 3.9. Let A and B be any two ideals of X, then the following statements hold

(i) if A⊆ B, then AC ⊆ BC .

(ii) (AC )C = AC .

(iii) (A∪B)C ⊆ AC ∩BC ⊆ (A∩B)C

Proof: (i) Let A ⊆ B and t ∈ AC =
⋂

K⊇I

K , where K is a C -ideal of X . If t /∈ BC , then there

exists a C -ideal J1 such that t /∈ J1 and B⊆ J1 which gives A⊆ J1. Since t ∈ AC , we have t ∈ J1,

a contradiction.

(ii) Clearly, AC ⊆ (AC )C . Now, let r ∈ (AC )C =
⋂

K⊇AC

K, where K is a C -ideal containing

AC . But AC is the least C -ideal containing AC . Therefore r ∈ AC . Hence (AC )C = AC .

(ii) It is trivial. �

Remark 3.3. For any ideal J of X, JC =
⋃
{K : K is a C -ideal of X and K ⊇ J}. If union of

any two ideals of X is again an ideal in X, then we can say that X has ξ property.

Theorem 3.10. Let J be an ideal of X and X has ξ property. Then JC is the greatest C -ideal

Containing J.

Proof: Let ψ(b) ⊆ ψ(a) and b ∈ JC . Then there exists a C -ideal Q1 of X containing J and

b ∈ Q1 which implies a ∈ Q1. So a ∈
⋃
{K : K is a C -ideal of X and K ⊇ J} = JC . Hence JC

is a C -ideal of X .

Let A be any C -ideal of X such that JC ⊂ A and l ∈ A. Then l ∈
⋃
{K : K is a C -ideal of X

and K ⊇ J}. So x ∈ JC . Hence JC is the greatest C -ideal of X . �

Theorem 3.11. Let E and F be any two ideals of X, then the following statements hold

(i) if E ⊆ F, then FC ⊆ EC .

(ii) (EC )C = EC .

(iii) EC ⊆ EC .

(iv) (E ∪F)C ⊆ EC ∩FC .



PROPERTIES OF STRONGLY PRIME IDEALS AND C -IDEALS IN POSETS 4031

Proof: (i) Let E ⊆ F and t ∈ FC =
⋃

K⊇F

K , where K is a C -ideal of X . Then t ∈ Ki for some

C -ideal Ki of X and Ki ⊇ F ⊇ E which implies t ∈ EC .

(ii) Clearly, EC ⊆ (EC )C . Now, let r ∈ (EC )C =
⋃

K⊇EC

K, where K is a C -ideal containing

EC . But EC is the greatest C -ideal containing EC . Therefore r ∈ EC . Hence (EC )C = EC .

(iii) It is follows from Theorem 3.8 and Theorem 3.10.

(iv) It is trivial. �
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