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Abstract. This article explores the non-fragile synchronization problem for complex dynamical networks (CDN)

with semi-Markovian jumping (SMJ) parameters through event-triggered control technique. Some adequate crite-

ria which assures the synchronization of considered semi-Markovian jumping CDNs (SMJCDNs) has been derived

by making use of the Lyapunov stability theory and integral inequalities. Later, in the numerical example section

Chua’s circuit was taken to verify the theoretical findings.
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1. INTRODUCTION

During the past decade, CDNs has gained substantial attention among the researchers owing

to their appliance in many fields such as Biology, Mathematics, Sociology, Engineering and

technology. Most devices in the actual globe can be modeled as CDNs such as World-wide web,

Internet, electrical grids and so on. A CDN consists of huge nodes , in which all nodes represents

a primary unit with specific dynamics. One of the most cardinal dynamical behavior in CDNs

is synchronization. The synchronization control problem for CDNs have been examined by

many Scientists and Engineers [1, 2, 3, 4, 5]. For example, Synchronization problem for CDNs
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with non-diffusive coupling has been examined in [6]. Adaptive synchronization problem for

complex networks with general distributed update laws for coupling weights has been explored

in [7].

Over the previous few decades, linear jumping systems have drawn significant attention due

to the reality that these systems are cabable of modeling distinct types of dynamical systems that

are subjected to unexpected structural variations such as random failiures and component repairs

[8, 9]. Recently, Owing to its relaxed condition on probability distribution semi-Markovian

jumping systems are attracted by many researchers and few articles have been published [10,

11, 12]. For example, reliable mixed passive and H∞ filtering problem for SMJ systems has

been discussed in [13]. Stability and synchronization problem for continuous time SMJ system

with time-varying delay has been conferred in [14].

Nowadays, the digital controllers of digital computers are implemented to improve the us-

age of bandwidth and decrease the amount of signal transmission. Thus far, the considered

sensors are time-triggered in the offered literature. Though, in Time-triggered controllers there

must be some control waste. It should be specified that, in event-triggered control scheme the

control input is released only when the triggering condition is satisfied. With the intension to

overcome the disadvantage of time-triggered controllers, event-triggered control Law has con-

siderable attention [15, 16]. In [17], event-triggered control problem for SMJ systems with

transmission delays and randomly occurring uncertainties has been explained. In practical sys-

tems, due to unknown noises uncertainties or inaccuracies are unavoidable while implementing

controllers. To overcome this fact non-fragile controller was taken into account [18, 19]. With

the intension to attain the benefits of both controllers the hybrid controller which includes both

event-triggered control and non-fragile control was designed to achieve the synchronization of

SMJCDNs.

By the impact of the preceding facts, this manuscript examines the event-triggered synchro-

nization control problem for SMJCDNs with and without non-fragile control strategy. Syn-

chronization analysis has been performed by making use of reciprocally convex technique,

Lyapunov stability theory and novel integral inequalities . Finally, synchronization of Chua’s

circuit was given to validate the proposed results.



NON-FRAGILE EVENT-TRIGGERED SYNCHRONIZATION 4371

2. PRELIMINARIES

Let {β (t), t ≥ 0} be a discrete-state continuous-time semi-Markov process and assume values

in finite set = {1,2, · · · ,N} is given by

Pr{β (t + l) = j|β (t) = i}=

 αi j(l)l +o(l) i 6= j

1+αii(l)l +o(l) i = j
(1)

where ∆ = αi j(l) denotes the transition probability matrix, liml→0(o(l)/l) = 0, and αi j(l)≥ 0,

for i 6= j, is the transition rate from mode i at time t to mode j at time t + l and αii(l) =

∑ j∈S, j 6=i αi j(l).

Consider the SMJCDNs with coupling delays as

v̇i(t) = f (vi(t))+ c1

N

∑
j=1

Ξi jÃ(β (t))v j(t)+ c2

N

∑
j=1

Ξi jB̃(β (t))v j(t−ρ(t))+ui(t),(2)

where vi(t) = (vi1(t),vi2(t), · · · ,vin(t))T ∈ Rn denotes the state variable and ui(t) ∈ Rn stands

for the control input of the node i, f : Rn→ Rn is a continuous vector-valued function, ρ(t) is

the time varying delay; c1,c2 are the constants indicates the coupling strength; Ã and B̃ ∈ Rn×n

represents the inner coupling matrix, the delay inner coupling matrix, respectively; Ξ = (Ξi j) ∈

Rn×n symbolizes the outer coupling matrix. If there is a link among node i and node j (i 6= j),

then Ξi j = 1, otherwise Ξi j = 0 (i 6= j). The diagonal elements of matrix Ξ are defined by

Ξi j =−
N

∑
j=1, j 6=i

Ξi j, for all i = 1,2, · · ·N.

Choose the synchronization target node as

(3) ẇ(t) = f (w(t))

and select ψ(t) = v(t)−w(t) be the error. The error system of (1) can be characterized as

ψ̇i(t) = g(ψi(t))+ c1

N

∑
j=1

Ξi jÃ(β (t))ψ j(t)+ c2

N

∑
j=1

Ξi jB̃(β (t))ψ j(t−ρ(t))+ui(t),(4)

where g(ψi(t)) = f (vi(t))− f (w(t)).

The non-fragile event-triggered control rule is defined as

u(t) = K̄ψ(tkh)(5)
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where K̄ = K+∆K(t), K stands for the control gain matrix and ∆K(t) denotes additive gain

perturbations. ∆K(t) takes the form ∆K(t) = UF(t)V where U and V denotes the constant

matrices and F(t) gratifies FT (t)F(t)≤ I

In event-triggered control, the condition where the control input is to be transmitted is defined

as follows:

(ψT (ikh)Oψ(ikh))≥ σvT (tkh)Ov(tkh)(6)

where 0 ≤ σ ≤ 1 is a known parameter, O > 0 is the matrix to be determined and ψ(ikh) =

v(tkh)− v(ikh).

Substituting (5) into (4) gives

ψ̇i(t) = g(ψi(t))+ c1

N

∑
j=1

Ξi jÃ(β (t))ψ j(t)+ c2

N

∑
j=1

Ξi jB̃(β (t))ψ j(t−ρ(t))

+Kiψi(t−η(t))+Kψ(ikh),(7)

Thus, (7) can be written as

ψ̇(t) = ḡ(ψ(t))+ c1Aiψ(t)+ c2Biψ(t−ρ(t))+Kψ(t−η(t))+Kψ(ikh),(8)

where ψ(t) = [ψ1(t),ψ2(t), · · · ,ψN(t)], ḡ(ψ(t)) = [ḡ(ψ1(t)), ḡ(ψ2(t)), · · · , ḡ(ψN(t))], A =

Ξi j⊗ Ã(β (t)), B = Ξi j⊗ B̃(β (t)) and K= diag{K1,K2, · · · ,KN}.

Assumption 2.1. Let ρ : Rn → Rn be a continuous vector valued function and gratifies the

following condition:

[ρ(p)−ρ(q)−U(p−q)]T [ρ(p)−ρ(q)−V (p−q)]T ≤ 0.

for all p,q ∈ Rn, where U and V are constant matrices of appropriate dimensions.

Lemma 2.2. [20]For any two scalars υ2 ≥ υ1 > 0, constant matrix H ∈ Rn×n,H = HT > 0,

such that the integrations concerned are well defined:

−(υ2−υ1)
∫ t−υ1

t−υ2

ξ
T (s)Hξ (s)ds≤−

(∫ t−υ1

t−υ2

ξ (s)ds
)T

H
(∫ t−υ1

t−υ2

ξ (s)ds
)
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Lemma 2.3. [21] For any vectors p1 and p2, real scalars a ≥ 0,b ≥ 0, any matrix W , and

symmetric matrix P > 0, satisfying

 P W

∗ P

≥ 0 and a+b = 1, the succeeding inequality

holds:

−1
a

pT
1 P p1−

1
b

pT
2 P p2 ≤−

 p1

p2

T  P W

∗ P

 p1

p2



Lemma 2.4. [22] Let Σ = ΣT ,U and V be the real constant matrices of appropriate dimensions

Σ+UF(t)V +V T F(t)UT < 0 for F satisfying FT (t)F(t)≤ I, iff there exists a scalar δ > 0 such

that Σ+δ−1UUT +δV TV < 0.

Lemma 2.5. [23] For any matrix E ∈Rn×m,E = ET > 0, differentiable function θ from [a,b]→

Rn, the succeeding inequality holds:∫ b

a
żT (s)Eż(s)ds≥

ϑ T [Y T
1 EY1 +π2Y T

2 EY2
]

ϑ

b−a

where ϑ = [zT (b) zT (a)
∫ b

a
zT (s)
b−a ds]T ,Y1 = [I − I 0] and Y2 = [I/2 I/2 − I].

3. MAIN RESULTS

In this section, the event-triggered non fragile control for SMJCDNs has been developed

through the following theorems.

Theorem 3.1. The SMJCDNs (8) is asymptotically synchronized if there exist matrices Pi >

0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,Z1 > 0,Z2 > 0 and matrix S,L and G such that the following

LMIs hold

ϒ(δ )< 0, i = 1,2, · · · ,s(9)

where

ϒ1,1 =Q1 +Q2 +ρR2 +Z1−R1− (Z2 +
π2

4
Z2)−νX̄+

N

∑
j=1

αi, jP j, ϒ1,2 =Pi + c1G(Ξ⊗Ai),

ϒ1,3 =R1−S, ϒ1,4 =S, ϒ1,7 = Z2−
π2

4
Z2, ϒ1,10 =

π2

2
Z2, ϒ1,11 =−νȲ, ϒ2,2 =−2G−ρ

2R1,

ϒ2,3 = c2G(Ξ2⊗Bi), ϒ2,7 = L, ϒ2,11 =G, ϒ2,12 = L, ϒ3,3 = (1−µ)Q1−2R1 +S+ST ,
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ϒ3,4 =−S+R2, ϒ4,4 =−R2, ϒ5,5 =−
1
ρ
R2, ϒ6,6 =−

1
ρ
R2, ϒ7,7 =−(Z2 +

π2

4
Z2)+σO,

ϒ7,8 = Z2−
π2

4
Z2, ϒ7,9 =−π2

2
Z2, ϒ7,10 =−

π2

2
Z2, ϒ8,8 =−(Z2 +

π2

4
Z2),

ϒ8,9 =
π2

2
Z2, ϒ10,10 = π

2Z2, ϒ11,11 =−νI, ϒ12,12 =−O

Along with, the gain matrices are attained as K=GL−1.

Proof: Consider the Lyapunov-Krasovskii functional as

(10) V (t) =
5

∑
i=1

Vi(t)

where

V1(t) =ψ
T (t)Piψ(t)+

∫ t

t−ρ(t)
ψ

T (s)Q1ψ(λ )dλ +
∫ t

t−ρ

ψ
T (λ )Q2ψ(λ )dλ ,(11)

V2(t) =ρ

∫ 0

−ρ

∫ t

t+θ

ψ̇
T (λ )R1ψ̇(λ )dλdθ +

∫ 0

−ρ

∫ t

t+θ

ψ
T (λ )R2ψ(λ )dλdθ(12)

V3(t) =
∫

t−η

ψ
T (λ )Z1ψ(λ )dλ +η

∫ 0

−η

∫ t

t+θ

ψ̇
T (λ )Z2ψ̇(λ )dλdθ(13)

Finding the time-derivative of (10) along the trajectory of system (9), one can get

LV1(t) = 2ψ
T (t)Piψ̇(t)+ψ

T (t)
N

∑
j=1

αi j(δ )P jψ(t)+ψ
T (t)Q1ψ(t)

− (1−µ)ψT (t−ρ(t))Q1ψ(t−ρ(t))+ψ
T (t)Q3ψ(t)−ψ

T (t−ρ)Q3ψ(t−ρ)(14)

LV2(t) = ρ
2
ψ̇

T (t)R1ψ̇(t)−ρ

∫ t

t−ρ

ψ̇
T (s)R1ψ̇(λ )dλ +ρψ

T (t)R2ψ(t)−
∫ t

t−ρ

ψ
T (λ )R2ψ(λ )dλ(15)

LV3(t) = ψ
T (λ )Z1ψ(λ )−ψ

T (t−η)Z1ψ(t−η)+η
2
ψ̇

T (t)Z2ψ̇(t)−η

∫ t

t−η

ψ̇
T (λ )Z2ψ̇(λ )dλ(16)

From (15) and lemma 2.2 we have

−
∫ t

t−ρ

ψ
T (λ )R2ψ(λ )dλ =−

∫ t

t−ρ(t)
ψ

T (λ )R2ψ(λ )dλ −
∫ t−τ(t)

t−ρ

ψ
T (λ )R2ψ(λ )dλ

≤− 1
ρ

 ∫ t−ρ(t)
t−ρ ψ(λ )dλ∫ t
t−ρ(t)ψ(λ )dλ

T  R2 0

0 R2

 ∫ t−ρ(t)
t−ρ ψ(λ )dλ∫ t
t−ρ(t)ψ(λ )dλ

(17)

Let us consider

ϕ1(t) =
∫ t

t−ρ(t)
ψ̇(λ )dλ ,ϕ2(t) =

∫ t−ρ(t)

t−ρ

ψ̇(λ )dλ ,(18)
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with 0 < ρ(t)< ρ and by lemma 2.2 and 2.3, we have

−ρ

∫ t

t−ρ

ψ̇
T (λ )

R1ψ̇(λ )dλ =−
∫ t

t−ρ(t)
ψ̇

T (λ )R1ψ̇(λ )dλ −
∫ t−ρ(t)

t−ρ

ψ̇
T (λ )R1ψ̇(λ )dλ

≤− 1
ρ(t)

(∫ t

t−ρ(t)
ψ̇(λ )dλ

)T

R1

(∫ t

t−ρ(t)
ψ̇(λ )dλ

)
− 1

ρ−ρ(t)

(∫ t−ρ(t)

t−ρ

ψ̇(λ )dλ

)T

R1(∫ t−ρ(t)

t−ρ

ψ̇(λ )dλ

)

=

 ϕ1(t)

ϕ2(t)

T  R1 S

? R1

 ϕ1(t)

ϕ2(t)


(19)

In specific when ρ(t) = 0 or ρ(t) = ρ(t), we have ϕ1(t) = 0 or ϕ2(t) = 0. Thus,

−ρ

∫ t

t−ρ

ψ̇
T (λ )R1ψ̇(λ )dλ ≤ κ

T (t)Ωκ(t)(20)

where κ(t) =
[

ψT (t) ψT (t−ρ(t)) ψT (t−ρ)
]T

,Ω =


−R1 R1−S S

? −2R1 +S+ST −S+R1

? ? −R1


By making use of lemma 2.5, (16) can be rewritten as

−η

∫ t−η(t)

t−η

ψ̇
T (λ )Z2ψ̇(λ )dλ

≤−


ψ(t−η(t))

ψ(t−η)

1
η

∫ t−η(t)
t−η ψ(λ )dλ )


T 

Z2 +
π2

4 Z2 −Z2 +
π2

4 Z2 −−π2

2 Z2

−Z2 +
π2

4 Z2 Z2 +
π2

4 Z2 −−π2

2 Z2

−−π2

2 Z2 −−π2

2 Z2 π2Z2



×


ψ(t−η(t))

ψ(t−η)

1
η

∫ t−η(t)
t−η ψ(λ )dλ )

(21)
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and

−η

∫ t

t−η(t)
ψ̇

T (λ )Z2ψ̇(λ )dλ

≤−


ψ(t)

ψ(t−η(t))
1
η

∫ t
t−η(t)ψ(λ )dλ


T 

Z2 +
π2

4 Z2 −Z2 +
π2

4 Z2 −−π2

2 Z2

−Z2 +
π2

4 Z2 Z2 +
π2

4 Z2 −−π2

2 Z2

−−π2

2 Z2 −−π2

2 Z2 π2Z2




ψ(t)

ψ(t−η(t))
1
η

∫ t
t−η(t)ψ(λ )dλ

(22)

For any matrix G, we have

2{ψ̇T (t)G[−ψ̇(t)+g(ψ(t))+ c1(Ξ1⊗Ai)ψ(t)+ c2(Ξ2⊗Bi)ψ(t−ρ(t))+Kψ(t−η(t))

+Kψ(ikh)]}= 0(23)

By assumption 2.1, for any ν > 0, we have

ν

 ψ(t)

g(ψ(t))

T  X̄ Ȳ

∗ I

 ψ(t)

g(ψ(t))

≤ 0(24)

From (11)-(24), we have

E{LV (t)} ≤Ψ
T (t)ϒ(δ )Ψ(t)< 0(25)

where ΨT (t) =
[
ψT (t) ψ̇(t) ψ(t−ρ(t)) ψ(t−ρ) 1

ρ

∫ t−ρ(t)
t−ρ ψT (λ )dλ

∫ t
t−ρ(t)ψT (λ )dλ

ψT (t−η(t)) ψ(t−η) 1
η

∫ t−η(t)
t−η ψT (λ )dλ

∫ t
t−η(t)ψT (λ )dλ ḡ(ψ(t)) ψ(ikh)

]
and ϒ(δ ) is

given in (9).

Theorem 3.2. The SMJCDNs, (8) is asymptotically synchronized if there exist matrices Pi >

0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,Z1 > 0,Z2 > 0, matrices S,L,G such that the subsequent

LMIs hold

ϒ(i, j),w̄ < 0, i = 1,2, · · · ,s(26)
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where

ϒ(1,1),w̄ =Q1 +Q2 +ρR2 +Z1−R1− (Z2 +
π2

4
Z2)−νX̄+

N

∑
j=1

αi, jP j, ϒ1,2 =Pi,

ϒ1,3 =R1−S, ϒ1,4 =S, ϒ1,7 = Z2−
π2

4
Z2, ϒ1,10 =

π2

2
Z2, ϒ1,11 =−νȲ,

ϒ2,2 =−2G−ρ
2R1, ϒ2,3 = c2G(Ξ2⊗Bi), ϒ2,7 = L, ϒ2,11 =G, ϒ2,12 = L,

ϒ3,3 = (1−µ)Q1−2R1 +S+ST , ϒ3,4 =−S+R2, ϒ4,4 =−R2, ϒ5,5 =−
1
ρ
R2,

ϒ6,6 =−
1
ρ
R2, ϒ7,7 =−(Z2 +

π2

4
Z2)+σO, ϒ7,8 = Z2−

π2

4
Z2, ϒ7,9 =−

π2

2
Z2,

ϒ7,10 =−
π2

2
Z2, ϒ8,8 =−(Z2 +

π2

4
Z2), ϒ8,9 =

π2

2
Z2, ϒ10,10 = π

2Z2,

ϒ11,11 =−νI, ϒ12,12 =−O

Along with, the gain matrices are attained as K =GL−1.

In the upcoming theorem, the results in the preceding theorem was enlarged with non-fragile

controller for the system (8).

Theorem 3.3. The SMJCDNs (8) is asymptotically synchronized if there exist matrices Pi >

0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,Z1 > 0,Z2 > 0 and matrix S,L,G and scalars ς1,ς2 such

that the subsequent LMIs hold

ϒ(i, j),w̄ U1 ς1V1 U2 ς2V2

∗ −ς1I 0 0 0

∗ ∗ −ς1I 0 0

∗ ∗ ∗ −ς2I 0

∗ ∗ ∗ ∗ −ς2I


< 0, i = 1,2, · · · ,s(27)
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where

ϒ(1,1),w̄ =Q1 +Q2 +ρR2 +Z1−R1− (Z2 +
π2

4
Z2)−νX̄+

N

∑
j=1

αi j,w̄P j, ϒ1,2 =Pi,

ϒ1,3 =R1−S, ϒ1,4 =S, ϒ1,7 = Z2−
π2

4
Z2, ϒ1,10 =

π2

2
Z2, ϒ1,11 =−νȲ,

ϒ2,2 =−2G−ρ
2R1, ϒ2,3 = c2G(Ξ2⊗Bi), ϒ2,7 = L, ϒ2,11 =G,

ϒ2,12 = L, ϒ3,3 = (1−µ)Q1−2R1 +S+ST , ϒ3,4 =−S+R2,

ϒ4,4 =−R2, ϒ5,5 =−
1
ρ
R2, ϒ6,6 =−

1
ρ
R2, ϒ7,7 =−(Z2 +

π2

4
Z2)+σO,

ϒ7,8 = Z2−
π2

4
Z2, ϒ7,9 =−

π2

2
Z2, ϒ7,10 =−

π2

2
Z2, ϒ8,8 =−(Z2 +

π2

4
Z2),

ϒ8,9 =
π2

2
Z2, ϒ10,10 = π

2Z2, ϒ11,11 =−νI, ϒ12,12 =−O

Along with, the gain matrices are attained as L=GK−1.

Proof: By making use of ∆K(t) = UF(t)V, LMI in (26) can be written as

ϒ(i, j),w̄ +U1F(t)V1 +VT
1 F(t)UT

1 +U2F(t)V2 +VT
2 F(t)U2,

where

U1 =

[
0 · · ·0︸ ︷︷ ︸

6

GU 0 · · ·0︸ ︷︷ ︸
5

]
, U2 =

[
0 · · ·0︸ ︷︷ ︸

11

GU

]
, V1 =

[
0 V 0 · · ·0︸ ︷︷ ︸

10

]
,V2 =

[
0 · · ·0︸ ︷︷ ︸

11

V

]

Then from lemma 2.4, we have ϒ(i, j),w̄ + ς−1U1U
T
1 + ς1V

T
1 V1 + ς−1U2U

T
2 + ς1V

T
2 V2.

Thus, one can get

ϒ(i, j),w̄ U1 ς1V1 U2 ς2V2

∗ −ς1I 0 0 0

∗ ∗ −ς1I 0 0

∗ ∗ ∗ −ς2I 0

∗ ∗ ∗ ∗ −ς2I


, i = 1,2, · · · ,s(28)

If the semi-Markovian jumping parameters are not considered then the the above theorem

can be modified as
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Theorem 3.4. The SMJCDNs (8) is asymptotically synchronized if there exist matrices Pi >

0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,Z1 > 0,Z2 > 0 and matrix S,L,G and scalars ς1,ς2 such

that the subsequent LMIs hold

ϒi, j U1 ς1V1 U2 ς2V2

∗ −ς1I 0 0 0

∗ ∗ −ς1I 0 0

∗ ∗ ∗ −ς2I 0

∗ ∗ ∗ ∗ −ς2I


< 0, i = 1,2, · · · ,s(29)

where

ϒ(1,1) =Q1 +Q2 +ρR2 +Z1−R1− (Z2 +
π2

4
Z2)−νX̄, ϒ1,2 =P,

ϒ1,3 =R1−S, ϒ1,4 =S, ϒ1,7 = Z2−
π2

4
Z2, ϒ1,10 =

π2

2
Z2, ϒ1,11 =−νȲ,

ϒ2,2 =−2G−ρ
2R1, ϒ2,3 = c2G(Ξ2⊗B), ϒ2,7 = L, ϒ2,11 =G,

ϒ2,12 = L, ϒ3,3 = (1−µ)Q1−2R1 +S+ST , ϒ3,4 =−S+R2,

ϒ4,4 =−R2, ϒ5,5 =−
1
ρ
R2, ϒ6,6 =−

1
ρ
R2, ϒ7,7 =−(Z2 +

π2

4
Z2)+σO,

ϒ7,8 = Z2−
π2

4
Z2, ϒ7,9 =−

π2

2
Z2, ϒ7,10 =−

π2

2
Z2, ϒ8,8 =−(Z2 +

π2

4
Z2),

ϒ8,9 =
π2

2
Z2, ϒ10,10 = π

2Z2, ϒ11,11 =−νI, ϒ12,12 =−O

Along with, the gain matrices are attained as L=GK−1.

4. NUMERICAL EXAMPLE

This section affords numerical examples to validate the results.

Example 4.1. Let us consider the isolated node of the dynamical network as the Chua’s circuit:

ẇ = f (w) =


a(w2−w1−h(w1))

w1−w2 +w3

γw2

(30)
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FIGURE 1. Choatic attactor and State trajectories of Chua’s system

where h(w1) = nw1 +0.5(m−n)(|s1 +1|− |s1−1|) and the parameters a = 9,γ = 100/7,m =

−8/7,n =−5/7. Consider the SMJCDN (8) with

A1 =

 −0.5 0

0 −0.5

 ,A2 =

 −0.1 0

0 0.1

B1 =

 −1.2 0

0 −1.2

 ,B2 =

 2.1 0

0 2.1



Ξ1 =


−0.2 0.1 0.1

0.1 −0.2 0.1

0.1 0.1 −0.2

 ,Ξ2 =


−3 1.5 1.5

0.5 −1 0.5

0.8 0.8 −1.6


The transition rates are defined as α11(δ )∈ [−2.2,−1.5] and α22(δ )∈ [−2.2,−1.5]. Without

loss of generality, we have α11,1 = −2.2,α11,2 = −1.5, α22,1 = −2.2, α22,2 = −1.5 While
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FIGURE 2. State trajectories of the error system

resolving the LMIs in Theorem 4, the gain matrices and triggering matrix are

K1 =

 −0.0161 −0.2161

0.0284 0.1575

 ,K2 =

 −0.0263 0.0165

0.0292 0.1504

 ,K3 =

 −0.0233 0.0164

0.0290 0.1525

 ,

O =



0.2731 0.0000 0 0 0 0

0.0000 0.2731 0 0 0 0

0 0 0.2731 0.0000 0 0

0 0 0.0000 0.2731 0 0

0 0 0 0 0.2731 0.0000

0 0 0 0 0.0000 0.2731



The Chaotic attractor of the Chua’s circuit and state trajectories are given in Figure 1 and

Figure 2. By providing the designed controller to the error system, the state trajectories are

depicted in Figure 3. The releasing instants for the event-triggered controller was given in

Figure 4.
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5. CONCLUSION

In this paper, the synchronization problem for SMJCDNs with non-fragile controller and

event-triggered controller was discussed in order to achieve the benefits of both controllers. The

MATLAB LMI tool box is used to solve the derived LMIs. Eventually, the applicability of the

designed controller was examined for synchronization of Chua’s circuit through the simulation

results.
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