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Abstract. A graph in which any two adjacent vertices have distinct degrees is totally segregated. In this article

segregating sequence, which is a new tool for finding segregated extension of given graph is introduced. If G is an

undirected graph which contains a vertex v, then the graph G◦v is obtained from G by adding a new vertex v′ which

is connected to all the neighbors of v. More generally, if v1,v2, · · · ,vn are the vertices of G and t = (t1, t2, · · · , tn)

is a vector of positive integers then H = G ◦ t is constructed by substituting for each vi an independent set of ti

vertices v1
i ,v

2
i , · · · ,v

ti
i and joining vs

i with vt
j if and only if vi and v j are adjacent in G. If G is not totally segregated

and G◦ t is totally segregated, then the sequence t is a segregating sequence of G. Here it is proved that any graph

can be embedded as an induced subgraph in a totally segregated graph. Further, segregating sequence for many

classes of graphs are determined.
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1. INTRODUCTION

It is known that (Konig [11]) any graph G of maximum degree ∆(G) is an induced subgraph of

some ∆(G)-regular graph H. Erdos and Kelly [6] determined the minimum number of vertices,

the induced regulation number, which is to be added to a graph G to obtain such a ∆(G)-

regular supergraph H. The latter was also extended to digraphs by Beineke and Pippert [3]. The
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regulation number of a graph G is the minimum number of vertices which must be added to

G to construct a ∆(G)-regular supergraph H. In this case, G need not be an induced subgraph

of H. Regulation number of graphs was introduced by Akiyama, Era and Harary [1] and was

further studied by Akiyama and Harary [2] and Harary and Schmidt [9]. Analogous concepts

for digraphs and multigraphs were introduced by Harary and Karabed [8] and Chartrand, Harary

and Ollermann [5] respectively. In [4] Buckley and Harary studied the problem of embedding a

highly irregular graph G as an induced subgraph in a self-centered graph H of smallest possible

order so that H is regular with the same maximum degree as G.

A connected graph G is totally segregated if degG u 6= degG v, for every edge uv ∈ E(G). The

class of totally segregated graphs was studied by Jackson and Entringer [10]. In this paper our

attempt is to find segregated extension of some graph.

2. SEGREGATING SEQUENCE

The concept of multiplication of vertices was given by Golumbic [7] as follows. If G is an

undirected graph which contains a vertex v, then the graph G◦ v is obtained from G by adding

a new vertex v′ which is connected to all the neighbors of v. More generally, if v1,v2, · · · ,vn

are the vertices of G and t = (t1, t2, · · · , tn) is a vector of non negative integers then H = G◦ t is

constructed by substituting for each vi an independent set of ti vertices v1
i ,v

2
i , · · · ,v

ti
i and joining

vs
i with vt

j if and only if vi and v j are adjacent in G. We say that H is obtained from G by

multiplication of vertices. This definition allows ti = 0, in which case H includes no copy of vi.

Thus every induced subgraph of G can be obtained by multiplication of the appropriate (0,1)-

valued vector.

Definition 2.1. Let G = (V,E) be a graph where V = {v1,v2, · · · ,vn} and t = (t1, t2, · · · , tn) be a

sequence of positive integers. If G◦ t is totally segregated, then the sequence t is a segregating

sequence of G and G◦ t is the segregated extension of G which is denoted by GS . The sequence

t = (t1, t2, · · · , tn) is said to be a minimal segregating sequence of the graph G if no sequence

t ′ = (t ′1, t
′
2, · · · , t ′n) with

n

∑
i=1

t ′i <
n

∑
i=1

ti is a segregating sequence of G. If t is minimal segregating

sequence of G, G◦ t is called minimal segregated-extension of G which is denoted by GS−. The

sequence t ′ = (t ′1, t
′
2, · · · , t ′n) is said to be a perfect segregating sequence of the graph G if the
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graph G ◦ t ′ is totally segregated with ∆(G ◦ t ′) = ∆(G) and G ◦ t ′ is the perfect segregated-

extension of G which is denoted by GS∗. The graph G which can be segregated using a perfect

segregating sequence is called perfect segregated-extendable graph.

Remark 2.1.

• To define segregating sequence of the graph G ordering the vertex set V (G) is important.

• For a totally segregated graph G, the segregating sequence is t = (1,1, · · · ,1). Here

GS = G.

• If GS = (V S,ES) , |V S|= t1 + t2 + · · ·+ tn

Proposition 2.1. Any graph G has segregated extension.

Proof. Suppose G is not totally segregated. If G is P2, (2,1) is its minimal segregating sequence.

Suppose G � P2. An edge uv of E(G) is said to be balanced if degG u = degG v. Since G is not

totally segregated, it has at least one balanced edge. Let uv be one of the balanced edges of G

. Multiply the vertex u, ∆(G) times and let the resultant graph be G1. Then degG1 v > ∆(G).

Let b be the number of balanced edges in G and b1 be the number of balanced edges in G1. It

is clear that b1 < b, since in each step balanced edges become unbalanced but no unbalanced

edges become balanced. If G1 is not totally segregated, let u1v1 be one of the balanced edges of

G1. Multiply the vertex u1, ∆(G1) times and let the resultant graph be G2. Continue this process

until no such balanced edges remain. Since G is finite, the process will end in finite number of

steps. Then the resulting graph is totally segregated graph. �

Remark 2.2.

1. Let G = (V,E) be a graph. If there exists a balanced edge uv such that degG u = degG v =

∆(G), then G is not perfect segregated-extendable.

2. If a graph G which is not totally segregated has a universal vertex, then it is not perfect

segregated-extendable.

3. Perfect segregating sequence of a graph may not be minimal segregating sequence and mini-

mal segregating sequence may not be perfect segregating sequence.
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Example 2.1. Take 3 copies of P4. Let G = (V,E) be the graph obtained by fusing 3 copies of

end vertex of P4 as in Figure 1.

The vertex set V = {v1,v2,v3,v4,v5,v6,v7,v8,v9,v10}. Then the sequence t = (ti), where

ti =

 2 for i = 8,9,10

1 otherwise

is the segregating sequence of G. Here note that t is a perfect segregating sequence which is not

minimal.

The sequence t = (ti) where

ti =

 3 if i = 1

1 otherwise

is a minimal sgregating sequence which is not perfect.

FIGURE 1. G′ : Perfect segregated-extension of the graph G, G′′ : Minimal

segregated-extension of the graph G

Remark 2.3. Regular graphs and path Pn, n 6= 3 are not perfect segregated-extendable.

3. SEGREGATED EXTENSIONS OF SOME CLASSES OF GRAPHS

• Segregating Sequence of Paths

Let G = Pn be the path on n vertices with vertex set V = {v1,v2, · · · ,vn}, where v1

and vn are end vertices. By Remark 2.2 (1), perfect segregating sequence does not exist

for path Pn, n 6= 3.

Remark 3.1. To make paths Pn segregated, at least one vertex among 4 consecutive

vertices on path Pn, should be multiplied by a number i, where i≥ 2.
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By Remark 3.1, The segregating sequence t = (ti) of G given below is minimal.

Case 1. n = 4k, k ≥ 1.

ti =

 2 if i = 1,5, · · · ,4k−3

1 otherwise

Case 2. n = 4k+1, k ≥ 1.

FIGURE 2. G∼= P8, G′ ∼= P8 ◦ t which is minimal segregated extension of G

ti =

 2 if i = 3,7, · · · ,4k−1

1 otherwise

Case 3. n = 4k+2, k ≥ 1.

ti =

 2 if i = 3,7, · · · ,4k−1

1 otherwise

Case 4. n = 4k+3, k ≥ 1.

ti =

 2 if i = 4,8, · · · ,4k

1 otherwise

• Segregating Sequence of Fused Paths

(1) Paths fused at one end vertex

Let Pn be a path on n vertices and w is an end vertex. Take m(≥ 3) copies of Pn. Let

G = (V,E) be the graph obtained by fusing the m copies of Pn at w which is denoted by

Fw(Pn)
m. The vertex set V = ∪m

i=1Vi where Vi = {w,vi2,vi3, · · · ,vin}. It is nothing but

subdivided star.

Remark 3.2. To make Fw(Pn)
m segregated, at least one vertex among 4 consecutive

vertices on any branch of it at w, should be multiplied by a number i, where i ≥ 2.
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Also if degw = 3 and if w is the only vertex with multiplicity at least 2 on the path

(w,vi2,vi3,vi4), m(w)> 2. Otherwise degree of any copy of w is 3 and degvi2 = 3 which

is a contradiction.

Segregating sequence of Fw(Pn)
m

G = (V,E) where V = ∪m
i=1Vi, Vi = {w,vi2,vi3, · · · ,vin} and V is ordered as V =

{w,v12, · · · ,v1n,v22, · · · ,v2n, · · · · · · ,vm2, · · · ,vmn}.

Let t = (tw, t12, · · · , t1n, t22, · · · , t2n, · · · · · · , tm2, · · · , tmn) be defined as follows.

Case 1. n = 4k, k ≥ 1.

Subcase 1.1 m = 3

If tw = 3 and ti j =

 2 for j = 5,9, · · · ,4k−3 and for all i

1 otherwise

FIGURE 3. G : Fw(P8)
3, G′ : Fw(P8)

3 ◦ t which is minimal segregated extension

of G
Then t is segregating sequence and it is minimal by Remark 3.2 but not perfect.

If tw = 1 and ti j =

 2 for j = 4,8, · · · ,4k and for all i.

1 otherwise
Then t is a segregating sequence and it is perfect but not minimal.

Subcase 1.2 m≥ 4.

If tw = 2 and ti j =

 2 for j = 5,9, · · · ,4k−3 and for all i.

1 otherwise
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The segregating sequence t is minimal by Remark 3.2 and perfect.

If tw = 1 and ti j =

 2 for j = 4,8, · · · ,4k and for all i.

1 otherwise
The segregating sequence t is perfect but not minimal.

Case 2. n = 4k+1, k ≥ 1.

Subcase 2.1 m = 3.

If tw = 3 and ti j =

 2 if j = 5,9, · · · ,4k+1 and for all i.

1 otherwise
The segregating sequence t is minimal by Remark 3.2 but not perfect.

In this case perfect segregating sequence does not exist.

Subcase 2.2 m≥ 4.

If tw = 1 and ti j =

 2 if j = 3,7, · · · ,4k−1 and for all i.

1 otherwise
The segregating sequence t is minimal by Remark 3.2 and perfect.

Case 3. n = 4k+2, 4k+3, k ≥ 1,m≥ 3.

If tw = 1 and ti j =

 2 for j = 4,8, · · · ,4k and for all i

1 otherwise
The segregating sequence t is minimal by Remark ref 3.2 and perfect

(2) Paths fused at two end vertices

Let Pn be a path on n vertices and u,w are end vertices. Take m(≥ 3) copies of Pn. Let

G = (V,E) be the graph obtained by fusing m(≥ 3) copies of end vertices u,w of Pn

separately, which is denoted by Fu,w(Pn)
m. The vertex set V = ∪m

i=1Vi ∪{u,w} where

Vi = {u,vi2,vi3, · · · ,vi(n−1),w}.

Remark 3.3. To make the fused paths Fu,w(Pn)
m segregated, at least one vertex among

4 consecutive vertices on any u−w path Fu,w(Pn)
m, should be multiplied by a number

i, where i ≥ 2. Also if degu = 3 and if u is the only vertex with multiplicity at least
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2 on the path (u,vi2,vi3,vi4), m(u) > 2. Otherwise degree of any copy of u is 3 and

degvi2 = 3 which is a contradiction. The case is similar for w.

Segregatig sequence of Fu,w(Pn)
m

G = (V,E) where V = ∪m
i=1Vi, Vi = {u,vi2,vi3, · · · ,vi(n−1),w} and V is ordered as

V = {u,v12, · · · ,v1(n−1),v22, · · · ,v2(n−1), · · · · · · ,vm2, · · · ,vm(n−1),w}.

Let t = (tu, t12, · · · , t1(n−1), t22, · · · , t2(n−1), · · · · · · , tm2, · · · , tm(n−1), tw) be defined as fol-

lows.

Case 1. n = 4k, k ≥ 1.

Subcase 1.1 m = 3

If tu = 3, tw = 1 and ti j =

 2 for j = 5,9, · · · ,4k−3 and for all i

1 otherwise
The segregating sequence t is minimal by Remark 3.3 but not perfect.

In this case perfect segregating sequence does not exist.

FIGURE 4. G : Fu,w(P8)
3, G′ : Fu,w(P8)

3 ◦ t which is minimal segregated exten-

sion of G

Subcase 1.2 m≥ 4.

If tu = 2, tw = 1 and ti j =

 2 for j = 5,9, · · · ,4k−3 and for all i.

1 otherwise
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The segregating sequence t is minimal by Remark 3.3 and perfect.

Case 2. n = 4k+1, k ≥ 1.

Subcase 2.1 m = 3.

If tu = 1, tw = 1 and ti j =

 2 if j = 2,6, · · · ,4k−2 and for all i.

1 otherwise
The segregating sequence t is minimal by Remark 3.2 but not perfect.

In this case prfect segregating sequence does not exist.

Subcase 2.2 m≥ 4.

If tu = 1, tw = 1 and ti j =

 2 if j = 3,7, · · · ,4k−1 and for all i.

1 otherwise
The segregating sequence t is minimal by Remark 3.2 and perfect.

Case 3. n = 4k+2, k ≥ 1.

Subcase 3.1 m = 3.

If tu = 3, tw = 1 and ti j =

 2 for j = 5,9, · · · ,4k+1 and for all i

1 otherwise
The segregating sequence t is minimal by Remark 3.2 but not perfect.

In this case perfect segregating sequence does not exist.

Subcase 3.2 m≥ 4.

If tu = 1, tw = 1 and ti j =

 2 for j = 3,7, · · · ,4k−1 and for all i

1 otherwise
The segregating sequence t is minimal by Remark 3.2 and perfect.

Case 4. n = 4k+3, k ≥ 1, m≥ 3.

If tu = 1, tw = 1 and ti j =

 2 for j = 4,8, · · · ,4k and for all i

1 otherwise
The segregating sequence t is minimal by Remark 3.2 and perfect.

Remark 3.4. A segregating sequence of Fu,w(Pn)
3 is perfect only when n= 4k+3, k≥ 1.
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• Segregating Sequence of Cycles

Let G =Cn be the cycle on n vertices with vertex set V = {v1,v2, · · · ,vn}. By Remark

2.2 (1), perfect segregating sequence of cycle does not exist.

Let t = (t1, t2, · · · , tn) is the segregating sequence G.

Remark 3.5. To make paths Cn segregated, at least one vertex among 4 consecutive

vertices on cycle Cn, should be multiplied by a number i, where i≥ 2.

By Remark 3.5, The segregating sequence t = (ti) of G given below is minimal.

Case 1. n = 4k, k ≥ 1.

ti =

 2 if i = 1,5, · · · ,4k−3

1 otherwise

Case 2. n = 4k+1, k ≥ 1.

ti =


2 if i = 1,5, · · · ,4k−3

3 if i = 4k−1

1 otherwise

Case 3. n = 4k+2, k ≥ 1.

ti =

 2 if i = 1,5, · · · ,4k+1

1 otherwise

Case 4. n = 4k+3, k ≥ 1.

ti =


2 if i = 1,5, · · · ,4k−3

3 if i = 4k+1

1 otherwise

• Segregating Sequence of Complete Graphs

Let G = Kn be the complete graph on n vertices with vertex set V = {v1,v2, · · · ,vn}.

Then t = (ti) is the segregating sequence G where ti = i. Here the segregating sequence

t is the minimal but not perfect.
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• Segregating Sequence of Complete K-partite Graphs with same partite size

Let G = Kr,r,··· ,r be the complete k- partite graph with partite size r. The Vertex set

V (G) = ∪k
i=1Vi, where Vi = {vi1,vi2, · · · ,vir} denote the ith partite set. Then t = (ti j) is

the segregating sequence of G, where

ti j =

 i if j = 1

1 otherwise

Here the segregating sequence t is minimal but not perfect.

• Segregating Sequence of Petersen Graph Let G = (V,E) be Petersen graph

FIGURE 5. Petersen graph G.

and V = {vi}, i = 1,2, · · · ,10. Then t = (ti) is the segregating sequence where

ti =


2 if i = 1

3 if i = 7,9

1 otherwise

• Segregating Sequence of Bistar

Let G = (V,E) be bistar graph where V = {u,v,u1,u2, · · · ,ud,v1,v2, · · · ,vd} and

E = {uv.uui,vvi : ui,vi ∈V}.

Perfect segregating sequence does not exist for G by Remark 2.2 (1). Here t =

(tu, tv, · · · , tui · · · , · · · , tvi, · · ·) is the minimal segregating sequence of G where tw = 2 if w = u1

1 otherwise
• Segregating Sequence of Sun flower Graph
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FIGURE 6. Bistar graph G.

Sun flower graph is as described in Figure 7. Let G = W1,n = (W,E) ,n ≥ 3 be the

wheel graph where W = {w}∪V . Let V = {v1,v2, · · · ,vn}. Sun flower graph is the

graph λ (W1,n) with the vertex set {w}∪V ∪V ′ where V ′= {v′i : vi ∈V}which is disjoint

from V and with edge set E ∪{viv′i,vi+1v′i : vi ∈ V} where vn+1v′n is replaced by v1v′n.

Here the sequence t = (t ′i) is the perfect segregating sequence of the sun flower graph

FIGURE 7. Sun flower graph λ (W1,n).

λ (W1,n), for n≥ 8.

Case 1. n = 4k, k ≥ 2.

t ′i =

 2 for i = 1,2,5,6, · · · ,4k−7,4k−6,4k−3,4k−2.

1 otherwise

Case 2. n = 4k+1, k ≥ 2.

t ′i =


2 for i = 1,2,5,6, · · · ,4k−7,4k−6,4k−3,4k−2.

3 for i = 4k−1

1 otherwise
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Case 3. n = 4k+2, k ≥ 2.

t ′i =


2 for i = 1,2,5,6, · · · ,4k−7,4k−6,4k−2,4k−1.

3 for i = 4k−5,4k

1 otherwise

Case 4. n = 4k+3, k ≥ 2.

t ′i =


2 for i = 1,2,5,6, · · · ,4k−3,4k−2,4k+1.

3 for i = 4k+2

1 otherwise

Note that in this case the segregating sequence t is perfect as well as minimal. But for

3≤ n≤ 7, perfect segregating sequence does not exist.
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