

Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 4, 4863-4876
https://doi.org/10.28919/jmcs/5849
ISSN: 1927-5307

A CERTAIN CHARACTER CONNECTED WITH SEPARATION AXIOMS IN BINARY TOPOLOGICAL SPACES

P. SATHISHMOHAN ${ }^{1}$, V. RAJENDRAN ${ }^{1}$, K. LAVANYA ${ }^{1, *}$, K. RAJALAKSHMI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641 029, Tamil Nadu, India
${ }^{2}$ Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore-641 008, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce and study a new class of axioms called the binary semi- T_{0}, binary semi- T_{1}, binary semi- T_{2}, binary semi- T_{3}, and binary semi- T_{4} spaces. Further, we have given an appropriate examples to understand the abstract concepts clearly.

Keywords: binary semi- T_{0}; binary semi- T_{1}; binary semi- T_{2}; binary semi- T_{3}; binary semi- T_{4} spaces.
2010 AMS Subject Classification: 54A05, 54C05, 54A99.

1. Introduction

The concept of binary topology from X to Y is introduced by Nithyanantha Jothi and Thangavelu [1]. He also introduced the concepts of binary closed, binary closure, binary interior and binary continuity. Further, the concepts of base and sub base of a binary topological space are introduced and investigated. Also, in 2012, the authors[2] introduced the concept of binary- T_{0}, binary- T_{1}, binary- T_{2}, binary- T_{3}, and binary- T_{4} spaces. The authors[3] introduced binary semi open sets in binary topological spaces and obtained some basic results. Recently,

[^0]sathishmohan et.al.,[5] introduce and study the concept of binary generalized semi closed sets and binary semi generalized closed sets in binary topological spaces. Also, the authors[6] introduced the concept of binary generalized semi(binary semi generalized) closure and interior of a sets in binary topological spaces. The purpose of this paper, is to introduce binary semi- T_{0}, binary semi- T_{1}, binary semi- T_{2}, binary semi- T_{3}, and binary semi- T_{4} spaces in binary topological spaces and characterize their basic properties.

2. Preliminaries

Definition 2.1. Let X and Y be any two nonempty sets. A binary topology [1] from X to Y is a binary structure $\mathscr{M} \subseteq \mathscr{P}(X) \times \mathscr{P}(Y)$ that satisfies the axioms.
(1) (ϕ, ϕ) and $(X, Y) \in \mathscr{M}$.
(2) $\left(A_{1} \cap A_{2}, B_{1} \cap B_{2}\right) \in \mathscr{M}$ whenever $\left(A_{1}, B_{1}\right) \in \mathscr{M}$ and $\left(A_{2}, B_{2}\right) \in \mathscr{M}$.
(3) If $\left\{\left(A_{\alpha}, B_{\alpha}\right): \alpha \in \Delta\right\}$ is a family of members of \mathscr{M} then $\left(\bigcup_{\alpha \in \Delta} A_{\alpha}, \bigcup_{\alpha \in \Delta} B_{\alpha}\right) \in \mathscr{M}$.

Definition 2.2. [1] If \mathscr{M} is a binary topology from X to Y then the triplet (X, Y, \mathscr{M}) is called a binary topological space and the members of \mathscr{M} are called the binary open subsets of the binary topological space (X, Y, \mathscr{M}). The elements of $X \times Y$ are called the binary points of the binary topological space (X, Y, \mathscr{M}). If $Y=X$ then \mathscr{M} is called a binary topology on X in which case we write (X, X, \mathscr{M}) as a binary topological space.

Definition 2.3. [1] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in \mathscr{P}(X) \times$ $\mathscr{P}(Y)$. We say that $(A, B) \subseteq(C, D)$ if $A \subseteq C$ and $B \subseteq D$.

Definition 2.4. [1] Let (X, Y, \mathscr{M}) be a binary topological space and $A \subseteq X, B \subseteq Y$. Then (A, B) is called binary closed in (X, Y, \mathscr{M}) if $(X-A, Y-B) \in \mathscr{M}$.

Proposition 2.5. [1] Let (X, Y, \mathscr{M}) be a binary topological space and $(A, B) \subseteq(X, Y)$. Let $(A, B)^{1^{*}}=\cap\left\{A_{\alpha}:\left(A_{\alpha}, B_{\alpha}\right)\right.$ is binary closed and $\left.(A, B) \subseteq\left(A_{\alpha}, B_{\alpha}\right)\right\}$ and $(A, B)^{2^{*}}=\cap\left\{B_{\alpha}:\right.$ $\left(A_{\alpha}, B_{\alpha}\right)$ is binary closed and $\left.(A, B) \subseteq\left(A_{\alpha}, B_{\alpha}\right)\right\}$. Then $\left((A, B)^{1^{*}},(A, B)^{2^{*}}\right)$ is binary closed and $(A, B) \subseteq\left((A, B)^{1^{*}},(A, B)^{2^{*}}\right)$.

Definition 2.6. [1] The ordered pair $\left((A, B)^{1^{*}},(A, B)^{2^{*}}\right)$ is called the binary closure of (A, B), denoted by b-cl (A, B) in the binary space (X, Y, \mathscr{M}) where $(A, B) \subseteq(X, Y)$.

Definition 2.7. [1] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in \mathscr{P}(X) \times$ $\mathscr{P}(Y)$. We say that $(A, B) \not \subset(C, D)$ if one of the following holds:
(1) $A \subseteq C$ and $B \not \subset D$
(2) $A \not \subset C$ and $B \subseteq D$
(3) $A \not \subset C$ and $B \not \subset D$.

Definition 2.8. [1] (i) $(A, B)^{1^{\circ}}=\cup\left\{A_{\alpha}:\left(A_{\alpha}, B_{\alpha}\right)\right.$ is binary open and $\left.\left(A_{\alpha}, B_{\alpha}\right) \subseteq(A, B)\right\}$.
(ii) $(A, B)^{2^{\circ}}=\cup\left\{B_{\alpha}:\left(A_{\alpha}, B_{\alpha}\right)\right.$ is binary open and $\left.\left(A_{\alpha}, B_{\alpha}\right) \subseteq(A, B)\right\}$.

Definition 2.9. [1] Let (X, Y, \mathscr{M}) be a binary topological space and $(A, B) \subseteq(X, Y)$. The ordered pair $\left((A, B)^{1^{\circ}},(A, B)^{2^{\circ}}\right)$ is called the binary interior of (A, B) denoted by b-int (A, B).

Definition 2.10. [2] A binary topological spaces (X, Y, \mathscr{M}) is called a binary- T_{0} if for any two jointly distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, there exists $(A, B) \in \mathscr{M}$ such that exactly one of the following holds.
(i) $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$
(ii) $\left(x_{1}, y_{1}\right) \in(X-A, Y-B),\left(x_{2}, y_{2}\right) \in(A, B)$.

Definition 2.11. [2] A binary topological spaces (X, Y, \mathscr{M}) is called a binary- T_{1} iffor every two jointly distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, there exists (A, B) and $(C, D) \in \mathscr{M}$, with $\left(x_{1}, y_{1}\right) \in$ (A, B) and $\left(x_{2}, y_{2}\right) \in(C, D)$ such that $\left(x_{2}, y_{2}\right) \in(X-A, Y-B),\left(x_{1}, y_{1}\right) \in(X-C, Y-D)$.

Definition 2.12. [2] The binary points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ are distinct if $x_{1} \neq x_{2}, y_{1} \neq y_{2}$.

Definition 2.13. [2] A binary topological spaces (X, Y, \mathscr{M}) is called a binary- T_{2} iffor any two jointly distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, there exists jointly disjoint binary open sets (A, B) and (C, D) such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$.

Definition 2.14. [4] A binary topological spaces (X, Y, \mathscr{M}) is called a binary- T_{3} or binary regular if (X, Y, \mathscr{M}) is binary- T_{1} and for every $(x, y) \in X \times Y$ and every binary closed set $(A, B) \subseteq X \times Y$ such that $(x, y) \in(X-A, Y-B)$ there exists jointly disjoint binary open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ such that $(x, y) \in\left(U_{1}, V_{1}\right),(A, B) \subseteq\left(U_{2}, V_{2}\right)$.

Definition 2.15. [4] A binary topological spaces (X, Y, \mathscr{M}) is called a binary- T_{4} or binary normal if (X, Y, \mathscr{M}) is binary- T_{1} and for every pair of jointly disjoint binary closed sets $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ there exists jointly disjoint binary open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ such that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$

Definition 2.16. [2] Two binary open sets (A, B) and (C, D) are said to be disjoint if $(A \cap C$, $B \cap D)=(\phi, \phi)$. That is $A \cap C=\phi$ and $B \cap D=\phi$.

Definition 2.17. [1] Let (X, Y, \mathscr{M}) be a binary topological space and let $(x, y) \in X \times Y$. The binary open set (A, B) is called a binary neighbourhood of (x, y) if $x \in A$ and $y \in B$.

3. binary SEMI- $\mathbf{T}_{0}, \mathbf{T}_{1}$, T $_{2}$ Spaces

In this section, we establish the intellection of binary semi- T_{0}, binary semi- T_{1} and binary semi- T_{2} spaces and study some of their characterizations.

Definition 3.1. A binary topological spaces (X, Y, \mathscr{M}) is called a binary semi- T_{0} (briefly, bs- T_{0}) if for any two jointly distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, there exists binary semi open set (A, B) such that exactly one of the following holds.
(i) $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$
(ii) $\left(x_{1}, y_{1}\right) \in(X-A, Y-B),\left(x_{2}, y_{2}\right) \in(A, B)$.

Definition 3.2. A binary topological spaces (X, Y, \mathscr{M}) is called a binary semi- T_{1} (briefly, bs- T_{1}) if for every two jointly distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$, there exists binary semi open sets (A, B) and (C, D) with $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$ such that $\left(x_{2}, y_{2}\right) \in(X-A, Y-B),\left(x_{1}, y_{1}\right) \in(X-C, Y-D)$.

Definition 3.3. A binary topological spaces (X, Y, \mathscr{M}) is called a binary semi- T_{2} (briefly, bs- T_{2}) if for every two jointly distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$, there exists disjoint binary semi open sets (A, B) and (C, D) such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$.

Theorem 3.4. Let (X, Y, \mathscr{M}) be a binary topological spaces, then for every binary- T_{0} space is binary semi- T_{0} space.

Proof: Let (X, Y) be a binary- T_{0} space, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be a two distinct points of (X, Y),
as (X, Y) is binary- T_{0} space there exists binary open set (A, B) such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$. Since every binary open set is binary semi open and hence (A, B) is binary semi open set such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$. Hence (X, Y) is binary semi- T_{0} space.

Example 3.5. Let $X=\{a, b\}, Y=\{a, b, c\}$. Clearly $\mathscr{M}=\{(\phi, \phi),(\phi,\{a\}),(\{a\},\{a\}),(\{a\},\{a, b\})$, $(\{b\}, \phi),(\{b\},\{a\}),(\{b\},\{c\}),(\{b\},\{a, c\}),(X,\{a\}),(X,\{a, b\}),(X,\{a, c\}),(X, Y)\}$ is a binary topology from X to Y. We have binary semi open $=\{(\phi, \phi),(\phi,\{a\}),(\phi,\{a, b\}),(\{a\},\{a\}),(\{a\},\{a, b\})$, $(\{b\}, \phi),(\{b\},\{a\}),(\{b\},\{c\}),(\{b\},\{a, b\}),(\{b\},\{a, c\}),(\{b\}, Y),(X,\{a\}),(X,\{a, b\}),(X,\{a, c\}),(X, Y)\}$. Let $\left(x_{1}, y_{1}\right)=(\{b\},\{a\})$ and $\left(x_{2}, y_{2}\right)=(\{a\},\{c\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ there exists binary semi open set $(A, B)=(\{b\},\{a, b\})$ then it is binary semi- T_{0} space but not binary- T_{0} space

Theorem 3.6. Let (X, Y, \mathscr{M}) be a binary topological spaces, then for every binary- T_{1} space is binary semi- T_{1} space.

Proof: Let (X, Y) be a binary- T_{1} space and let $x_{1} \neq x_{2}, y_{1} \neq y_{2}$ in (X, Y). Then there exists distinct binary open sets (A, B) and (C, D) such that $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$ and $\left(x_{2}, y_{2}\right) \in(C, D),\left(x_{1}, y_{1}\right) \in(X-C, Y-D)$. As every binary open set is binary semi open and hence (A, B) and (C, D) are distinct binary semi open sets with $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in$ (C, D) such that $\left(x_{2}, y_{2}\right) \in(X-A, Y-B),\left(x_{1}, y_{1}\right) \in(X-C, Y-D)$. Hence (X, Y) is binary semi-T ${ }_{1}$ space.

Example 3.7. Let $X=\{a, b\}, Y=\{a, b, c\}$. Clearly $\mathscr{M}=\{(\phi, \phi),(\phi,\{c\}),(\{a\},\{a\}),(\{a\},\{a, c\})$, $(\{b\},\{c\}),(X,\{a, c\}),(X, Y)\}$ is a binary topology from X to Y. We have binary semi open $=\{(\phi, \phi)$, $(\phi,\{c\}),(\phi,\{b, c\}),(\{a\},\{a\}),(\{a\},\{a, b\}),(\{a\},\{a, c\}),(\{a\}, Y),(\{b\},\{c\}),(\{b\},\{b, c\}),(X,\{a, c\})$, $(X, Y)\} . \operatorname{Let}(A, B)=(\{b\},\{c\})$ and $(C, D)=(\{a\},\{a, b\})$. Let $\left(x_{1}, y_{1}\right)=(\{b\},\{c\})$ and $\left(x_{2}, y_{2}\right)=(\{a\}$, $\{b\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ then it is clear that $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right) \notin$ (A, B) and $\left(x_{2}, y_{2}\right) \in(C, D)$ and $\left(x_{1}, y_{1}\right) \notin(C, D)$. Then we can say that it is binary semi- T_{1} space but not binary- T_{1} space.

Theorem 3.8. Let (X, Y, \mathscr{M}) be a binary topological spaces, then for every binary- T_{2} space is binary semi- T_{2} space.

Proof: Let (X, Y) be a binary- T_{2} space and let $x_{1} \neq x_{2}, y_{1} \neq y_{2}$ in (X, Y). Then there exists disjoint binary open sets (A, B) and (C, D) such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$. As every binary open set is binary semi open and hence (A, B) and (C, D) are disjoint binary semi open set such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$. Hence (X, Y) is binary semi- T_{2} space .

Example 3.9. From the Example 3.7, Let $\left(x_{1}, y_{1}\right)=(\{b\},\{c\})$ and $\left(x_{2}, y_{2}\right)=(\{a\},\{a\})$. Let $(A, B)=$
$(\{b\},\{b, c\})$ and $(C, D)=(\{a\},\{a\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ then it is clear that $\left(x_{1}, y_{1}\right) \in(A, B)$, and $\left(x_{2}, y_{2}\right) \in(C, D)$. Then we can say that it is binary semi- T_{2} space but not binary- T_{2} space.

Theorem 3.10. Let (X, Y, \mathscr{M}) be a binary topological spaces, then binary semi- T_{1} space is binary semi- T_{0} space.

Proof: Let (X, Y) be a binary semi- T_{1} space and let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two distinct points of (X, Y), as (X, Y) is binary semi- T_{1} space there exists binary semi open sets (A, B) and (C, D) such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$ and $\left(x_{1}, y_{1}\right) \notin(C, D)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$. Since every binary open set is binary semi open and hence (A, B) is binary semi open set such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$. Hence (X, Y) is binary semi- T_{0}.

Example 3.11. Let $X=\{a, b\}, Y=\{a, b, c\}$. Clearly $\mathscr{M}=\{(\phi, \phi),(\phi,\{c\}),(\{a\},\{a\}),(\{a\},\{a, c\})$, $(\{b\},\{c\}),(X,\{a, c\}),(X, Y)\}$ is a binary topology from X to Y. We have binary semi open $=\{(\phi, \phi)$, $(\phi,\{c\}),(\phi,\{b, c\}),(\{a\},\{a\}),(\{a\},\{a, b\}),(\{a\},\{a, c\}),(\{a\}, Y),(\{b\},\{c\}),(\{b\},\{b, c\}),(X,\{a, c\})$, $(X, Y)\}$. Let $(A, B)=(\{b\},\{c\})$ and $(C, D)=(\{a\},\{a, b\})$. Let $\left(x_{1}, y_{1}\right)=(\{b\},\{c\})$ and $\left(x_{2}, y_{2}\right)=(\{a\}$, $\{b\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ then it is clear that $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right)$ $\notin(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$ and $\left(x_{1}, y_{1}\right) \notin(C, D)$. Then we can say that it is binary semi- T_{1} space but not binary- T_{1} space.

Theorem 3.12. Let (X, Y, \mathscr{M}) be a binary topological spaces, then binary semi- T_{2} space is binary semi- T_{0} space.

Proof: Let (X, Y) be a binary semi- T_{2} space and let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two distinct points of (X, Y), as (X, Y) is binary semi- T_{2} space there exists binary semi open sets (A, B) and (C, D) such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(C, D)$, since (A, B) and (C, D) are disjoint. Since every binary
open set is binary semi open and hence (A, B) is binary semi open set such that $\left(x_{1}, y_{1}\right) \in(A, B)$ and $\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$. Hence (X, Y) is binary semi- T_{0}.

Example 3.13. From the Example 3.7, Let $\left(x_{1}, y_{1}\right)=(\{b\},\{c\})$ and $\left(x_{2}, y_{2}\right)=(\{a\},\{a\})$, Let (A, B) $=(\{b\},\{b, c\})$ and $(C, D)=(\{a\},\{a\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ then it is clear that $\left(x_{1}, y_{1}\right) \in(A, B)$, and $\left(x_{2}, y_{2}\right) \in(C, D)$. Then we can say that it is binary semi- T_{2} space but not binary- T_{0} space.

Theorem 3.14. If a binary topological spaces, (X, Y, \mathscr{M}) is binary semi- T_{2} then (X, Y, \mathscr{M}) is binary semi- T_{1}.

Proof: Suppose (X, Y, \mathscr{M}) is binary semi- T_{2}. Let $\left(x_{1}, x_{2}\right) \in X$ and $\left(y_{1}, y_{2}\right) \in Y$ with $x_{1} \neq$ $x_{2}, y_{1} \neq y_{2}$. Since (X, Y, \mathscr{M}) is binary semi- T_{2}, there exists disjoint binary semi open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ with $\left(x_{1}, y_{1}\right) \in\left(U_{1}, V_{1}\right),\left(x_{2}, y_{2}\right) \in\left(U_{2}, V_{2}\right)$. Since $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ are disjoint, we have $\left(x_{1}, y_{1}\right) \in\left(X-U_{2}, Y-V_{2}\right)$ and $\left(x_{2}, y_{2}\right) \in\left(X-U_{1}, Y-V_{1}\right)$.This shows that (X, Y, \mathscr{M}) is binary semi- T_{1}.

Theorem 3.15. A binary topological space (X, Y, \mathscr{M}) is a binary semi- T_{0} space if and only if binary semi closure of distinct points are distinct.
Proof: Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be distinct points of (X, Y). Since (X, Y) is a binary semi- T_{0} space there exists a binary semi open set (U, V), such that $x_{1}, y_{1} \in U_{1}, V_{1}$ and $x_{2}, y_{2} \notin U_{2}, V_{2}$. Consequently $((X, Y)-(U, V))$ is a binary semi closed set containing $\left(x_{2}, y_{2}\right)$ but not $\left(x_{1}, y_{1}\right)$. But $b-s c l\left(\left\{x_{2}, y_{2}\right\}\right)$ is the intersection of all binary semi closed set containing $\left(x_{2}, y_{2}\right)$. Hence $\left(x_{2}, y_{2}\right) \in b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right) . \operatorname{But}\left(x_{1}, y_{1}\right) \notin b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$ as $\left(x_{1}, y_{1}\right) \notin((X, Y)-(U, V))$. Therefore $b-\operatorname{scl}\left(\left\{x_{1}, y_{1}\right\}\right) \neq b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$.

Conversely, let $b-\operatorname{scl}\left(\left\{x_{1}, y_{1}\right\}\right) \neq b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$ for $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Then there exists atleast one point $\left(z_{1}, z_{2}\right) \in(X, Y)$ such that $\left(z_{1}, z_{2}\right) \in b-\operatorname{scl}\left(\left\{x_{1}, y_{1}\right\}\right)$ but $\left(z_{1}, z_{2}\right) \notin b$ $\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$. We claim $\left(x_{1}, y_{1}\right) \notin b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$ because if $\left(x_{1}, y_{1}\right) \in b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right),\left(x_{1}, y_{1}\right) \subseteq$ $b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$ implies $b-\operatorname{scl}\left(\left\{x_{1}, y_{1}\right\}\right) \subseteq b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$, so $\left(z_{1}, z_{2}\right) \in b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$, which is a contradiction. Hence $\left(x_{1}, y_{1}\right) \notin b-\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$, which implies $\left(x_{1}, y_{1}\right) \in(X, Y)-b$ $\operatorname{scl}\left(\left\{x_{2}, y_{2}\right\}\right)$, which is a binary semi open set containing $\left(x_{1}, y_{1}\right)$ but not $\left(x_{2}, y_{2}\right)$. Hence (X, Y) is a binary semi- T_{0} space.

Theorem 3.16. A binary topological space (X, Y, \mathscr{M}) is a binary semi- T_{1} space if and only if every binary point is binary semi closed.

Proof: Assume that (X, Y, \mathscr{M}) is a binary semi- T_{1}. Let $(x, y) \in X \times Y$. Let $(\{x\},\{y\}) \in \mathscr{P}(X) \times$ $\mathscr{P}(Y)$. We shall show that $(\{x\},\{y\})$ is binary semi closed. It is enough to show that $(X-$ $\{x\}, Y-\{y\})$ is binary semi open. Let $(a, b) \in(X-\{x\}, Y-\{y\})$. This implies that $a \in X-\{x\}$ and $b \in Y-\{y\}$. Hence $a \neq x$ and $b \neq y$. That is (a, b) and (x, y) are jointly distinct binary points of $X \times Y$. Since (X, Y, \mathscr{M}) is binary semi- T_{1}, there exists binary semi open sets (A, B) and $(C, D),(a, b) \in(A, B)$ and $(x, y) \in(C, D)$ such that $(a, b) \in(X-C, Y-D)$ and $(x, y) \in(X-A, Y-B)$. Therefore, $(A, B) \subseteq(X-\{x\}, Y-\{y\})$. Hence $(X-\{x\}, Y-\{y\})$ is a binary neighbourhood of (a,b). This implies $(\{x\},\{y\})$ is binary semi closed.

Conversely, assume that $(\{x\},\{y\})$ is binary semi closed for every $(x, y) \in X \times Y$. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in X \times Y$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. Therefore, $\left(x_{2}, y_{2}\right) \in\left(X-\left\{x_{1}\right\}, Y-\left\{y_{1}\right\}\right)$ and $(X-$ $\left.\left\{x_{1}\right\}, Y-\left\{y_{1}\right\}\right)$ is binary semi open. Also $\left(x_{1}, y_{1}\right) \in\left(X-\left\{x_{2}\right\}, Y-\left\{y_{2}\right\}\right)$ and $\left(X-\left\{x_{2}\right\}, Y-\right.$ $\left.\left\{y_{2}\right\}\right)$ is binary semi open. This shows that (X, Y, \mathscr{M}) is a binary semi- T_{1}.

Theorem 3.17. If a binary topological space (X, Y, \mathscr{M}) is called a binary semi- T_{0}, then $\left(X, \mathscr{M}_{X}\right)$ is semi- T_{0} and $\left(Y, \mathscr{M}_{Y}\right)$ is semi- T_{0}.

Proof: Since (\mathscr{M}) is a binary topology from X to Y, we have $\left(\mathscr{M}_{X}\right)=\{A \subseteq X:(A, B) \in(\mathscr{M})$ for some $B \subseteq Y\}$ is a topology on X and $\left(\mathscr{M}_{Y}\right)=\{B \subseteq Y:(A, B) \in(\mathscr{M})$ for some $A \subseteq X\}$ is a topology on Y. Let $\left(x_{1}, x_{2}\right) \in X$ and $\left(y_{1}, y_{2}\right) \in Y$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. Since (X, Y, \mathscr{M}) is binary semiT_{0}, there exists semi open set (A, B) such that either $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$ or $\left(x_{1}, y_{1}\right) \in(X-A, Y-B),\left(x_{2}, y_{2}\right) \in(A, B)$. This implies that either $x_{1} \in A, x_{2} \in X-A, y_{1} \in B$, $y_{2} \in Y-B$ or $x_{1} \in X-A, x_{2} \in A, y_{1} \in Y-B, y_{2} \in B$. This implies that $\left(X, \mathscr{M}_{X}\right)$ is semi- T_{0} and $\left(Y, \mathscr{M}_{Y}\right)$ is semi- T_{0}.

Theorem 3.18. If a binary topological space $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is called a binary semi- T_{0}, then the topological spaces (X, τ) and (Y, σ) are semi- T_{0}.

Proof: Suppose that $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is binary semi- T_{0}. Let $\left(x_{1}, x_{2}\right) \in X$ and $\left(y_{1}, y_{2}\right) \in Y$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. Since $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is binary semi- T_{0}, there exists $(A, B) \in$ $\tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}$ such that either $\left(x_{1}, y_{1}\right) \in(A, B),\left(x_{2}, y_{2}\right) \in(X-A, Y-B)$ or $\left(x_{1}, y_{1}\right) \in(X-$ $A, Y-B),\left(x_{2}, y_{2}\right) \in(A, B)$. This implies that either $x_{1} \in A, x_{2} \in X-A, y_{1} \in B, y_{2} \in Y-B$ or
$x_{1} \in X-A, x_{2} \in A, y_{1} \in Y-B, y_{2} \in B$. This implies either $x_{1} \in A, x_{2} \in X-A$ or $x_{1} \in X-A$, $x_{2} \in A$ and $y_{1} \in B, y_{2} \in Y-B$ or $y_{1} \in Y-B, y_{2} \in B$. Since $(A, B) \in \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}$, we have $A \in \tau$ and $B \in \sigma$. Hence (X, τ) and (Y, σ) are semi- T_{0}.

Theorem 3.19. If a binary topological space (X, Y, \mathscr{M}) is called a binary semi- T_{1}, then $\left(X, \mathscr{M}_{X}\right)$ is semi- T_{1} and $\left(Y, \mathscr{M}_{Y}\right)$ is semi- T_{1}.

Proof: Since (\mathscr{M}) is a binary topology from X to Y, we have $\left(\mathscr{M}_{X}\right)=\{A \subseteq X:(A, B) \in(\mathscr{M})$ for some $B \subseteq Y\}$ is a topology on X and $\left(\mathscr{M}_{Y}\right)=\{B \subseteq Y:(A, B) \in(\mathscr{M})$ for some $A \subseteq X\}$ is a topology on Y. Let $\left(x_{1}, x_{2}\right) \in X$ and $\left(y_{1}, y_{2}\right) \in Y$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. Since (X, Y, \mathscr{M}) is binary semi- T_{1}, there exists binary semi open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ with $\left(x_{1}, y_{1}\right) \in\left(U_{1}, V_{1}\right)$, $\left(x_{2}, y_{2}\right) \in\left(U_{2}, V_{2}\right)$, such that $\left(x_{1}, y_{1}\right) \in\left(X-U_{2}, Y-V_{2}\right),\left(x_{2}, y_{2}\right) \in\left(X-U_{1}, Y-V_{1}\right)$. This implies that $x_{1} \in U_{1}, x_{2} \in U_{2}$ and $y_{1} \in V_{1}, y_{2} \in V_{2}$ such that $x_{1} \in X-U_{2}, x_{2} \in X-U_{1}$ and $y_{1} \in Y-V_{2}$, $y_{2} \in Y-V_{1}$. Hence $\left(X, \mathscr{M}_{X}\right)$ is semi- T_{1} and $\left(Y, \mathscr{M}_{Y}\right)$ is semi- T_{1}

4. Binary Semi-T 3_{3}, Th Spaces

In this section, we initiate binary semi- $\mathrm{T}_{3}, \mathrm{~T}_{4}$ spaces by utilizing binary semi open sets and examination some of their properties.

Definition 4.1. A binary topological spaces (X, Y, \mathscr{M}) is called a binary semi- T_{3} or binary semi regular if (X, Y, \mathscr{M}) is binary semi- T_{1} and for every $(x, y) \in X \times Y$ and every binary semi closed set $(A, B) \subseteq X \times Y$ such that $(x, y) \in(X-A, Y-B)$ there exists jointly disjoint binary semi open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ such that $(x, y) \in\left(U_{1}, V_{1}\right),(A, B) \subseteq\left(U_{2}, V_{2}\right)$.

Definition 4.2. A binary topological spaces (X, Y, \mathscr{M}) is called a binary semi- T_{4} or binary semi normal if (X, Y, \mathscr{M}) is binary semi- T_{1} and for every pair of jointly disjoint binary semi closed sets $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ there exists jointly disjoint binary semi open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ such that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$

Theorem 4.3. Every binary regular space is binary semi regular space.
Proof: Let (X, Y) is binary regular and (A, B) be a binary closed set not containing (x, y) implies (A, B) be a binary semi closed set not containing (x,y). As (X, Y) is binary semi regular there
exists jointly disjoint binary semi open sets $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)$ such that $(x, y) \in\left(U_{1}, V_{1}\right),(A, B)$ $\subseteq\left(U_{2}, V_{2}\right)$. Hence (X, Y) is binary semi regular.

Example 4.4. Let $X=\{a, b\}, Y=\{a, b, c\}$. Clearly $\mathscr{M}=\{(\phi, \phi),(\{b\},\{a\}),(\{\phi,\{b, c\}),(\{b\}, Y)$, $(X, Y)\}$ is a binary topology from X to Y. We have binary semi open set $=\{(\phi, \phi),(\phi,\{b, c\}),(\{a\}$, $\{b, c\}),(\{b\},\{a\}),(\{b\}, Y),(X,\{a\}),(X, Y)\} . \quad$ Let $(A, B)=(\{a\}, \phi), \quad(x, y)=(\{b\},\{a\}), \quad\left(U_{1}, V_{1}\right)=$ ($\{b\}$,
$\{a\})$ and $\left(U_{2}, V_{2}\right)=(\{a\},\{b, c\})$ then it is binary semi regular space but not binary regular space.

Theorem 4.5. Every binary semi regular space is binary semi-T T_{0} space.
Proof: Let (X, Y) is binary semi regular. $A s(X, Y)$ is binary semi regular every singleton set $\left\{x_{1}, y_{1}\right\}$ is binary semi closed subset of (X, Y) and $\left\{x_{2}, y_{2}\right\}$ be any point $(X, Y)-\left\{x_{1}, y_{1}\right\}$ then $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. By definition of binary semi regularity there exists two jointly disjoint binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $\left(x_{1}, y_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(x_{2}, y_{2}\right) \notin\left(U_{2}, V_{2}\right)$, implies $\left(x_{1}, y_{1}\right) \in\left(U_{1}, V_{1}\right)$ and $\left(x_{2}, y_{2}\right) \notin\left(U_{2}, V_{2}\right)$ Hence (X, Y) is binary semi- T_{0} space.

Example 4.6. Let $X=\{a, b\}, Y=\{a, b, c\}$. Clearly $\mathscr{M}=\{(\phi, \phi),(\phi,\{a\}),(\{a\},\{a\}),(\{a\},\{a, b\})$, $(\{b\}, \phi),(\{b\},\{a\}),(\{b\},\{c\}),(\{b\},\{a, c\}),(X,\{a\}),(X,\{a, b\}),(X,\{a, c\}),(X, Y)\}$ is a binary topology from X to Y. We have binary semi open $=\{(\phi, \phi),(\phi,\{a\}),(\phi,\{a, b\}),(\{a\},\{a\}),(\{a\},\{a, b\})$, $(\{b\}, \phi),(\{b\},\{a\}),(\{b\},\{c\}),(\{b\},\{a, b\}),(\{b\},\{a, c\}),(\{b\}, Y),(X,\{a\}),(X,\{a, b\}),(X,\{a, c\}),(X, Y)\}$. Let $\left(x_{1}, y_{1}\right)=(\{b\},\{a\})$ and $\left(x_{2}, y_{2}\right)=(\{a\},\{c\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ there exists binary semi open set $(A, B)=(\{b\},\{a, b\})$ then it is binary semi- T_{0} space but not binary semi regular space.

Theorem 4.7. Every binary semi regular space is binary semi- T_{2} space.
Proof: Let (X, Y) is binary semi regular. $A s(X, Y)$ is binary semi regular every singleton set $\left\{x_{1}, y_{1}\right\}$ is binary semi closed subset of (X, Y) and $\left\{x_{2}, y_{2}\right\}$ be any point $(X, Y)-\left\{x_{1}, y_{1}\right\}$ then $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. By definition of binary semi regularity there exists two jointly disjoint binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $\left(x_{1}, y_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in\left(U_{2}, V_{2}\right)$. $\Rightarrow\left(x_{1}, y_{1}\right) \in\left(U_{1}, V_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in\left(U_{2}, V_{2}\right)$. Hence (X, Y) is binary semi- T_{2} space.

Example 4.8. From the Example 3.7, Let $\left(x_{1}, y_{1}\right)=(\{b\},\{c\})$ and $\left(x_{2}, y_{2}\right)=(\{a\},\{a\})$. Let $\left(U_{1}, V_{1}\right)$
$=(\{b\},\{b, c\})$ and $\left(U_{2}, V_{2}\right)=(\{a\},\{a\}),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(X, Y)$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ then it is clear that $\left(x_{1}, y_{1}\right) \in(A, B)$, and $\left(x_{2}, y_{2}\right) \in(C, D)$. Then we can say that it is binary semi- T_{2} space but not binary semi regular space.

Theorem 4.9. Let the topological spaces (X, τ) and (Y, σ) are semi- T_{3} spaces if and only if the binary topological space $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is called a binary semi- T_{3}.
Proof: Suppose (X, τ) and (Y, σ) are semi- T_{3} spaces. Let $(x, y) \in X \times Y$ and $(A, B) \subseteq X \times Y$ be a binary semi closed $(x, y) \in(X-A \times Y-B)$. Therefore, $x \in X, y \in Y$ and $A \subseteq X, B \subseteq Y$. Since (X, τ) is semi- T_{3}, there exists disjoint semi open sets $U_{1}, U_{2} \in \tau, x \in U_{1}$ and $A \subseteq U_{2}$. Also, since (Y, σ) is semi- T_{3}, there exists disjoint semi open sets $V_{1}, V_{2} \in \sigma, y \in V_{1}$ and $B \subseteq V_{2}$. This implies that $(x, y) \in\left(U_{1}, V_{1}\right)$ and $(A, B) \in\left(U_{2}, V_{2}\right)$. Since U_{1} and U_{2} are disjoint semi open sets, we have $U_{1} \cap U_{2}=\phi$. Also since V_{1} and V_{2} are disjoint semi open sets we have $V_{1} \cap V_{2}=\phi$. Thus $\left(U_{1} \cap U_{2}, V_{1} \cap V_{2}\right)=(\phi, \phi)$. Hence $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ are disjoint binary semi open sets. This implies that $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is binary semi- T_{3}.

Conversely, assume that $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(X)}\right)$ is binary semi- T_{3}. Let $x \in X$ and A be a semi closed subset of (X, τ). Let $y \in Y$ and B be a semi closed subset of (Y, σ). Therefore, $(x, y) \in X \times Y$ and (A, B) is binary semi closed in $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(X)}\right)$. Since $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(X)}\right)$ is binary semi- T_{3}, there exists disjoint semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $(x, y) \in\left(U_{1}, V_{1}\right)$ and $(A, B) \subseteq\left(U_{2}, V_{2}\right)$. Hence $x \in U_{1}$ and $A \subseteq U_{2}, y \in V_{1}$ and $B \subseteq V_{2}$. This proves that (X, τ) and (Y, σ) are semi- T_{3} spaces

Theorem 4.10. Every binary normal space is binary semi normal space.
Proof: Let (X, Y) be a binary normal space and $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be pair of jointly disjoint binary closed. As every binary closed set is binary semi closed set. $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are binary semi closed sets and (X, Y) is binary semi normal, therefore there exists disjoint binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$. Thus for every pair of disjoint binary closed sets $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ there exists disjoint binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$. Hence (X, Y) is binary semi normal.

Theorem 4.11. Every binary semi normal space is binary semi regular space.
Proof: Let (X, Y) be a binary semi normal, Let (F, G) be any binary semi closed set and let (x, y) be a point of (X, Y) such that $(x, y) \notin(F, G)$. As $\{x, y\}$ is a binary semi closed subset of (X, Y) such that $\{x, y\} \cap(F, G)=\phi$. Then by binary semi normality, there exists binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $\{x, y\} \subseteq\left(U_{1}, V_{1}\right),(F, G) \subseteq\left(U_{2}, V_{2}\right)$ and $\left(U_{1}, V_{1}\right) \cap\left(U_{2}, V_{2}\right)=\phi$. Also $\{x, y\} \subseteq\left(U_{1}, V_{1}\right) \Longrightarrow(x, y) \in\left(U_{1}, V_{1}\right)$.

Thus there exists binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $(x, y) \in\left(U_{1}, V_{1}\right),(F, G)$ $\subseteq\left(U_{2}, V_{2}\right)$ and $\left(U_{1}, V_{1}\right) \cap\left(U_{2}, V_{2}\right)=\phi$ it follows that the space is (X, Y) is binary semi regular.

Example 4.12. Let $X=\{a, b\}, Y=\{a, b, c\}$. Clearly $\mathscr{M}=\{(\phi, \phi),(\{b\},\{a\}),(\phi,\{b, c\}),(\{b\}, Y)$, $(X, Y)\}$ is a binary topology from X to Y. We have binary semi open set $=\{(\phi, \phi),(\phi,\{b, c\}),(\{a\}$, $\{b, c\}),(\{b\},\{a\}),(\{b\}, Y),(X,\{a\}),(X, Y)\} . \quad$ Let $\quad(A, B)=(\{a\}, \phi), \quad(x, y)=(\{b\},\{a\}), \quad\left(U_{1}, V_{1}\right)=$ ($\{b\}$,
$\{a\})$ and $\left(U_{2}, V_{2}\right)=(\{a\},\{b, c\})$ then it is binary semi regular space but not binary semi normal space.

Theorem 4.13. A binary semi closed subspace of a binary semi normal space is binary semi normal.

Proof: Let (K, L) be a binary semi closed subspace of a binary semi normal space. Let $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be disjoint binary semi closed subset of (K, L). Since (K, L) is binary semi closed in $(X, Y) .\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are binary semi closed in (X, Y). Since (X, Y) is binary semi normal, there exists disjoint binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ in (X, Y), such that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$. Since (K, L) contains both $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$, we have $\left(A_{1}, B_{1}\right) \subseteq(K, L) \cap\left(U_{1}, V_{1}\right),\left(A_{2}, B_{2}\right) \subseteq(K, L) \cap\left(U_{2}, V_{2}\right)$ and $\left((K, L) \cap\left(U_{1}, V_{1}\right)\right) \cap(K, L) \cap$ $\left(U_{2}, V_{2}\right)=(\phi, \phi)$. Since $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ are binary semi open in $(X, Y) .(K, L) \cap\left(U_{1}, V_{1}\right)$ and $(K, L) \cap\left(U_{2}, V_{2}\right)$ are binary semi open in (K, L). Thus in the subspace (K, L), we have disjoint binary semi open sets $\left((K, L) \cap\left(U_{1}, V_{1}\right)\right)$ containing $\left(A_{1}, B_{1}\right)$ and $\left((K, L) \cap\left(U_{2}, V_{2}\right)\right)$ containing $\left(A_{2}, B_{2}\right)$. Hence the subspace (K, L) is binary semi normal.

Theorem 4.14. Let the topological spaces (X, τ) and (Y, σ) are semi- T_{4} spaces if and only if the binary topological space $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is called a binary semi- T_{4}.

Proof: Suppose (X, τ) and (Y, σ) are semi- T_{4} spaces. $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be disjoint pair of binary semi closed sets in (X, Y, \mathscr{M}). Then A_{1}, A_{2} are disjoint semi closed sets in (X, τ) and B_{1}, B_{2} are disjoint semi closed sets in (Y, σ). Since (X, τ) is semi- T_{4}, there exists disjoint semi open sets in $U_{1}, U_{2} \in \tau, A_{1} \subseteq U_{1}$ and $A_{2} \subseteq U_{2}$. Also, since (Y, σ) is semi- T_{4} there exists disjoint semi open sets $V_{1}, V_{2} \in \sigma, B_{1} \subseteq V_{1}$ and $B_{2} \subseteq V_{2}$. This implies that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$. Since U_{1} and U_{2} are disjoint semi open sets, we have $U_{1} \cap U_{2}=\phi$. Also since V_{1} and V_{2} are disjoint semi open sets, we have $V_{1} \cap V_{2}=\phi$. Thus $\left(U_{1} \cap U_{2}, V_{1} \cap V_{2}\right)=$ (ϕ, ϕ). Hence $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ are disjoint binary semi open sets . This implies that $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is a binary semi- T_{4}.

Conversely, assume that $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is binary semi- T_{4}. Let A_{1}, A_{2} be disjoint semi closed sets in (X, τ) and B_{1}, B_{2} be disjoint semi closed sets in (Y, σ). Then $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ are binary semi closed in $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$. Since $\left(X, Y, \tau_{\mathscr{M}(X)} \times \sigma_{\mathscr{M}(Y)}\right)$ is binary semi- T_{4}, there exists disjoint binary semi open sets $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ such that $\left(A_{1}, B_{1}\right) \subseteq\left(U_{1}, V_{1}\right)$ and $\left(A_{2}, B_{2}\right) \subseteq\left(U_{2}, V_{2}\right)$. That is, $A_{1} \subseteq U_{1}, A_{2} \subseteq U_{2}$ and $B_{1} \subseteq V_{1}, B_{2} \subseteq V_{2}$. Hence (X, τ) and (Y, σ) are semi- T_{4} spaces.

Conclusion

The separation axioms namely semi- T_{0}, semi- T_{1}, semi- T_{2}, semi- T_{3} and semi- T_{4} are extended to binary topological spaces. It is editorialize deserving to perceive that binary semi- $\mathrm{T}_{4} \Rightarrow$ binary semi- $\mathrm{T}_{3} \Rightarrow$ binary semi- $\mathrm{T}_{2} \Rightarrow$ binary semi- $\mathrm{T}_{1} \Rightarrow$ binary semi- T_{0}.

Acknowledgement

The authors would like to thank the referees for their expensive indications which led to the renovation of this paper.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] S.N. Jothi, P. Thangavelu, Topology between two sets, J. Math. Sci. Computer Appl. 1(3) (2011), 95-107.
[2] S.N. Jothi, P. Thangavelu, On binary continuity and separation axioms, Ultra Sci. 24 (2012), 121-126.
[3] S.N. Jothi, Binary semi open sets in binary topological spaces, Int. J. Math. Arch. 7 (2016), 73-76.
[4] S.N. Jothi, Contribution to Binary Topological Spaces, Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli, 2012.
[5] P. Sathishmohan, K Lavanya, U.M. Sudha, On b-gs-closed and b-sg-closed sets in Binary Topological spaces, Strad Res. 8 (2021), 20-24.
[6] P. Sathishmohan, V Rajendran, K. Lavanya, K. Rajalakshmi, On b-gs(b-sg)-closure and b-gs(b-sg)-interior of a sets in binary topological spaces, Gedrag Organ. Rev. 34 (2021), 359-366.

[^0]: *Corresponding author
 E-mail address: lavanyamaths13@gmail.com
 Received April 12, 2021

