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Abstract: This paper provides four estimators of count panel data (CPD) models; fixed effects Poisson (FEP), random 

effects Poisson (REP), fixed effects negative binomial (FENB), and random effects negative binomial (RENB). In 

FEP and FENB models, we used conditional maximum likelihood (CML) estimation method. While for REP and 

RENB models, we used maximum likelihood (ML) estimation method. We conducted a Monte Carlo simulation study 

to compare the behavior of these estimators in the four models. The results of simulation show that the best estimator 

is FENB compared to other estimators (FEP, REP, and RENB), because it has minimum values for Akaike information 

criterion (AIC) and Bayesian information criterion (BIC), especially when the model or the data has an overdispersion 

problem. Moreover, a real dataset has been used to study the effect of some economic variables on the number of 

patents for seven Arab countries over the period from 2000 to 2016. Application results indicate that the RENB is the 

suitable model for this data, and the important (statistically significant) variables that effect on the number of patents 

is the gross domestic product per capita. 
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1. INTRODUCTION 

Recently, panel data or longitudinal data sets have become one of the most exciting fields in 

econometrics literature due to new sources of data which observes the cross-sections of individuals 

over time. This allows constructing and testing more realistic behavioral models that could not be 

identified using a single cross-section or a single time-series data set. Therefore, panel data analysis 

is a core field in modern econometrics and multivariate statistics. Thus,  panel data sets have 

become widely available, where there are many of the contributions and recent studies which have 

analyzed panel data, e.g. Baltagi [1] stated that the panel data refers to the pooling of observations 

on a cross-section of households, countries, firms, etc., over several time periods.  

According to Vijayamohanan [2], the panel data refers to a data set containing observations on 

multiple phenomena over multiple time periods, where it has two dimensions; the spatial 

dimension (cross-sectional) and temporal dimension (time series). Greene [3] pointed out that the 

analysis of panel data is one of the important topics and common in economics, because it allows 

great flexibility in modeling differences in behavior across individuals and provide rich sources of 

information and rich environment for the development of estimation techniques. Furthermore, the 

researchers are uses time-series cross-sectional data to examine issues that could not be studied in 

either cross-sectional or time-series alone. Also, the analysis of panel data allows the model builder 

to learn about economic processes considering both heterogeneity across individuals, firms, 

countries, etc., and dynamic effects that are not visible in cross sections.  

Abonazel [4] explained that pooling cross-sectional and time series data (panel data) achieves a 

deep analysis for the data and gives a richer source of variation, which allows for more efficient 

estimation of the parameters and more effective in identifying and estimating effects that are 

simply not detectable in cross-sectional or time series data. Also, panel data sets are more effective 
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in studying complex issues of dynamic behavior. 

Panel data models have become increasingly popular among applied researchers due to their 

heightened capacity for capturing the complexity of human behavior as compared to cross-

sectional or time-series data models. Therefore, we will discuss the most popular models in panel 

data modeling, which is the fixed effects and random effects models. 

In general, the fixed effects model has different intercepts, where the intercept is differing from 

unit to unit and fixed over time. The general form of the fixed effects model is [5, 6, 7]:  

𝑦𝑖𝑡 = 𝛼𝑖 + x𝑖𝑡
′ 𝛽 + 𝑢𝑖𝑡,      𝑖 = 1, 2, … , 𝑁;  𝑡 = 1, 2, … , 𝑇,        (1) 

where 𝑦𝑖𝑡 is the response variable for individual 𝑖 at time 𝑡, x𝑖𝑡 is the vector of explanatory 

variables, 𝛼𝑖 is a scalar constant (the intercept) include the unobserved effect for special variables 

to the 𝑖𝑡ℎ individual over time, 𝛽 is the vector of the regression coefficients, and 𝑢𝑖𝑡 is the error 

term of the model.  

In fixed effects model, the individual effects 𝛼𝑖 are treated as fixed constants over time where 

individual effects are parts of the intercept, however in random effects model puts the individual 

effects into the error term and treat the individual effects, like 𝑢𝑖𝑡  as random variables. The 

random effects model assumes that the unit’s error term is not correlated with the predictors and 

the variation across entities is assumed to be random, in addition to the random effects model 

assumes that there is one constant term (𝛼) for all across unites, and the differences of the 

intercept term can be captured in the error term, hence the error term become have new 

assumptions [6, 8]. The random effects model is given by:  

𝑦𝑖𝑡 = 𝛼 + x𝑖𝑡
′ 𝛽 + 𝜀𝑖𝑡,          𝑖 = 1, 2, … , 𝑁;  𝑡 = 1, 2, … , 𝑇,        (2) 

where 𝜀𝑖𝑡 = 𝜈𝑖 + 𝑢𝑖𝑡; this means that the error term of the model consists two components, 𝜈𝑖 

and 𝑢𝑖𝑡, where 𝜈𝑖 denotes the unobservable individual effects, which are unobservable factors 

affecting 𝑦 and which do not vary over time or the unit’s unobserved ability that is not included 

in the regression, such as managerial skills, level of intelligence, and the unobservable 

entrepreneurial of unit. While 𝑢𝑖𝑡 denotes the disturbances, which varies with units and time and 

can be thought of as the usual disturbance in the regression or represents the other variables 
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influencing 𝑦 but which vary both over time and units. 

The unobservable individual effects (𝜈𝑖)  and the disturbances ( 𝑢𝑖𝑡)  are assumed to be 

independently distributed across units, where 𝜈𝑖 is uncorrelated with each independent variable 

included in the model [1]. 

On the other side, if the dependent variable of the panel data model takes non-negative integer 

value such as (0, 1, 2, …), in this case the model is called the count panel data (CPD) model. 

Actually, the CPD analysis is a data type used with increasing frequency in empirical research in 

economics, social sciences, and medicine, etc., for example, the number of patents in some 

countries of the world over several years, the number of deaths from covid-19 in the countries of 

the world in multiple time periods, and the number of accidents in several areas over several years. 

In econometrics literature, commonly used models that fit this data are Poisson and negative 

binomial models, where there are many economic studies that discussed these models in panel data 

modeling, e.g. [9, 10, 11, 12, 13]. 

Count regression models are varied depending on the types of data, where the count data is treated 

as dependent variable, so linear estimation methods, such as least squares that are designed to deal 

with continuous variable, are not appropriate for count data. Since the linear regression model 

assumes that the dependent variable follows the normal distribution, then it is not suitable for the 

count data. In addition to, the linear regression model may produce negative estimates for the 

response variable which is incorrect for the count data. So, the Poisson and negative binomial 

distributions are the basis of count data analysis. 

The rest of the paper is organized as follows: section 2 provides Poisson panel models. In section 

3 presents negative binomial panel models. Section 4 will be devoted to determining the settings 

of the simulation through design of Monte Carlo experiment and how the data is generated, where 

presents the main steps for making the Monte Carlo simulation study. Section 5 offers the results 

of the simulation study. In section 6, the empirical study on patents for seven Arab countries is 

presented. Finally, section 7 contains concluding remarks. 
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2. POISSON PANEL MODELS  

The most common probability models for modelling CPD is Poisson panel model. In  the Poisson 

distribution is the mean and the variance are the same, the higher the value of the mean of the 

distribution, the greater the variance or variability in the data [14]. The Poisson panel model 

assumes that the dependent variable (𝑦𝑖𝑡)  has a Poisson distribution. The probability mass 

function of 𝑦𝑖𝑡 with parameter 𝜆𝑖𝑡 can be expressed as: 

𝑓(𝑦𝑖𝑡; 𝜆𝑖𝑡) =
[𝑒𝑥𝑝(−𝜆𝑖𝑡)] (𝜆𝑖𝑡)𝑦𝑖𝑡

𝑦𝑖𝑡!
, 𝑖 = 1, 2, … , 𝑁;  𝑡 = 1, 2, … , 𝑇,           (3) 

where 𝑦𝑖𝑡 represents a variable consisting of count values and 𝜆𝑖𝑡 > 0. 𝜆𝑖𝑡 is the expected or 

predicted mean of the count variable 𝑦𝑖𝑡, and the subscripts (𝑖) and (𝑡) indicates that the model 

describes each observation in the data. In the model (3), the mean and the variance of 𝑦𝑖𝑡 must be 

equal, i.e. 𝐸(𝑦𝑖𝑡) = 𝑣𝑎𝑟(𝑦𝑖𝑡) = 𝜆𝑖𝑡. 

The Poisson panel model has one parameter (𝜆𝑖𝑡) which it must be positive. It is convenient to 

specify 𝜆𝑖𝑡 as an exponential function of the independent variables. The exponential form ensures 

that 𝜆𝑖𝑡 remains positive for all possible combinations of parameters and independent variables.  

2.1 Fixed Effects Poisson Model 

In the FEP model,  all characteristics that are not time-varying are captured by the individual effects 

(𝛼𝑖). The intercept (constant term) is merged into 𝛼𝑖, hence the explanatory variables (x𝑖𝑡) do 

not contain an intercept [15]. The conditional probability function of the FEP model as:  

𝑓(𝑦𝑖𝑡|x𝑖𝑡, 𝛼𝑖, 𝛽) =
[𝑒𝑥𝑝(−𝛼𝑖𝜆𝑖𝑡)] (𝛼𝑖𝜆𝑖𝑡)𝑦𝑖𝑡

𝑦𝑖𝑡!
, 𝑖 = 1, 2, … , 𝑁;  𝑡 = 1, 2, … , 𝑇,       (4) 

where 𝜆𝑖𝑡 = 𝑒𝑥𝑝(x𝑖𝑡
′ 𝛽). The last equality specifies an exponential functional form. To estimate 

the parameters of the model (4), it can use the CML estimation method that developed by Hausman 

et al. [16]. Since 𝑦𝑖𝑡 and ∑ 𝑦𝑖𝑡
𝑇
𝑡=1  are follow the Poisson distribution, then the conditional joint 

density function (CJDF) for the 𝑖𝑡ℎ observation is:  

𝑓(𝑦𝑖1, … , 𝑦𝑖𝑇| ∑ 𝑦𝑖𝑡
𝑇
𝑡=1 ) =

(∑ 𝑦𝑖𝑡
𝑇
𝑡=1 )!

(∑ 𝜆𝑖𝑡 
𝑇
𝑡=1 )

∑ 𝑦𝑖𝑡
𝑇
𝑡=1

× ∏
𝜆𝑖𝑡

𝑦𝑖𝑡

𝑦𝑖𝑡!
𝑇
𝑡=1 , 

when  taking the logarithm of CJDF and summing over all individuals, the conditional log-

likelihood is: 
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𝑙𝑛𝐿 = ∑ {𝑁
𝑖=1 𝑙𝑛(∑ 𝑦𝑖𝑡

𝑇
𝑡=1 )! − ∑ 𝑙𝑛𝑦𝑖𝑡!𝑇

𝑡=1 + ∑ [𝑇
𝑡=1 𝑦𝑖𝑡x𝑖𝑡

′ 𝛽 − 𝑦𝑖𝑡𝑙𝑛 ∑ 𝑒𝑥𝑝(x𝑖𝑡
′ 𝛽)𝑇

𝑡=1 ]}, 

it can obtain the estimated parameters for the FEP model by solving: 

∑ ∑ x𝑖𝑡
′ (𝑦𝑖𝑡 −

∑ 𝑦𝑖𝑡 𝑇
𝑡=1

∑ 𝜆𝑖𝑡
𝑇
𝑡=1

𝜆𝑖𝑡 )
𝑇
𝑡=1

𝑁
𝑖=1 = 0. 

2.2 Random Effects Poisson Model 

In the REP model, the individual effects (unobserved heterogeneity) are expressed as 𝜈𝑖 instead 

of 𝛼𝑖, while the intercept is included and merged into x𝑖𝑡. The individual effect 𝜈𝑖 must follow a 

specified distribution in order to estimate the parameters of the REP model. Therefore, many 

researchers assumed that the individual effect in the REP model has a gamma distribution with 

parameters (𝛾, 𝛾), see e.g. [5, 14, 16, 17, 18]. 

The REP model assumes that the response variable (𝑦𝑖𝑡) has a Poisson distribution and the 

individual effect has a gamma distribution, then ML estimation method should be used to estimate 

the parameters of the REP model. The ML function for the 𝑖𝑡𝑡ℎ observation is:     

𝑓(𝑦𝑖𝑡|𝜈𝑖, x𝑖𝑡) = ∏ (
𝜆𝑖𝑡

𝑦𝑖𝑡

𝑦𝑖𝑡!
)𝑇

𝑡=1 [
𝛾

𝛾+∑ 𝜆𝑖𝑡 
𝑇
𝑡=1

]
𝛾

[
Γ(∑ 𝑦𝑖𝑡

𝑇
𝑡=1 +𝛾)

Γ(𝛾)
] [𝛾 + ∑ 𝜆𝑖𝑡 

𝑇
𝑡=1 ]− ∑ 𝑦𝑖𝑡

𝑇
𝑡=1 , 

and the log-maximum likelihood function is: 

𝑙𝑛𝐿 = ∑ {𝑁
𝑖=1 ∑ (𝑦𝑖𝑡xit

′ 𝛽 − 𝑙𝑛𝑦𝑖𝑡!)𝑇
𝑡=1 + 𝛾𝑙𝑛𝛾 − 𝛾 𝑙𝑛[𝛾 + ∑ 𝑒𝑥𝑝(x𝑖𝑡

′ 𝛽)]𝑇
𝑡=1 + 𝑙 𝑛[Γ(∑ 𝑦𝑖𝑡

𝑇
𝑡=1 +

𝛾)] − 𝑙𝑛[Γ(𝛾)] − ∑ 𝑦𝑖𝑡
𝑇
𝑡=1 𝑙𝑛 [𝛾 + ∑ 𝑒𝑥𝑝(x𝑖𝑡

′ 𝛽)𝑇
𝑡=1 ]}, 

thus, it can obtain the estimated parameters of this model by solving: 

∑ ∑ x𝑖𝑡
′ [𝑦𝑖𝑡 − 𝜆𝑖𝑡 (

𝑦̅𝑖+𝛾 𝑇⁄

𝜆̅𝑖+𝛾 𝑇⁄
)]𝑇

𝑡=1
𝑁
𝑖=1 = 0. 

 

3. NEGATIVE BINOMIAL PANEL MODELS 

The negative binomial model is one of the basic models for count data analysis. This model has 

found a widespread use in the fields of health, social, economic,  and physical sciences when the 

response variable comes in the form of non-negative integers or counts [19]. 

In general, the negative binomial panel model introduced as a generalized version of Poisson 

model that allows the variance of the dependent variable to differ from its mean. The negative 

binomial panel model is a two-parameter model; with mean 𝜆𝑖𝑡 and dispersion parameters 𝜙𝑖. 
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The mean of the negative binomial panel model is understood in the same manner as the Poisson 

mean, but the variance of the negative binomial has a much wider scope than is allowed by the 

Poisson model.  When the variance of count data exceeds the mean, i.e. if 𝑣𝑎𝑟 (𝑦𝑖𝑡) > 𝐸(𝑦𝑖𝑡), then 

we speak about overdispersion. But if 𝑣𝑎𝑟 (𝑦𝑖𝑡) < 𝐸(𝑦𝑖𝑡), then this is called underdispersion. The 

Poisson model does not allow for overdispersion or underdispersion. Hence, we used the negative 

binomial model instead of the Poisson model [19]. 

3.1 Fixed Effects Negative Binomial Model 

The FENB model assumes that for a given unit 𝑖, the response variable (𝑦𝑖𝑡) is independent over 

time and ∑ 𝑦𝑖𝑡
𝑇
𝑡=1  has a negative binomial distribution with parameters 𝜃𝑖 and ∑ 𝜆𝑖𝑡 

𝑇
𝑡=1 . These 

assumptions imply that: 

∑ 𝑦𝑖𝑡
𝑇
𝑡=1 ~𝑁𝐵(𝜃𝑖 ∑ 𝜆𝑖𝑡 

𝑇
𝑡=1 , (𝜃𝑖 ∑ 𝜆𝑖𝑡 

𝑇
𝑡=1 )(1 + 𝜃𝑖)), 

where 𝜃𝑖 = 𝛼𝑖 𝜙𝑖⁄ , Hausman et al. [16] showed that the CJDF of the FENB model for the 𝑖𝑡ℎ 

observation is:  

𝑓(𝑦𝑖1, … , 𝑦𝑖𝑇| ∑ 𝑦𝑖𝑡
𝑇
𝑡=1 ) =

𝛤(∑ 𝜆𝑖𝑡 
𝑇
𝑡=1 )𝛤(∑ 𝑦𝑖𝑡

𝑇
𝑡=1 +1)

𝛤(∑ 𝜆𝑖𝑡 
𝑇
𝑡=1 +∑ 𝑦𝑖𝑡

𝑇
𝑡=1 )

× [∏
𝛤(𝜆𝑖𝑡+𝑦𝑖𝑡)

𝛤(𝜆𝑖𝑡)𝛤(𝑦𝑖𝑡+1)
𝑇
𝑡=1 ], 

where 𝛤(∙) is the gamma function. In order to estimate the parameters of this model, Hausman et 

al. [16] used the CML estimation method. Thus, it can obtain the CML estimation of this model 

by maximizing the following log-conditional maximum likelihood function: 

𝑙𝑛𝐿 = ∑ {𝑁
𝑖=1 𝑙𝑛𝛤(∑ 𝜆𝑖𝑡 

𝑇
𝑡=1 ) + 𝑙𝑛𝛤(∑ 𝑦𝑖𝑡

𝑇
𝑡=1 + 1) −  𝑙𝑛𝛤(∑ 𝜆𝑖𝑡 +𝑇

𝑡=1 ∑ 𝑦𝑖𝑡
𝑇
𝑡=1 ) +

∑ [𝑙𝑛𝛤(𝜆𝑖𝑡 + 𝑦𝑖𝑡) − 𝑙𝑛𝛤(𝜆𝑖𝑡) − 𝑙𝑛𝛤(𝑦𝑖𝑡 + 1)]𝑇
𝑖=1 }. 

3.2 Random Effects Negative Binomial Model 

For the RENB model, Hausman et al. [16] assumed that the dependent variable (𝑦𝑖𝑡) specified to 

be independent and identically distributed negative binomial, and 1 (1 + 𝛿𝑖)⁄  is distributed as 

beta with parameters (𝑎, 𝑏), where 𝛿𝑖 = 𝜈𝑖 𝜙𝑖⁄ , i.e. 1 (1 + 𝛿𝑖)⁄ ~ 𝐵𝑒𝑡𝑎(𝑎, 𝑏). The mean and the 

variance of the response variable (𝑦𝑖𝑡) are 𝜆𝑖𝑡𝛿𝑖 and 𝜆𝑖𝑡𝛿𝑖(1 + 𝛿𝑖), respectively. 

To estimate the parameters of RENB model, it can use the ML estimation method. Then the joint 

density function for the 𝑖𝑗𝑡ℎ observation is:  
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𝑓(𝑦𝑖𝑡|x𝑖𝑡) =
𝛤(𝛼+𝑏) 𝛤(𝛼+∑ 𝜆𝑖𝑡

𝑇
𝑡=1 ) 𝛤(𝑏+∑ 𝑦𝑖𝑡

𝑇
𝑡=1  )

𝛤(𝛼) 𝛤(𝑏) 𝛤(𝛼+𝑏+∑ 𝜆𝑖𝑡+𝑇
𝑡=1 ∑ 𝑦𝑖𝑡

𝑇
𝑡=1 )

× ∏ [
𝛤(𝜆𝑖𝑡+𝑦𝑖𝑡)

𝛤(𝜆𝑖𝑡)𝛤(𝑦𝑖𝑡+1)
]𝑇

𝑡=1 . 

The ML estimation of the RENB model can be obtained by maximizing the following log-

maximum likelihood function: 

𝑙𝑛𝐿 = ∑ {𝑁
𝑖=1 𝑙𝑛 𝛤(𝛼 + 𝑏) + 𝑙𝑛 𝛤[𝛼 + ∑ 𝜆𝑖𝑡

𝑇
𝑡=1 ] +  𝑙𝑛 𝛤(𝑏 + ∑ 𝑦𝑖𝑡

𝑇
𝑡=1 ) − 𝑙𝑛 𝛤(𝛼) − 𝑙𝑛 𝛤(𝑏) −

 𝑙𝑛 𝛤[𝛼 + 𝑏 + ∑ 𝜆𝑖𝑡 +𝑇
𝑡=1 ∑ 𝑦𝑖𝑡

𝑇
𝑡=1 ] + ∑ [𝑙𝑛 𝛤(𝜆𝑖𝑡 + 𝑦𝑖𝑡) − 𝑙𝑛 𝛤(𝜆𝑖𝑡) − 𝑙𝑛 𝛤(𝑦𝑖𝑡 + 1)]𝑇

𝑖=1 }. 

 

4. SIMULATION DESIGN 

We will use the Monte Carlo simulation for making a comparison between the behavior of FEP, 

REP, FENB, and RENB estimators of the four CPD models above. We used R language to conduct 

our Monte Carlo simulation [20, 21].   Several studies have been relied upon when conducting a 

Monte Carlo simulation study such as [4, 22, 23, 24, 25, 26].  

4.1 In Case of Moderate and Large Samples 

The simulation study was carried out in the moderate and large samples based on the following: 

1. The values of 𝑁 were chosen to be 30, 50, 100, 200, 300, and 500 to represent moderate 

and large samples for the number of individuals. 

2. The values of 𝑇 were chosen to be 10, 15, 40, 50, 100, and 200 to represent different size 

for the time period.  

3. The values of 𝛽1, 𝛽2, and 𝛽3 were chosen to be 1. 

4. The response variable (𝑦𝑖𝑡 ) is generated from the negative binomial distribution with 

different values of the dispersion; where 𝜙 were chosen to be 0.5, 1, and 5. 

5. The individual effects (𝛼𝑖) were generate as independent normally distribution with mean 

-1 and standard deviation 0.5, where 𝛼𝑖 is differing from unit to unit and fixed over time. 

6. We generate the explanatory variables using random numbers following the uniform 

distribution from -1 to 1. 

7. For all experiments we ran 1000 replications and all the results for all separate experiments 

are obtained by precisely the same series of random numbers.  

We can note that the generated model in our simulation is FENB model with three cases of the 
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dispersion parameter (𝜙) . In the first case the dispersion parameter 𝜙 < 1  (i.e., 𝜙 = 0.5), 

therefore we speak about underdispersion. While in the second case the dispersion parameter 𝜙 =

1, this is called equidispersion. In the third case the dispersion parameter 𝜙 > 1 (i.e., 𝜙 = 5), 

thus we speak about overdispersion. 

4.2 In Case of Small Samples 

In this section, we will study the behavior of the four estimators in case of small samples. The data 

were generated by the same method  in the case of moderate and large samples with the difference 

in cross  section size to be 5, 10, 15, and 20 and time  series to be 15 and 20, and the dispersion 

parameter is one. 

The Monte Carlo experiment has been designed to compare the small, moderate, and large samples 

performances of ML estimators of REP and RENB models and CML estimators of FEP and FENB 

models based on AIC [27] and BIC [28].  

 

5. SIMULATION RESULTS 

The results of the Monte Carlo simulation study for the moderate and large samples have been 

provided in tables from 1 to 6, while figures from 1 to 4 displays the small samples results. Each 

table represents AIC and BIC values (rounded to integer) for different values of T and 𝜙. Tables 

from 1 to 6 present the estimation results (AIC and BIC) of FEP, REP, FENB, and RENB 

estimators for different values of 𝑁.  

In tables from 1 to 3, when the dispersion parameter equal 0.5 or 1, we find that the AIC and BIC 

values of FENB estimator have smallest values than the FEP, REP, and RENB estimators. For 

example, in table 1 when 𝜙 = 1 and 𝑇 = 10, the AIC value of FENB is 388, but the AIC values 

of FEP, REP, and RENB are 413, 579, and 556, respectively. While the BIC value of FENB is 

403, but the BIC value of FEP, REP, and RENB are 424, 598, and 575, respectively. And when 

the dispersion parameter is increasing to 5, then AIC and BIC values of FENB estimator are 

decreasing dramatically and still AIC and BIC values of FENB estimator is the smallest. For 

example, in table 1 when 𝜙 = 5 and 𝑇 = 10, the AIC value of FENB is 364, but the AIC values 
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of FEP, REP, and RENB are 596, 779, and 615, respectively. While the BIC value of FENB is 

378, but the BIC values of FEP, REP, and RENB are 607, 797, and 633, respectively. So, the 

results of tables from 1 to 3 showed that the FENB estimator is better than FEP, REP, and RENB 

estimators in case of moderate samples (N = 30, 50, 100). 

For the results of large samples (N = 200, 300, 500), in tables 4 to 6, showed that when the time 

periods (𝑇) is increasing from 10 to 15 or 200 and the dispersion parameter (𝜙) is increasing from 

0.5 to 1 or 5, the AIC and BIC values of FENB estimator is still smaller than the AIC and BIC 

values of other estimators. For example, in table 5 when 𝑁 = 300, 𝜙 = 5, and 𝑇 = 10, the AIC 

value of FENB is 3511, but the AIC values of FEP, REP, and RENB are 5883, 7684, and 6026, 

respectively. While the BIC value of FENB is 3535, but the BIC values of FEP, REP, and RENB 

are 5901, 7714, and 6057, respectively. Whereas when 𝑁 = 300, 𝜙 = 5, and 𝑇 = 50, the AIC 

value of FENB is 23092, but the AIC values of FEP, REP, and RENB are 38116, 40751, and 30809, 

respectively. While the BIC value of FENB is 23122, but the BIC values of FEP, REP, and RENB 

are 38139, 40789, and 30847, respectively. So, the results of tables from 4 to 6 showed that the 

FENB estimator is better than FEP, REP, and RENB estimators in case of large samples. 

Figures from 1 to 4 display the AIC and BIC values of different estimators for small samples in N 

and T. These figures showed that in case of increasing the number of units (𝑁), the AIC and BIC 

values of all estimators are increased. But still the FENB estimator is better than other estimators 

in case of small samples, even if the dispersion parameter equal one. 
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Table 1: AIC and BIC values of different estimators when 𝑵 = 𝟑𝟎  

 

  

Criterion  Estimator T =10 T =15 T =40 T =50 T =100 T =200 

𝝓 = 𝟎. 𝟓 

AIC 

FEP 442 722 2075 2420 6090 10811 

REP 619 912 2319 2658 6392 11147 

FENB 429 705 2016 2369 5883 10512 

RENB 605 894 2260 2606 6183 10848 

BIC 

FEP 454 735 2090 2435 6108 10831 

REP 637 933 2344 2685 6422 11181 

FENB 444 722 2037 2390 5907 10539 

RENB 623 915 2285 2633 6213 10881 

𝝓 = 𝟏 

AIC 

FEP 413 664 2122 3118 5687 12793 

REP 579 847 2359 3378 5978 13139 

FENB 388 619 1970 2847 5262 11553 

RENB 556 806 2225 3134 5600 12034 

BIC 

FEP 424 676 2138 3133 5705 12813 

REP 598 868 2384 3405 6008 13173 

FENB 403 635 1990 2869 5286 11580 

RENB 575 826 2251 3161 5630 12068 

𝝓 = 𝟓 

AIC 

FEP 596 1037 2571 3869 6440 15335 

REP 779 1247 2810 4135 6723 15673 

FENB 364 621 1692 2371 4260 9504 

RENB 615 968 2261 3159 5389 11869 

BIC 

FEP 607 1049 2586 3885 6458 15355 

REP 797 1267 2836 4161 6753 15707 

FENB 378 637 1712 2393 4284 9530 

RENB 633 989 2287 3185 5419 11902 
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Table 2: AIC and BIC values of different estimators when 𝑵 = 𝟓𝟎  

 

  

Criterion  Estimator T =10 T =15 T =40 T =50 T =100 T =200 

𝝓 = 𝟎. 𝟓 

AIC 

FEP 786 1055 3255 4199 8974 18073 

REP 1086 1364 3638 4609 9462 18615 

FENB 760 1030 3178 4098 8716 17604 

RENB 1059 1338 3560 4508 9202 18143 

BIC 

FEP 798 1069 3272 4216 8994 18095 

REP 1107 1387 3666 4638 9495 18652 

FENB 776 1049 3200 4122 8742 17633 

RENB 1080 1361 3588 4537 9234 18179 

𝝓 = 𝟏 

AIC 

FEP 721 1133 3363 4707 9710 18455 

REP 996 1449 3745 5138 10209 18994 

FENB 671 1052 3141 4321 8898 17171 

RENB 951 1373 3551 4795 9477 17868 

BIC 

FEP 734 1147 3379 4724 9729 18476 

REP 1017 1473 3773 5167 10242 19030 

FENB 688 1071 3163 4345 8924 17199 

RENB 972 1396 3579 4824 9510 17904 

𝝓 = 𝟓 

AIC 

FEP 973 1493 5297 5876 13395 23832 

REP 1272 1824 5733 6307 13886 24376 

FENB 574 939 3114 3714 8208 15316 

RENB 998 1448 4238 4903 10538 19055 

BIC 

FEP 986 1507 5314 5893 13414 23853 

REP 1293 1848 5761 6336 13918 24412 

FENB 591 957 3137 3737 8234 15345 

RENB 1019 1472 4266 4932 10570 19091 



8185 

PERFORMANCE OF COUNT PANEL DATA ESTIMATORS 

Table 3: AIC and BIC values of different estimators when 𝑵 = 𝟏𝟎𝟎  

 

  

Criterion  Estimator T =10 T =15 T =40 T =50 T =100 T =200 

𝝓 = 𝟎. 𝟓 

AIC 

FEP 1456 2173 7069 8833 17302 37893 

REP 2016 2791 7868 9696 18261 39011 

FENB 1417 2116 6863 8570 16848 36765 

RENB 1976 2735 7661 9432 17803 37880 

BIC 

FEP 1470 2188 7088 8852 17324 37916 

REP 2040 2818 7900 9729 18297 39050 

FENB 1436 2138 6888 8596 16877 36797 

RENB 2001 2761 7693 9464 17839 37920 

𝝓 = 𝟏 

AIC 

FEP 1541 2440 7428 9623 19331 38778 

REP 2109 3073 8234 10472 20300 39869 

FENB 1414 2244 6836 8836 17832 35839 

RENB 1994 2899 7708 9773 18980 37298 

BIC 

FEP 1555 2456 7447 9642 19352 38802 

REP 2133 3099 8265 10504 20336 39909 

FENB 1433 2266 6862 8863 17861 35870 

RENB 2018 2926 7740 9806 19016 37337 

𝝓 = 𝟓 

AIC 

FEP 2035 2900 9162 11617 26275 53460 

REP 2643 3553 9984 12476 27288 54587 

FENB 1213 1821 5739 7338 15927 32642 

RENB 2070 2828 7734 9695 20405 40924 

BIC 

FEP 2049 2916 9181 11637 26297 53484 

REP 2667 3580 10015 12508 27324 54627 

FENB 1233 1843 5764 7364 15956 32674 

RENB 2095 2854 7765 9728 20442 40964 
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Table 4: AIC and BIC values of different estimators when 𝑵 = 𝟐𝟎𝟎  

 

  

Criterion  Estimator T =10 T =15 T =40 T =50 T =100 T =200 

𝝓 = 𝟎. 𝟓 

AIC 

FEP 2738 4471 13920 17758 36276 72970 

REP 3845 5725 15530 19439 38217 75201 

FENB 2661 4346 13516 17250 35247 70841 

RENB 3765 5594 15122 18927 37186 73065 

BIC 

FEP 2755 4489 13941 17780 36300 72995 

REP 3873 5755 15565 19475 38257 75244 

FENB 2683 4370 13544 17279 35279 70875 

RENB 3793 5624 15157 18964 37225 73108 

𝝓 = 𝟏 

AIC 

FEP 2909 4832 14085 18282 39330 81501 

REP 4038 6117 15662 19961 41285 83724 

FENB 2690 4429 13009 16874 36129 74712 

RENB 3836 5749 14709 18708 38447 77729 

BIC 

FEP 2926 4850 14106 18304 39353 81526 

REP 4066 6147 15697 19998 41325 83767 

FENB 2712 4453 13037 16903 36161 74746 

RENB 3864 5779 14744 18744 38486 77772 

𝝓 = 𝟓 

AIC 

FEP 3710 6338 18914 25275 50986 107382 

REP 4889 7677 20574 27026 52961 109621 

FENB 2245 3846 11703 15432 31654 65768 

RENB 3882 5984 15813 20520 40428 82363 

BIC 

FEP 3727 6356 18935 25296 51010 107407 

REP 4917 7707 20608 27062 53001 109664 

FENB 2268 3870 11731 15461 31686 65802 

RENB 3910 6014 15848 20556 40467 82406 
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Table 5: AIC and BIC values of different estimators when 𝑵 = 𝟑𝟎𝟎  

 

  

Criterion  Estimator T =10 T =15 T =40 T =50 T =100 T =200 

𝝓 = 𝟎. 𝟓 

AIC 

FEP 4202 6800 20854 26174 54488 110267 

REP 5889 8696 23289 28693 57410 113565 

FENB 4083 6597 20223 25445 52884 107178 

RENB 5768 8489 22651 27961 55793 110467 

BIC 

FEP 4220 6819 20877 26197 54513 110294 

REP 5919 8728 23326 28731 57452 113610 

FENB 4107 6623 20253 25476 52917 107214 

RENB 5798 8521 22688 28000 55835 110512 

𝝓 = 𝟏 

AIC 

FEP 4431 7448 23003 28309 59628 119295 

REP 6146 9362 25432 30864 62582 122638 

FENB 4071 6850 21078 25968 54681 109616 

RENB 5811 8817 23707 28796 58194 114064 

BIC 

FEP 4449 7467 23025 28332 59653 119322 

REP 6176 9394 25469 30902 62624 122683 

FENB 4095 6875 21108 25998 54715 109652 

RENB 5841 8849 23744 28834 58236 114109 

𝝓 = 𝟓 

AIC 

FEP 5883 9147 29922 38116 77376 157627 

REP 7684 11133 32446 40751 80353 160991 

FENB 3511 5616 18192 23092 47518 96938 

RENB 6026 8748 24631 30809 60771 121400 

BIC 

FEP 5901 9166 29945 38139 77401 157654 

REP 7714 11165 32483 40789 80394 161036 

FENB 3535 5642 18221 23122 47551 96974 

RENB 6057 8781 24668 30847 60812 121445 
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Table 6: AIC and BIC values of different estimators when 𝑵 = 𝟓𝟎𝟎  

Criterion  Estimator T =10 T =15 T =40 T =50 T =100 T =200 

𝝓 = 𝟎. 𝟓 

AIC 

FEP 6987 11517 34800 44163 90093 188100 

REP 9790 14666 38819 48395 94901 193680 

FENB 6790 11182 33758 42842 87566 182370 

RENB 9590 14324 37757 47064 92357 187937 

BIC 

FEP 7007 11537 34823 44187 90119 188128 

REP 9823 14700 38858 48436 94946 193728 

FENB 6816 11210 33789 42874 87601 182408 

RENB 9622 14359 37797 47105 92402 187984 

𝝓 = 𝟏 

AIC 

FEP 7415 12082 37232 47737 95237 198462 

REP 10264 15275 41235 52005 100090 204052 

FENB 6822 11102 34245 43772 87761 182291 

RENB 9718 14374 38580 48461 93483 189719 

BIC 

FEP 7435 12103 37256 47761 95264 198491 

REP 10297 15310 41275 52045 100134 204100 

FENB 6848 11129 34277 43805 87797 182329 

RENB 9751 14409 38620 48502 93527 189767 

𝝓 = 𝟓 

AIC 

FEP 9209 15020 46861 61780 128929 273759 

REP 12152 18304 51005 66135 133911 279428 

FENB 5610 9280 28915 37965 79252 165683 

RENB 9679 14416 39209 50474 101376 207999 

BIC 

FEP 9228 15040 46884 61804 128955 273788 

REP 12185 18339 51044 66176 133955 279476 

FENB 5636 9308 28947 37998 79287 165721 

RENB 9712 14451 39248 50514 101420 208046 
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Fig. 1: AIC and BIC values of different estimators when N = 5 

 

  

Fig. 2: AIC and BIC values of different estimators when N = 10 
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Fig. 3: AIC and BIC values of different estimators when N = 15 

 

  

Fig. 4: AIC and BIC values of different estimators when N = 20 

 

6. EMPIRICAL STUDY: PATENTS IN ARAB COUNTRIES 

There are many economic studies are interested with patent applications, e.g. [9, 13, 16, 29, 30, 

31, 32]. In our application, we will follow the same methodology presented by Youssef et al. [13], 

their methodology is summarized the estimation steps and how to select the appropriate model for 

the data based on the Hausman test and the goodness-of-fit measures (AIC and BIC). Youssef et 
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al. [13] estimated the number of patents for seventeen high-income countries in the world over the 

period from 2005 to 2016, while in this application, the sample was chosen based on the available 

data on the number of patents in Arab countries in the World Bank website. Our sample contains 

seven Arab countries: Egypt, Algeria, Jordan, Morocco, Saudi, Tunisia, and Yemen over the period 

from 2000 to 2016. 

In our study, the dependent variable is the number of patent applications, and three explanatory 

variables: GDPC, IMPO, and UNEM; where GDPC is the gross domestic product per capita (U.S. 

Dollar), IMPO is the information and communication technology goods imports (percentage of 

total goods imports), and UNEM is unemployment rate (percentage of total labor force). 

We repaired the data before estimating the parameters of CPD models. The data contains some 

missing values in the number of patent and IMPO, these missing values were estimated using the 

mean-imputation method [21, 33]. We performed a unit root test for all variables, and the results 

indicated that the data are stationary in the level [34]. The variance inflation factor (VIF) is 

calculated to check the multicollinearity problem of the explanatory variables, the results indicated 

that the data not have multicollinearity problem because all values of VIF less than five. For more 

details on how to deal with the multicollinearity problem in regression models, see e.g. [20, 35, 

36].  

We estimated the parameters in fixed effects models using CML method, while the ML estimation 

method was used to estimate the random effects models. Table 7 presents the results of FEP and 

REP models, the two models are statistically significant because the P-value of the Wald test is 

less than 0.05. Based on the results of Hausman test, the P-value of chi-squared is greater than 

0.05, then we can accept the null hypothesis, this means that REP model is more appropriate.  

Table 8 presents the results of CML estimates of FENB model and ML estimates of RENB model. 

The two (FENB and RENB) models are statistically significant because the P-value of the Wald 

test is less than 0.05. Since the P-value of Hausman test is greater than 0.05, then the RENB model 

is more appropriate. 
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Table 7: Estimates of Poisson panel models 

Variable 

Fixed Effects Poisson Model Random Effects Poisson Model 

Estimate Z-value P-value Estimate Z-value P-value 

GDPC .0001355    48.07 0.001      .0001354    48.05    0.001      

IMPO -6.586289    -8.38 0.001      -6.58876    -8.38    0.001      

UNEM -.7792349    -2.31    0.021      -.7814001    -2.32    0.021     

Intercept -------- -------- -------- 5.002777    13.15    0.001      

Wald Test 
𝜒2 = 2350.23, df = 3, 

P-value (𝜒2) > 0.001 

𝜒2 = 2348.58, df = 3, 

P-value (𝜒2) > 0.001 

Hausman Test 𝜒2 =  0.23, df = 3, P-value (𝜒2) = 0.8896 

 

Table 8: Estimates of negative binomial panel models 

Variable 

Fixed Effects NB Model Random Effects NB Model 

Estimate Z-value P-value Estimate Z-value P-value 

GDPC .0000551    2.96    0.003 .0000578    3.30    0.001 

IMPO -5.762925     -1.28    0.201 -4.332509    -0.98    0.329     

UNEM .7660229    0.54    0.592 .6834497    0.47 0.637     

Intercept .9827058    3.21    0.001 .9091168    2.98    0.003      

Wald Test 
𝜒2 = 9.48, df = 3, 

     P-value (𝜒2) = 0.0235 

𝜒2 = 11.50, df = 3, 

    P-value (𝜒2) = 0.0093 

Hausman Test 𝜒2 =  2.26, df = 3, P-value (𝜒2) = 0.3225 

Based on the results from tables 7 and 8, we can conclude that REP and RENB models are more 

fit to this data than FEP and FENB models. Then we should use AIC and BIC to determine the 

best model (REP or RENB model). Table 9 shows that the RENB model has minimum values of 

AIC and BIC, and then the RENB model is the best model to fit the data. 
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Table 9: Goodness-of-fit measures of random effects models 

Measure Random Effects Poisson Random Effects Negative Binomial 

Log likelihood -2701.233 -666.526 

AIC 5412.465 1345.051 

BIC 5426.361 1361.726 

In the RENB model, we find that GDPC is statistically significant because the P-value of Z-value 

for this variable is less than 0.05, while IMPO and UNEM variables are not statistically significant.  

7. CONCLUSION  

In this paper, we used the Monte Carlo simulation for making a comparison study between the four 

estimation methods of CPD models. Furthermore, we examined the effect of some economic 

variables on the number of patent applications in seven Arab countries by applying four CPD 

models. We can summarize the main conclusions of our Monte Carlo simulation and the empirical 

study in the following points: 

1. When the dispersion parameter equal one, the FENB estimator is better than FEP and REP 

estimators according to AIC and BIC values. Moreover, in case of increasing dispersion 

parameter value, the AIC and BIC values of FENB estimator is decreasing dramatically and 

the AIC and BIC values of FENB estimator is smaller than FEP, REP, and RENB estimators.   

2. When the values of the number of units or time period are increased, the values of AIC and 

BIC of all CPD estimators are increasing in all simulation situations.  

3. In general, simulation results indicated that the AIC and BIC values of FENB estimator is 

smaller than the AIC and BIC values of FEP, REP, and RENB estimators for all cases of the 

simulation. Thus, the FENB estimator is better than FEP, REP, and RENB estimators.  

4. In our application, we examined the effect of some economic variables on the number of 

patents in seven Arab countries over the period from 2000 to 2016 by applying four CPD 

models to explore the main variables that effect on the number of patent applications in these 

countries. Based on the Hausman test and model-selection criteria (AIC and BIC), we found 
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that the RENB estimator is the appropriate for this data, because it has minimum AIC and 

BIC values. RENB results indicated that the GDP per capita has a positive significant effect 

on the number of patents in  Arab countries, and the other variables have not significant effect. 

In future work, we plan to study the efficiency of ML estimators in case of outliers [19, 21, 26] or 

missing data [21, 33] in CPD models. Moreover, we can study the impact of the COVID-19 

pandemic [37] or the food and non-food expenditures [38, 39] on the number of patents in the Arab 

countries using modern CPD models.   
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