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Abstract: This paper consists of interactions among T-helper cells (resting cells), Cytotoxic-T lymphocytes
(hunting cells) and tumor cells with time delay. Stability analysis of equilibrium points and existence of hopf
bifurcation is studied. Time delay is utilized as bifurcation parameter. Numerical simulations depict the dynamical
performance of the system with different time delay values, which illustrate the phenomenon of long term tumor
decline.
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1. INTRODUCTION

Cancer is the one of the leading disease in the world. One of the challenge is understanding the
advanced dynamics of interactions between tumor and immune system. The cancer result is the
abnormal growth of healthy cells which attack closer parts of our body [1]. In recent decades,
the disciplines of nonlinear dynamics, cybernetics and stability theory have given priority to

study the immunology. Cell mediated immunity involve the cytotoxic T- lymphocytes (CTLS)
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production; activate the macrophages and release of cytokines in reaction to an antigen. Many
authors have proposed various mathematical models of dispersed cancers, which illustrate the
attribute of its cell kinetics [7, 8]. Clinically to understand the mechanism of malignant tumor
proliferation & destruction is very complicated. For better understanding of such complicated
process, researchers developed various mathematical models [2-6]. Different kinds of
approaches have been taken to construct the mathematical models, which are close to the reality
[9, 10]. Banerjee and Sarkar [11] developed a different model and proposed that tumor
regression is an interaction between tumor cells with immune cells (CTLs). They analyzed the
threshold conditions to control malignant tumor growth. Helper T cells (resting T-cells) release
the cytokine interleukin -2, which convert the CTLs into hunting cells or natural killer cells. The
conversion process of resting T-cells to hunting cytotoxic T-cells is not instantaneous; it will take
some period of time observed as delay. This happens due to the identification of tumor cells by
T-cells. Incorporating time delay in a mathematical model might cause the periodic solutions at
steady state points [12].

In the present paper, tumor- immune system interactions analyze through a system of differential
equations. Existence of equilibrium points and its stability is discussed. Condition for Hopf

bifurcation is analytically proved.

2. MATHEMATICAL MODEL
The delay differential equations are

%—rxl—l — oy Xy
dt k, )
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X(t) is tumor cells density, y(t) is Cytotoxic T- lymphocytes the density and z(t) is T- helper cells

density. I} is intrinsic growth rate of tumor, k1 is the carrying capacity of tumor cells, &, is the
destruction of tumor cells by the CTLs, ﬁ is the conversion rate of resting cells to CTLs, d1 is
the natural death rate of CTLs, I, is the resting cells growth rate, k2 is the carrying capacity of

resting cells are helper cells, d2 is the natural death rate of resting cells, z >0 is the time

delay .All the initial conditions are positive.

3. STABILITY ANALYSIS

The feasible equilibrium points of the system (1) are (i) Trivial equilibriumE, (0,0,0),

(ii) Tumor free equilibrium E, (0, y,z) Where ;,:l(rz —rz—dl—dzj, 7 _% and i) Interior
B Bk, p
equilibrium E, (X", Yy, 2" ) where,
« k N | r,d « d
h B Bk, b
3.1 Stability Analysis at the tumor free equilibrium E, (0, ;/, 2) ;
Variation matrix of the system (1) without delay at g, is given by
nL—ay 0 0
J (Ez) = 0 Pz - d1 By
2r,z
0 _187 r, — : _ﬂy_dz
_ K, il
Characteristic equation
= - ,z 9 5
(n—ay—-A)| (BZ—d, - A)((r, - " -py—-d,-A)+p°Y7) |=0 (2)
2
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If R, <1 the model (1) is locally asymptotically stable at g, by Routh- Hurwitz criteria. If

R, >1 then E, is not stable and interior equilibrium exists.

In the presence of delay, characteristic equation of system (1) at E, is

2r,Z

(rl B aly _i)(ﬂfe_h - d1 _l)((rz B

2

A° +(%+dl+ﬂ7+d2 —r2)1+d1(2;27+ﬁ7+d2—r2J

2 2

e’ (—ﬂfl+ﬂ7(%+dl+ﬂ7+dz —1,)+p 77)

2

A2+ A+, - (1LA+1,)=0

y—d, —/1)+,8277e“]:0

Ilz[%+ﬂ7+dl+d2—r2),lz =d1(2l:27+ﬁy+d2—r ],|3 __p7

2 2
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_2r _ _
I4 =,Bz(k—2+d1+,6’y+d2—r2)+ﬂ2yz
2

when 7>0, put A =lw in(3)
—o’ +Lio+1, - (coswr —isinwr)(Liw+1,)=0
o' +a0’+a,=0
a =17-21,-1?>0,a,=17-17>0
By Descartes rule there is no positive @ for A =iw and R, <1
Model (1) is locally asymptotically stable at , when R; <1 and unstable if R >1.
3.2 stability analysis at the interior equilibrium E,:

Variation matrix is

2rx’ .
17 lil - 0 0
J(E) = 0 pre " —d, v
. 21,z .
0 _ﬂzei r,— k2 _,By _dz
i 2 _

Characteristic equation is

21, X 21,z

(rl_ _aly*_i)((ﬂZ*eh _dl_ﬂ‘)(rz - _,By*_dz_/ﬁt)+,82y*2*eﬂrj:0

1 2

A+ 2%y + By +d,+d, —¢, —c,)+A(d,(c, — Y )+ (¢, — BY —d,)(d,—c, +ay))+
(C, -y )c,— By —d,)d, +e " (-7 A* +(Bz (¢, - By —d,)—B°y'Z)A+
(Cl _aly*)ﬂz*(CZ _ﬂy* _d2) + (Cl _aly*)lgzy*z* = 0

26X 2r,z"

CG=h—-———"G6G=hL~-

kl k2

A +mA% +mA+m, +e " (nA° +n,A+n,)=0 (4)
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m, = aly* +ﬂy* +d,+d, —¢, —¢,, m, =d,(c _aly*)+ (c, _;By* —d,)(d; —¢ +0‘1y*)

m; = (Cl _aly*)(cz _ﬂy* _dz)d17 n :_IBZ*’nz = ﬂZ*(Cz _ﬂy* _dz)_ﬂzy*z
n3 = (Cl _aly*)ﬂZ*(Cz _ﬂy* - dz) + (Cl _aly*)ﬂzy*Z*

Case(i): when 7 <0 equation (4) becomes
A +mAZ +mA+m, +(nA*+n,A+n)=0

A2+ (m+n)A%+(m, +n)A+m,+n, =0 (5)

For the suitable values of m,, m,,m,,N,,N,, N, the Eigen values of (5) has negative real parts

if m +n,>0,m,+n,>0,(m +n)(m,+n,)—(m,+n,)>0

By Routh-Hurwitz criteria interior equilibrium is locally asymptotically stable when R, >1
Case(ii): when 7>0

Put A=lw in(4)

—i@® —@’m, + m,iw+m, + (coswr —isin wr)(-»°n, +niw+n,) =0
Separating real and imaginary parts

—m® + (~@°n, COS w7 + N, COS w7) + N,wSin wz +m, =0

~@° +(@’n, —N,)sin @7 +N,wCOS w7 + M, =0 ©
Squaring and adding we get

@® +(m7 —=2m, +n})e" + (M —2mm, +2n,n, +n>)w* +m2 —nZ =0

@° +h,0" +h,0" +h; =0 (7)

— m?2 2 2 2 n2 2
where h, =m —2m, +n/,h, =m;, —2mm, + 2nn, +n;,h, =m; —n;

If any one of h, <O or h, <0 there is a unique positive @, satisfies (4). From

equation (4) has pair of purely imaginary roots =+ ia)O

this
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1
7, =—arc cos
w

{(mz - m1n1)a)4 +(m;n, +mn, — mznz)a)2 —m;n, } ®)

(no® —n,)° +ne’
Hopf bifurcation in the system for which the transversality condition i(Reg) > 0 there
dr T

exists at least an Eigen value with positive real part for 7 > 7,

_(d . da)"
S|gn(d—T(Reﬂ)1_To _S|gn(Re(Ej J

Consider A° +m A% +m,A+m, +e* (A’ +n,A+n,)=0

differentiating with respect to 7

(d_ﬂ]_l B 3A% +2mA+m, L 2i+n, T

dr A +mA*+mA+m)  A(nA>+nA+n) A

put 1 =iw,

( da j_l B —3w,’ +2mjia, +m, N 2njic, +n, T

dr —iw, (i —m@} +miw, +m,) i, (e’ +njiw, +n,) o,

day" —3w,’ +2mjia, +m, 2njie, +n,

Re — = Re 2 2 - 3 + 2 3
dr (—o, +mw)) +i(mw, +Mye,) (—n,w,” +i(-Nw, +N,w,)

AR U, +1V,, Uy, +IV
Re(—j =sign Re( L S _33J
dr Uy, +1V,, U, +iV,,

Uy = _36002 +M,, Vy; = 2M@,, Uy, = —6051' + m2w§’v22 - mla)oa + My,

2 3
Ugy = Ny, Vg = 2N@, Uy, = Ny@y°,Vyy = —Ni@, + N30,

Re[d_ﬂ’J_l — ullu22 +V11V22 + u33u44 +V33V44
dr Uz, +Vy, Uz + Vi
_ 3y +(2m; —m,) @y +(m; +2mm, -3m,) | (=2n/e; +(2n,n; - n,)) -0
(@) —my@,)* + (Mya; + My, )° oy, + (M@, —Ny,)
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Thus the transversality codition exists and the model (1) undergoes a Hopf bifurcation at

T=1,.

3.3 Global stability:

Theorem: The interior equilibrium of the system (1) without delay is globally asymptotically
stable in the region of Q.

Proof: Choose a Lyapunov function

. s X . . y - z
W=X—-X —X In(—*j+y—y -y In( *j+z—z -z In(—*j
X y 4
dw: X —X %Jr y—y ﬂ+ z—z |dz
dt X )dt y )dt z )dt

=(x—x*)[rl—%—aly*}(y—y*)(ﬂz*—d1)+(z—z*)(r2—%—ﬂy*—dz]

1 2
=(x—x*){—i—l(x—x*)—al(y—y*)}—ﬁ(y—y*)(z—z*)+(z—z*){—;—2(z—z*)—ﬂ(y—y*)}

1

==X =y =Y )X ) =y -y -2 )= (=2 - By -y e -2)

= X =Gy ) Gy 7)Y <0

dw
Therefore E < 0, system (1) without delay is globally asymptotically stable.

4. NUMERICAL SIMULATIONS

For the set of values ri=1.5; r=2.8; 0=0.0066, k=80, k»=100, p=0.3,d:=0.3,d.=0.1,
E, (70.006,26.44,2) R, =8.1625
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Figurel. Trajectories and phase portrait of the system

For the set of values r1=2.2; r»=3.5; 0=0.0556; k1=100; k>=200; 3=0.2; d1=0.3; d»=0.1
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Figure3. For the same set of values when 7 =7, = 0.005 trajectories & phase portrait.
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Figure3. For the same set of values when 7 =0.009 > 7, =0.005 trajectories & phase portrait.

5. CONCLUSION

This paper analyzes the interactions between tumor and immune system through a system of
delay differential equations. Existence of possible equilibrium points and its stability is discussed.
If R, <1 tumor free equilibrium is locally asymptotically stable and if R >1 the interior
equilibrium is attained, the local stability and global stability of the interior equilibrium is

investigated. The growth of the tumor is influenced by time delay. when 7 < 7, system (1) is
stable and ¢ crosses 7, then the steady state behaviour of interior equilibrium is changed around
E". It is observed that, when 7 > 7, the unstable oscillations occurred and growth rate of tumor is

increased. Activation rate of immune cells depend on the transmission rate also. The admissible
time delay for activation of immune cells to attack on tumor cells is to be found. Numerical

simulations support the analytical results.
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