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1. INTRODUCTION 

Banach fixed point theorem is the basic tool to study fixed point theory and show the 

existence and uniqueness of a fixed point under appropriate conditions. This result is known as 

Banach contraction principle. This theorem provides a technique for solving a variety of applied 

problems in mathematical sciences and engineering.   

In 1969, Boyd and Wong [3] replaced the constant 𝑘 in Banach contraction principle by a 

control function 𝜓 as follows: 

Let (𝑋, 𝑑)  be a complete metric space and 𝜓 ∶  [0 ,∞)  →  [0,∞)  be upper semi 

continuous from the right such that 0 ≤  𝜓(𝑡)  < 𝑡  for all 𝑡 > 0 .If 𝑇 ∶  𝑋 →

 𝑋 satisfies 𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤  𝜓(𝑑(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈  𝑋, then it has a unique fixed point.   

In 1997, Alber and Gueree-Delabriere [2] introduced the concept of weak contraction and 

in 2001, Rhoades [11] had shown that the results of Alber et. al. equally hold good in complete 

metric spaces. 

A map 𝑇 ∶  𝑋 →  𝑋 is said to be weak contraction if for each 𝑥, 𝑦 ∈ 𝑋, there exists a 

function ∅ : [0, ∞) → [0, ∞), ∅ (𝑡) > 0 for all 𝑡 > 0 and ∅ (0) = 0 such that  

                                            𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) − ∅ (𝑑(𝑥, 𝑦)).                                         

 

2. PRELIMINARIES 

 It was the turning point in the fixed point theory literature when the notion of 

commutativity mappings was used by Jungck [5] to obtain a generalization of Banach’s fixed 

point theorem for a pair of mappings. This result was further generalized, extended and unified 

using various types of contractions and minimal commutative mappings. The first ever attempt to 

relax the commutativity of mappings to a smaller subset of the domain of mappings was initiated 

by Sessa [16], who in 1982 gave the notion of weak commutativity. Two self mappings 𝑓 and 𝑔 

of a metric space (𝑋, 𝑑) are said to be weakly commuting if 𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥)  ≤  𝑑(𝑔𝑥, 𝑓𝑥) for all 𝑥 

in 𝑋. 

Further, in 1986 Jungck [6] introduced more generalized commutativity so called 

compatibility. Clearly commuting, weakly commuting mappings are compatible, but converse 
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need not be true (see [6]). One can notice that the notion of weak commutativity is a point 

property, while the notion of compatibility is an iterate of sequence. 

Definition 2.1[6] Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑) are called compatible 

if 𝑙𝑖𝑚𝑛𝑑(𝑓𝑔𝑥𝑛, 𝑔𝑓𝑥𝑛) = 0, whenever {𝑥𝑛} is a sequence in 𝑋 such that 𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑡 for 

some 𝑡 in𝑋.  

Definition 2.2 Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑) are called point wise ℜ− 

weakly commuting on 𝑋  if given 𝑥 ∈ 𝑋 , there exists ℜ > 0  such that 𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥) ≤

ℜ 𝑑(𝑔𝑥, 𝑓𝑥) for all 𝑥 in 𝑋. 

Remark 2.1 It is obvious that point wise ℜ−  weakly commuting maps commute at their 

coincidence points, but maps 𝑓 and 𝑔 can fail to be point wise ℜ -weakly commuting only if 

there exists some 𝑥 in 𝑋 such that 𝑓𝑥 = 𝑔𝑥 but 𝑓𝑔𝑥 ≠ 𝑔𝑓𝑥. Therefore, the notion of point wise 

ℜ  -weak commutativity type mapping is equivalent to commutativity at coincidence points. 

Moreover since contractive conditions  exclude the possibilities of the existence of a common 

fixed point together with existence of a coincidence fixed point at which the mappings do not 

commute, point wise ℜ -weakly commutativity is a necessary condition for the existence of 

common fixed points for contractive type mappings, and also it is noted  compatible maps are 

necessarily point wise ℜ  -weakly commuting, since compatible maps commute at their 

coincident points, but converse may not be true. 

Definition 2.3 Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑) are said to be reciprocally 

continuous if lim
𝑛→∞

𝑓𝑔𝑥𝑛 = 𝑓𝑡  and  lim
𝑛→∞

𝑔𝑓𝑥𝑛 = 𝑔𝑡  ,whenever {𝑥𝑛} is a sequence in 𝑋 such that 

𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑡 for some 𝑡 in 𝑋.  

Remark 2.2 Continuous mappings are reciprocally continuous on (𝑋, 𝑑), but the converse is not 

true. 

 In 1998, Jungck and Rhoades [9] introduced the notion of weakly compatible mappings 

and showed that compatible maps are weakly compatible, but not conversely.   

Definition 2.3[9] Two self mappings 𝑓  and 𝑔 on a metric space (𝑋, 𝑑) are called weakly 

compatible if they commute at their coincidence point i.e. if   𝑓𝑢 = 𝑔𝑢 for some 𝑢 ∈ 𝑋 then  

𝑓𝑔𝑢 = 𝑔𝑓𝑢.  

Remark 2.1 [9] Two Compatible self mappings are weakly compatible, but the converse is not 

true. Therefore the concept of weak compatibility is more general than that of compatibility. 
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 In 1994, Pant[13] introduced the concept of ℜ -weakly commuting mappings in metric 

spaces, with the purpose of extending the scope of the study of common fixed point theorems 

from compatible to ℜ -weakly commuting mappings. Also, at the fixed  points,  these maps are 

not necessarily continuous. 

Definition 2.4[13] Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑) are called  ℜ-weakly 

commuting  if  there exists some ℜ > 0 such that  

                              𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥)  ≤ ℜ 𝑑(𝑔𝑥, 𝑓𝑥), for all 𝑥 ∈ 𝑋. 

  In 1997, Pathak and Kang[11] introduced ℜ-weakly commuting mappings of type (𝐴𝑓) 

and ℜ-weakly commuting mappings of type (𝐴𝑔) which is the improved notions of ℜ-weakly 

commuting mappings and Kumar and Garg [18] introduced the ℜ-weakly commuting mappings 

of type (𝑃). 

Definition 2.5[11,18] Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑) are  said to be: 

(i)   ℜ-weakly commuting mappings of type (𝐴𝑓)  if  there exists some ℜ > 0 such that  

                              𝑑(𝑓𝑔𝑥, 𝑔𝑔𝑥)  ≤ ℜ 𝑑(𝑓𝑥, 𝑔𝑥), for all 𝑥 ∈ 𝑋. 

(ii)  ℜ-weakly commuting mappings of type (𝐴𝑔)  if  there exists some ℜ > 0 such that  

                              𝑑(𝑔𝑓𝑥, 𝑓𝑓𝑥)  ≤ ℜ 𝑑(𝑓𝑥, 𝑔𝑥), for all 𝑥 ∈ 𝑋. 

(iii)  ℜ-weakly commuting mappings of type (𝑃)  if  there exists some ℜ > 0 such that  

                              𝑑(𝑓𝑓𝑥, 𝑔𝑔𝑥)  ≤ ℜ 𝑑(𝑓𝑥, 𝑔𝑥), for all 𝑥 ∈ 𝑋. 

Remark 2.2[18] We have suitable example which show that ℜ-weakly commuting  mappings, 

ℜ-weakly commuting mappings of type (𝐴𝑓), ℜ-weakly commuting mappings of type (𝐴𝑔) and 

ℜ-weakly commuting mappings of type (𝑃) are all distinct. 

Example 2.1[18] Let 𝑋 = [−1,1]  be a usual a usual metric space with usual metric defined by 

 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|  for all 𝑥, 𝑦 ∈ 𝑋.  Define 𝑓(𝑥) = 𝑥   and 𝑔(𝑥) = 𝑥 − 1 . Then we have 

𝑑(𝑓𝑥, 𝑔𝑥 = 1, 𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥) = 2(1 − 𝑥), 𝑑(𝑓𝑔𝑥, 𝑔𝑔𝑥) = 1,  

𝑑(𝑔𝑓𝑥, 𝑓𝑓𝑥) = 1, (𝑑𝑓𝑓𝑥, 𝑔𝑔𝑥) = 2𝑥, for all 𝑥, 𝑦 ∈ 𝑋. 

Now we have the following : (i)  pair (𝑓, 𝑔) is not weakly commuting 

(ii)  For ℜ  =2, the pair (𝑓, 𝑔) is ℜ -weakly commuting  mappings, ℜ -weakly commuting 

mappings of type (𝐴𝑓), ℜ-weakly commuting mappings of type (𝐴𝑔) and ℜ-weakly commuting 

mappings of type (𝑃). 



6369 

COMMON FIXED POINTS FOR GENERALIZED 𝜓 − ∅ −WEAK CONTRACTION 

(iii)  For ℜ =
3

2
, the pair (𝑓, 𝑔) is ℜ-weakly commuting mappings of type (𝐴𝑓), but not ℜ-weakly 

commuting mappings and ℜ-weakly commuting mappings of type (𝑃). 

Example 2.2[18] Let 𝑋 = [0,1]  be a usual a usual metric space with usual metric defined by 

 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋. Define 𝑓(𝑥) = 𝑥  and 𝑔(𝑥) = 𝑥2, Then we have  

𝑓𝑓𝑥 = 𝑥, 𝑔𝑓𝑥 =  𝑥2, 𝑓𝑔𝑥 = 𝑥2, 𝑔𝑔𝑥 = 𝑥4 and 

𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥 = 0, 𝑑(𝑓𝑔𝑥, 𝑔𝑔𝑥) = |𝑥2(𝑥 − 1)(𝑥 + 1)|, 𝑑(𝑔𝑓𝑥, 𝑓𝑓𝑥) = |𝑥(𝑥 − 1)|, 

𝑑(𝑓𝑓𝑥, 𝑔𝑔𝑥) = |(𝑥2 + 𝑥 + 1)𝑥(𝑥 − 1)|,  (𝑑𝑓𝑥, 𝑔𝑥) = |𝑥(𝑥 − 1)|, for all 𝑥, 𝑦 ∈ 𝑋. 

Now we have the following : (i)  pair (𝑓, 𝑔) is ℜ− weakly commuting. 

(ii)  For ℜ  =3, the pair (𝑓, 𝑔) is ℜ -weakly commuting mappings of type (𝐴𝑓) , ℜ -weakly 

commuting mappings of type (𝐴𝑔) and ℜ-weakly commuting mappings of type (𝑃). 

(iii)  For ℜ  =2, the pair (𝑓, 𝑔)  is ℜ -weakly commuting mappings of type (𝐴𝑓),  ℜ -weakly 

commuting mappings of type (𝐴𝑔), but not ℜ-weakly commuting mappings of type (𝑃) (for this 

𝑥 =
3

4
 ). 

Example 2.3[18] Let 𝑋 = [
1

2
, 2]  be a usual a usual metric space. Define self maps 𝑓 and 𝑔 as  

𝑓(𝑥) =
𝑥+1

3
  and 𝑔(𝑥) =  

𝑥+2

5
,  Then we have 𝑑(𝑓𝑥, 𝑔𝑥 =

2𝑥−1

15
, 𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥) = 0,

, 𝑑(𝑓𝑔𝑥, 𝑔𝑔𝑥) =  
2𝑥−1

75
, 𝑑(𝑔𝑓𝑥, 𝑓𝑓𝑥) =  

2𝑥−1

45
(𝑑𝑓𝑓𝑥, 𝑔𝑔𝑥) =

8(2𝑥−1)

225
, for all 𝑥, 𝑦 ∈ 𝑋. 

Now we have the following : (i)  pair (𝑓, 𝑔) is ℜ− weakly commuting. 

(ii)  For ℜ  ≥
8

15
, the pair (𝑓, 𝑔) is ℜ-weakly commuting mappings of type (𝐴𝑓) , ℜ-weakly 

commuting mappings of type (𝐴𝑔) and ℜ-weakly commuting mappings of type (𝑃). 

(iii)  For 
1 

3
≤ ℜ < 

8

15
, the pair (𝑓, 𝑔) is ℜ-weakly commuting mappings of type (𝐴𝑓), ℜ-weakly 

commuting mappings of type (𝐴𝑔), but not ℜ-weakly commuting mappings of type (𝑃). 

(iv) For  
1 

5
≤ ℜ <  

1

3
, the pair (𝑓, 𝑔)  is ℜ-weakly commuting mappings of type (𝐴𝑓)  and ℜ -

weakly commuting mappings of type (𝑃), but not ℜ-weakly commuting mappings of type (𝐴𝑔).  
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3. WEAKLY COMPATIBLE MAPPINGS  

First we first prove a common fixed point theorems for weakly compatible mappings satisfying a 

generalized ∅ −weak contraction condition that involves cubic terms of 𝑑(𝑥, 𝑦). 

Theorem 3.1 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying the following conditions: 

(C1)     𝑆(𝑋) ⊂ 𝐵(𝑋), 𝑇(𝑋) ⊂ 𝐴(𝑋); 

      (C2)        𝑑3(𝑆𝑥, 𝑇𝑦) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑇𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}      

                                                                                                     

                           where      𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 
 

 
 

𝑑2(𝐴𝑥, 𝐵𝑦),

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)
]
}
 
 

 
 

                 

for all 𝑥, 𝑦 ∈ 𝑋 and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) = 0 ⇔ 𝑡 = 0 and 

∅(𝑡) > 0 for each 𝑡 > 0.                                                                                                

(C3)  One of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is complete; then  

         (i) 𝐴 and 𝑆 have a point of coincidence, 

         (ii) 𝐵 and 𝑇 have a point of coincidence. 

Moreover assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible, then 𝑆, 𝑇, 𝐴 and 𝐵 have 

a unique common fixed point. 

Proof: Let 𝑥0 ∈ 𝑋  be an arbitrary point. From (C1) we can find 𝑥1 such that 𝑆(𝑥0) = 𝐵(𝑥1) =

𝑦0 for this 𝑥1 one can find 𝑥2 ∈ 𝑋 such that 𝑇(𝑥1) = 𝐴(𝑥2) = 𝑦1.Continuing in this way one can 

construct a sequence such that 

 𝑦2𝑛 = 𝑆(𝑥2𝑛) = 𝐵(𝑥2𝑛+1), 𝑦2𝑛+1 = 𝑇(𝑥2𝑛+1) = 𝐴(𝑥2𝑛+2)  for each 𝑛 ≥ 0.                    (3.1)  

For brevity, we write 𝛼2𝑛 = 𝑑(𝑦2𝑛, 𝑦2𝑛+1). 

First we prove that {𝛼2𝑛} is non increasing sequence and converges to zero. 

Case I If 𝑛 is even, taking 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑥2𝑛+1  in (C2), we get  
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𝑑3(𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1)

≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

+ 𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

] ,

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)}
 

 

                               

                                                −∅{𝑚(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1)}                                                                               

where,    𝑚(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1) = max

{
 
 

 
 

𝑑2(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1),

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1),

𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛),

1

2
[

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)

+𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)
]
}
 
 

 
 

  .                                                                                                        

Using (3.1), we have 

𝑑3(𝑦2𝑛, 𝑦2𝑛+1)  ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝑦2𝑛−1, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛+1)

+ 𝑑(𝑦2𝑛−1, 𝑦2𝑛)𝑑
2(𝑦2𝑛, 𝑦2𝑛+1)

] ,

𝑑(𝑦2𝑛−1, 𝑦2𝑛)𝑑(𝑦2𝑛−1, 𝑦2𝑛+1)𝑑(𝑦2𝑛, 𝑦2𝑛),

𝑑(𝑦2𝑛−1, 𝑦2𝑛+1)𝑑(𝑦2𝑛, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛+1)}
 

 

− ∅{𝑚(𝑦2𝑛−1, 𝑦2𝑛)} 

  where,     𝑚(𝑦2𝑛−1, 𝑦2𝑛) = max

{
 
 

 
 

𝑑2(𝑦2𝑛−1, 𝑦2𝑛),

𝑑(𝑦2𝑛−1, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛+1),

𝑑(𝑦2𝑛−1, 𝑦2𝑛+1)𝑑(𝑦2𝑛, 𝑦2𝑛),

1

2
[
𝑑(𝑦2𝑛−1, 𝑦2𝑛)𝑑(𝑦2𝑛−1, 𝑦2𝑛+1)

+𝑑(𝑦2𝑛, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛+1)
]
}
 
 

 
 

.                           (3.2)                                                                                                                                                             

On using  𝛼2𝑛 = 𝑑(𝑦2𝑛, 𝑦2𝑛+1) in (3.2) , we have 

𝛼2𝑛
3  ≤ 𝑝 𝑚𝑎𝑥 {

1

2
[𝛼2𝑛−1

2 𝛼2𝑛 + 𝛼2𝑛−1𝛼2𝑛
2 ], 0,0} −  ∅{𝑚(𝑦2𝑛−1, 𝑦2𝑛)}                              (3.3)                                                                                        

If 𝛼2𝑛−1 < 𝛼2𝑛 , then (3.3) reduces to 

𝛼2𝑛
3 ≤ 𝑝𝛼2𝑛

3 − ∅{𝛼2𝑛
2 }, a contradiction, therefore,   𝛼2𝑛 ≤ 𝛼2𝑛−1. 

In a similar way, if n is odd, then we can obtain 𝛼2𝑛+1 < 𝛼2𝑛. 

It follows that the sequence {𝛼2𝑛} is decreasing. 

Let lim
𝑛→∞

𝛼2𝑛 = 𝑟, for some 𝑟 ≥ 0. 
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Suppose 𝑟 > 0; then from inequality (C2), we have 

 𝑑3(𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

+ 𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

] ,

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)}
 

 

  

                                       −∅{𝑚(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1)}                                                                                                                                                                                           

𝑚(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1) = max

{
 
 

 
 

𝑑2(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1),

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1),

𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛),

1

2
[

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)

+𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)
]
}
 
 

 
 

 .                                                            

Now by using (3.3), triangular inequality and property of  ∅ and proceed limits 𝑛 → ∞, we get 

𝑟3 ≤ 𝑝𝑟3 − ∅(𝑟2), a contradiction, therefore we get 𝑟 = 0,  therefore 

lim
𝑛→∞

𝛼2𝑛 = lim
𝑛→∞

𝑑(𝑦2𝑛, 𝑦2𝑛−1) = 𝑟 = 0.                                                                              (3.4) 

Now we show that {𝑦𝑛} is a Cauchy sequence. Suppose we assume that {𝑦𝑛} is not a Cauchy 

sequence. For given  𝜖 > 0  we can find two sequences of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} 

such that for all positive integers 𝑘 , 𝑛(𝑘) > 𝑚(𝑘) > 𝑘, 

 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) ≥ 𝜖,         𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)−1) < 𝜖                                                                 (3.5)                                                                                                    

Now      𝜖 ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)−1) + 𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘))                             

Letting 𝑘 → ∞, we get  lim
𝑘→∞

𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) =  𝜖                                                               

Now from the triangular inequality we have,  

|𝑑(𝑦𝑛(𝑘), 𝑦𝑚(𝑘)+1) − 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))| ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑚(𝑘)+1).                                             

Taking limits as 𝑘 → ∞ and using (3.4) and (3.5), we have  

lim
𝑘→∞

𝑑(𝑦𝑛(𝑘), 𝑦𝑚(𝑘)+1) =  𝜖.                                                                                            

Again from the triangular inequality, we have  
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 |𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)+1) − 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))| ≤ 𝑑(𝑦𝑛(𝑘), 𝑦𝑛(𝑘)+1).                                             

Taking limits as 𝑘 → ∞ and using (3.4) and (3.5), we have  

lim
𝑘→∞

𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)+1) =  𝜖.                                                                                                 

Similarly on using triangular inequality, we have  

|𝑑(𝑦𝑚(𝑘)+1, 𝑦𝑛(𝑘)+1) − 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))| ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑚(𝑘)+1) + 𝑑(𝑦𝑛(𝑘), 𝑦𝑛(𝑘)+1) 

Taking limit as 𝑘 → ∞ in the above inequality and using (3.4) and (3.5), we have 

lim
𝑘→∞

𝑑(𝑦𝑛(𝑘)+1, 𝑦𝑚(𝑘)+1) =  𝜖.                                                                                        

On putting 𝑥 = 𝑥𝑚(𝑘)  and  𝑦 = 𝑥𝑛(𝑘) in (C2), we get  

𝑑3(𝑆𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))             ≤  𝑝𝑚𝑎𝑥

{
 
 

 
 

1

2
[
𝑑2(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))

+𝑑(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑
2(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))

] ,

𝑑(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐴𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑆𝑥𝑚(𝑘)),

𝑑(𝐴𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)) }
 
 

 
 

 

                                                  −∅{𝑚(𝐴𝑥𝑚(𝑘), 𝐵𝑥𝑛(𝑘))}            

where     𝑚(𝐴𝑥𝑚(𝑘), 𝐵𝑥𝑛(𝑘)) =   max

{
  
 

  
 

𝑑2(𝐴𝑥𝑚(𝑘), 𝐵𝑥𝑛(𝑘)),

𝑑(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)),

𝑑(𝐴𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑆𝑥𝑚(𝑘)),

1

2
[
𝑑(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐴𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))

+𝑑(𝐵𝑥𝑛(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))
]
}
  
 

  
 

 .      

Using (3.1) we obtain 

𝑑3(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) ≤ 𝑝𝑚𝑎𝑥

{
 
 

 
 

1

2
[
𝑑2(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘))

+𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑
2(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘))

] ,

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑚(𝑘)),

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘)) }
 
 

 
 

 

                                               −∅{𝑚(𝐴𝑥𝑚(𝑘), 𝐵𝑥𝑛(𝑘))}                                                                                              
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where   𝑚(𝐴𝑥𝑚(𝑘), 𝐵𝑥𝑛(𝑘)) =    max

{
  
 

  
 

𝑑2(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘)−1),

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘)),

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑚(𝑘)),

1

2
[
𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘))

+𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑚(𝑘))𝑑 (𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘))
]
}
  
 

  
 

                       

 Letting  𝑘 → ∞ , we get  𝜖3 ≤ 𝑝 𝑚𝑎𝑥 {
1

2
[0 + 0], 0,0} − ∅(𝜖2)  =  −∅(𝜖2) ,which is a 

contradiction. Thus {𝑦𝑛} is a Cauchy sequence in 𝑋. Now suppose that 𝐴𝑋 is complete subspace 

of 𝑋, then there exist  𝑧 ∈ 𝑋 such that 

           𝑦2𝑛+1 = 𝑇(𝑥2𝑛+1) = 𝐴(𝑥2𝑛+2) → 𝑧  as 𝑛 → ∞. 

Consequently we can find 𝑤 ∈ 𝑋  such that 𝐴𝑤 = 𝑧 . Further a Cauchy sequence {𝑦𝑛}  has a 

convergent subsequence{𝑦2𝑛+1}, therefore the sequence {𝑦𝑛} converges and hence a subsequence 

{𝑦2𝑛} also converges. Thus we have 𝑦2𝑛 = 𝑆(𝑥2𝑛) = 𝐵(𝑥2𝑛+1) → 𝑧  as 𝑛 → ∞.  

On setting 𝑥 = 𝑤 and 𝑦 = 𝑧 in (C2) we get 

𝑑3(𝑆𝑤, 𝑇𝑧) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑤, 𝑆𝑤)𝑑(𝐵𝑧, 𝑇𝑧) +

𝑑(𝐴𝑤, 𝑆𝑤)𝑑2(𝐵𝑧, 𝑇𝑧)
] ,

𝑑(𝐴𝑤, 𝑆𝑤)𝑑(𝐴𝑤, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑤),
𝑑(𝐴𝑤, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑤)𝑑(𝐵𝑧, 𝑇𝑧) }

 

 
− ∅{𝑚(𝐴𝑤, 𝐵𝑧)}                                                                                                 

where  𝑚(𝐴𝑤, 𝐵𝑧) = max

{
 

 
𝑑2(𝐴𝑤, 𝐵𝑧), 𝑑(𝐴𝑤, 𝑆𝑤)𝑑(𝐵𝑧, 𝑇𝑧),

𝑑(𝐴𝑤, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑤),

1

2
[
𝑑(𝐴𝑤, 𝑆𝑤)𝑑(𝐴𝑤, 𝑇𝑧)

+𝑑(𝐵𝑧, 𝑆𝑤)𝑑(𝐵𝑧, 𝑇𝑧)
]

}
 

 
 

𝑚(𝐴𝑤,𝐵𝑧) = max{
𝑑2(𝑧, 𝑧), 𝑑(𝑧, 𝑆𝑤)𝑑(𝑇𝑧, 𝑇𝑧), 𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑤),
1

2
[𝑑(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑤)𝑑(𝑇𝑧, 𝑇𝑧)]

} = 0 

Therefore, 𝑑3(𝑆𝑤, 𝑧) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[𝑑2(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑤)𝑑2(𝑧, 𝑧)],

𝑑(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑤),
𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧)

} − ∅(0)          

This implies that 𝑆𝑤 = 𝑧 and hence 𝑆𝑤 = 𝐴𝑤 = 𝑧. Therefore, 𝑤 is a coincidence point of 𝐴 and 

𝑆. Since 𝑧 = 𝑆𝑤 ∈ 𝑆𝑋 ⊂ 𝐵𝑋 there exist 𝑣 ∈ 𝑋 such that 𝑧 = 𝐵𝑣. 
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Next we claim that 𝑇𝑣 = 𝑧. Now putting 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑣 in (C2) 

𝑑3(𝑆𝑥2𝑛, 𝑇𝑣) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑣, 𝑇𝑣)

+𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑣, 𝑇𝑣)

] ,

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑣)𝑑(𝐵𝑧, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑣)𝑑(𝐵𝑣, 𝑆𝑥2𝑛)𝑑(𝐵𝑣, 𝑇𝑣) }
 

 

− ∅{𝑚(𝐴𝑥2𝑛, 𝐵𝑣)}                                                                                                      

where    𝑚(𝐴𝑥2𝑛, 𝐵𝑣) = max

{
 
 

 
 

𝑑2(𝐴𝑥2𝑛, 𝐵𝑣),

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑣, 𝑇𝑣),

𝑑(𝐴𝑥2𝑛, 𝑇𝑣)𝑑(𝐵𝑣, 𝑆𝑥2𝑛),

1

2
[
𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑣)

+𝑑(𝐵𝑣, 𝑆𝑥2𝑛)𝑑(𝐵𝑣, 𝑇𝑣)
]
}
 
 

 
 

= 0. 

Therefore, 𝑑3(𝑧, 𝑇𝑣) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅(0), this gives 𝑧 = 𝑇𝑣  and hence 𝑧 = 𝑇𝑣 = 𝐵𝑣 . 

Therefore, 𝑣  is a coincidence point of 𝐵  and 𝑇. Since the pairs 𝐴, 𝑆  and 𝐵, 𝑇  are weakly 

compatible, we have  𝑆𝑧 = 𝑆(𝐴𝑤) = 𝐴(𝑆𝑤) = 𝐴𝑧.  𝑇𝑧 = 𝑇(𝐵𝑣) = 𝐵(𝑇𝑣) = 𝐵𝑧. 

Next we show that 𝑆𝑧 = 𝑧. For this put 𝑥 = 𝑧 and 𝑦 = 𝑥2𝑛+1 in (C2)                

𝑑3(𝑆𝑧, 𝑇𝑥2𝑛+1) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑧, 𝑆𝑧)𝑑(𝑧, 𝑧)

+𝑑(𝐴𝑧, 𝑆𝑧)𝑑2(𝑧, 𝑧)
] ,

𝑑(𝐴𝑧, 𝑆𝑧)𝑑(𝐴𝑧, 𝑧)𝑑(𝑧, 𝑆𝑧),
𝑑(𝐴𝑧, 𝑧)𝑑(𝑧, 𝑆𝑧)𝑑(𝑧, 𝑧) }

 

 
− ∅{𝑚(𝐴𝑧, 𝑧)}                                                                                                     

where  𝑚(𝐴𝑧, 𝑧) = max

{
 
 

 
 

𝑑2(𝐴𝑧, 𝑧),
𝑑(𝐴𝑧, 𝑆𝑧)𝑑(𝑧, 𝑧),
𝑑(𝐴𝑧, 𝑧)𝑑(𝑧, 𝑆𝑧),

1

2
[
𝑑(𝐴𝑧, 𝑆𝑧)𝑑(𝐴𝑧, 𝑧)

+𝑑(𝑧, 𝑆𝑧)𝑑(𝑧, 𝑧)
]
}
 
 

 
 

= 𝑑2(𝑆𝑧, 𝑧)        

Therefore, we get   𝑑3(𝑆𝑧, 𝑧) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅{𝑑2(𝑆𝑧, 𝑧)}                              

Thus we get 𝑑2(𝑆𝑧, 𝑧) = 0. This implies that 𝑆𝑧 = 𝑧 and hence 𝑆𝑧 = 𝐴𝑧 = 𝑧. 

Next we claim that 𝑇𝑧 = 𝑧. Now put 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑧 in (C2) 
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𝑑3(𝑆𝑥2𝑛, 𝑇𝑧) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑧, 𝑇𝑧)

+𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑧, 𝑇𝑧)

] ,

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑥2𝑛)𝑑(𝐵𝑧, 𝑇𝑧) }
 

 

 − ∅{𝑚(𝐴𝑥2𝑛, 𝐵𝑧)}                                                                                           

where    𝑚(𝐴𝑥2𝑛, 𝐵𝑧) = max

{
 
 

 
 

𝑑2(𝐴𝑥2𝑛, 𝐵𝑧),

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑧, 𝑇𝑧),

𝑑(𝐴𝑥2𝑛, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑥2𝑛),

1

2
[
𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑧)

+𝑑(𝐵𝑧, 𝑆𝑥2𝑛)𝑑(𝐵𝑧, 𝑇𝑧)
]
}
 
 

 
 

=  𝑑2(𝑧, 𝑇𝑧). 

Hence we get  𝑑3(𝑧, 𝑇𝑧) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅{𝑑2(𝑧, 𝑇𝑧)}         

This gives 𝑧 = 𝑇𝑧 and hence 𝑧 = 𝑇𝑧 = 𝐵𝑧. Therefore z is a common fixed point of 𝐴, 𝐵, 𝑆 and 𝑇.                                                                       

Similarly we can complete the proofs for the cases in which 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is complete. 

Uniqueness:  Suppose 𝑧 ≠ 𝑤 be two common fixed point of 𝑆,𝑇, 𝐴  and 𝐵. 

Put 𝑥 = 𝑧 and 𝑦 = 𝑤 in (𝐶2)  

 𝑑3(𝑆𝑧, 𝑇𝑤) ≤  𝑝 𝑚𝑎𝑥{0,0,0} − ∅{𝑚(𝐴𝑧, 𝐵𝑤)} 

𝑑3(𝑆𝑧, 𝑇𝑤) ≤  𝑝𝑚𝑎𝑥{0,0,0} − ∅{𝑑2(𝑆𝑧, 𝑇𝑤)} 

 ⟹ 𝑑2(𝑧, 𝑤) = 0 ⟹ 𝑧 = 𝑤.  This completes the proof. 

Application  

In 2002 Branciari [4] obtained a fixed point theorem for a single mapping satisfying an analogue 

of a Banach contraction principle for integral type inequality. Now we give the following 

theorem as an application of Theorem 3.1. 

Theorem 3.2 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying  (𝐶1), (𝐶3) the following condition: 

                                                     ∫ φ(t) dt ≤ ∫ φ(t) dt
ℳ(𝓍,𝓎)

0

𝑑3(𝑆𝑥,𝑇𝑦)

0
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              ℳ(𝓍,𝓎) =  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑇𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}      

                where      𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 
 

 
 

𝑑2(𝐴𝑥, 𝐵𝑦),

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)
]
}
 
 

 
 

,            

for all 𝑥, 𝑦 ∈ 𝑋 and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) = 0 ⇔ 𝑡 = 0 and 

∅(𝑡) > 0  for each 𝑡 > 0.  Further, where φ ∶  R+  →  R+  is a Lebesgue -integrable over 

R+function which is summable on each compact subset of R+, non-negative, and such that for 

each ∈  > 0, ∫ φ(𝓉)d𝓉 >  0.
∈

0
 Moreover assume that the pairs (𝐴, 𝑆)  and (𝐵, 𝑇)  are weakly 

compatible, then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point. 

Proof. The proof of the theorem follows on the same lines of the proof of the Theorem 3.1. on 

setting φ (t) = 1. 

Remark 3.1. Every contractive condition of integral type automatically includes a corresponding 

contractive condition not involving integrals, by setting φ (t) = 1. 

If we put 𝑆 = 𝑇 in theorem 3.1. Then we obtain the following Corollary 

Corollary 3.1 Let 𝑆, 𝐴 and 𝐵 be four self-mappings of a complete metric space (𝑋, 𝑑) satisfying 

the conditions  

    (C4)   𝑆(𝑋) ⊂ 𝐵(𝑋), 𝑆(𝑋) ⊂ 𝐴(𝑋), 

    (C5)   one of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 is complete, 

    (C6)     𝑑3(𝑆𝑥, 𝑆𝑦) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑆𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑆𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑆𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑆𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑆𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}                                 

               where   𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 
 

 
 

𝑑2(𝐴𝑥, 𝐵𝑦),

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑆𝑦),

𝑑(𝐴𝑥, 𝑆𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑆𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑆𝑦)
]
}
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for all 𝑥, 𝑦 ∈ 𝑋,  𝑝 ≥ 0 is a real number and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) 

= 0 ⇔ 𝑡 = 0 and ∅(𝑡) > 0 for each 𝑡 > 0. Assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are                                                                                             

weakly compatible. Then 𝑆, 𝐴 and 𝐵 have a unique common fixed point.   

In Theorem 3.1. if we put 𝐴 = 𝐵 = 𝐼, we obtain the following result. 

Corollary 3.2 Let 𝑆 and 𝑇 be mappings of a complete metric space (𝑋, 𝑑) into itself satisfying 

the following conditions: 

                  𝑑3(𝑆𝑥, 𝑇𝑦) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝑥, 𝑆𝑥)𝑑(𝑦, 𝑇𝑦)

+𝑑(𝑥, 𝑆𝑥)𝑑2(𝑦, 𝑇𝑦)
] ,

𝑑(𝑥, 𝑆𝑥)𝑑(𝑥, 𝑇𝑦)𝑑(𝑦, 𝑆𝑥),

𝑑(𝑥, 𝑇𝑦)𝑑(𝑦, 𝑆𝑥)𝑑(𝑦, 𝑇𝑦)}
 

 

 − ∅{𝑚 (𝑥, 𝑦)}                                                                                                                   

                      where    𝑚(𝑥, 𝑦) = max

{
 
 

 
 

𝑑2(𝑥, 𝑦),

𝑑(𝑥, 𝑆𝑥)𝑑(𝑦, 𝑇𝑦),

𝑑(𝑥, 𝑇𝑦)𝑑(𝑦, 𝑆𝑥),

1

2
[
𝑑(𝑥, 𝑆𝑥)𝑑(𝑥, 𝑇𝑦)

+𝑑(𝑦, 𝑆𝑥)𝑑(𝑦, 𝑇𝑦)
]
}
 
 

 
 

,               

for all 𝑥, 𝑦 ∈ 𝑋, 𝑝 ≥ 0 is a real number and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) 

= 0 ⇔ 𝑡 = 0 and ∅(𝑡) > 0 for each 𝑡 > 0 .  And one of subspace 𝑆𝑋 or 𝑇𝑋 is complete.                                                                                             

Then 𝑆 and  𝑇 have a unique common fixed point. 

Also we prove Theorem 3.3 for weakly compatible mappings in a metric space by dropping the 

condition of completeness of subspaces as follows:  

Theorem 3.3 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying (C1),(C3) and the following condition 

      (C7)    one of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is closed subset of X, 

Assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible. Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique 

common fixed point.   

Proof. As we know that the subspace of a complete metric space is complete if and only if it is 

closed. By Theorem 3.1, this conclusion holds.  This completes the proof.  

Theorem 3.4 Let (𝐴, 𝑆) and (𝐵, 𝑇) be point wise ℜ− weakly commuting pairs of self mappings 

of a complete metric space (𝑋, 𝑑) satisfying (C1),(C3) and the following condition 

(C8)  Suppose that  (𝐴, 𝑆) or (𝐵, 𝑇) is a compatible pair of reciprocally continuous mappings. 

Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point.   
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Proof. By Theorem 3.1,  {𝑦𝑛}  is a Cauchy sequence in 𝑋 . Since  𝑋  is complete ,  then there 

exist 𝑧 ∈ 𝑋  such that lim
𝑛→∞

𝑦𝑛 = 𝑧. Also lim
𝑛→∞

𝑇(𝑥2𝑛+1) = lim
𝑛→∞

𝐴(𝑥2𝑛+2) = lim
n→∞

𝑆(𝑥2𝑛) =

lim
𝑛→∞

𝐵(𝑥2𝑛+1) = 𝑧. Suppose  𝐵 and 𝑇 are  compatible  and reciprocally continuous. Then by 

reciprocally continuous 𝐵  and 𝑇,  we have lim
𝑛→∞

𝐵𝑇𝑥𝑛 = 𝐵𝑧   and lim
𝑛→∞

𝑇𝐵𝑥𝑛 = 𝑇𝑧 . Also by 

compatibility of 𝐵 and 𝑇 implies that 𝐵𝑧 = 𝑇𝑧. Since 𝑇(𝑋) ⊂ 𝐴(𝑋), so there exists a point 𝑣 ∈ 𝑋 

such that 𝑇𝑧 = 𝐴𝑣. 

Next we show that 𝑇𝑧 = 𝑆𝑣. Now putting 𝑥 = 𝑣 and 𝑦 = 𝑧 in (C2) 

   𝑑3(𝑆𝑣, 𝑇𝑧) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)

+𝑑(𝐴𝑣, 𝑆𝑣)𝑑2(𝐵𝑧, 𝑇𝑧)
] ,

𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣),
𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)}

 

 
− ∅{𝑚(𝐴𝑣, 𝐵𝑧)}      

                                                                                                     

                           where      𝑚(𝐴𝑣, 𝐵𝑧) = max

{
 
 

 
 

𝑑2(𝐴𝑣, 𝐵𝑧),
𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧),
𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣),

1

2
[
𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑧)

+𝑑(𝐵𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)
]
}
 
 

 
 

= 0. 

𝑑3((𝑆𝑣, 𝑇𝑧)) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} 

This gives 𝑆𝑣 = 𝑇𝑧.  Thus 𝐵𝑧 = 𝑇𝑧 = 𝑆𝑣 = 𝐴𝑣. Since 𝐵  and 𝑇  are ℜ−  weak commutativity, 

there exists ℜ > 0 such that 𝑑(𝐵𝑇𝑧, 𝑇𝐵𝑧) ≤ ℜ 𝑑(𝐵𝑧, 𝑇𝑧) = 0, this implies that 𝐵𝑇𝑧 = 𝑇𝐵𝑧  and 

𝐵𝐵𝑧 = 𝐵𝑇𝑧 = 𝑇𝐵𝑧 = 𝑇𝑇𝑧.   Also 𝐴  and 𝑆  are ℜ−  weak commutative,  implies that 

𝑑(𝐴𝑆𝑣, 𝑆𝐴𝑣) ≤ ℜ 𝑑(𝐴𝑣, 𝑆𝑣) = 0, then 𝐴𝑆𝑣 = 𝑆𝐴𝑣  and so we have 𝐴𝑆𝑣 = 𝑆𝐴𝑣 = 𝑆𝑆𝑣 = 𝐴𝐴𝑣. 

Next we show that 𝑇𝑧 = 𝑇𝑇𝑧. Now putting 𝑥 = 𝑣 and 𝑦 = 𝑇𝑧 in (C2) 

   𝑑3(𝑆𝑣, 𝑇𝑇𝑧) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑇𝑧, 𝑇𝑇𝑧)

+𝑑(𝐴𝑣, 𝑆𝑣)𝑑2(𝐵𝑇𝑧, 𝑇𝑇𝑧)
] ,

𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑇𝑧)𝑑(𝐵𝑇𝑧, 𝑆𝑣),
𝑑(𝐴𝑣, 𝑇𝑇𝑧)𝑑(𝐵𝑇𝑧, 𝑆𝑣)𝑑(𝐵𝑇𝑧, 𝑇𝑇𝑧)}

 

 
− ∅{𝑚(𝐴𝑣, 𝐵𝑇𝑧)}      
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                    where      𝑚(𝐴𝑣, 𝐵𝑇𝑧) = max

{
 
 

 
 

𝑑2(𝐴𝑣, 𝐵𝑇𝑧),
𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑇𝑧, 𝑇𝑇𝑧),
𝑑(𝐴𝑣, 𝑇𝑇𝑧)𝑑(𝐵𝑇𝑧, 𝑆𝑣),

1

2
[
𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑇𝑧)

+𝑑(𝐵𝑇𝑧, 𝑆𝑥)𝑑(𝐵𝑇𝑧, 𝑇𝑇𝑧)
]
}
 
 

 
 

= 𝑑2(𝐴𝑣, 𝐵𝑇𝑧)                 

𝑑3((𝑇𝑧, 𝑇𝑇𝑧)) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅{𝑑2(𝑇𝑧, 𝑇𝑇𝑧)} 

This gives 𝑇𝑧 = 𝑇𝑇𝑧.  Thus 𝑇𝑧 is a common fixed point  of 𝐵 and 𝑇. 

Next we claim that 𝑆𝑆𝑣 = 𝑆𝑣. Now putting 𝑥 = 𝑆𝑣 and 𝑦 = 𝑧 in (C2) 

   𝑑3(𝑆𝑆𝑣, 𝑇𝑧) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑆𝑣, 𝑆𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)

+𝑑(𝐴𝑆𝑣, 𝑆𝑆𝑣)𝑑2(𝐵𝑧, 𝑇𝑧)
] ,

𝑑(𝐴𝑆𝑣, 𝑆𝑆𝑣)𝑑(𝐴𝑆𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑆𝑣),
𝑑(𝐴𝑆𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧) }

 

 
− ∅{𝑚(𝐴𝑆𝑣, 𝐵𝑧)}      

                                                                                                     

            where      𝑚(𝐴𝑆𝑣, 𝐵𝑧) = max

{
 
 

 
 

𝑑2(𝐴𝑆𝑣, 𝐵𝑧),
𝑑(𝐴𝑆𝑣, 𝑆𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧),
𝑑(𝐴𝑆𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑆𝑣),

1

2
[
𝑑(𝐴𝑆𝑣, 𝑆𝑆𝑣)𝑑(𝐴𝑆𝑣, 𝑇𝑧)

+𝑑(𝐵𝑧, 𝑆𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)
]
}
 
 

 
 

= 𝑑2(𝑆𝑆𝑣, 𝑇𝑧)                        

   𝑑3(𝑆𝑆𝑣, 𝑆𝑣) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅{𝑑2(𝑆𝑆𝑣, 𝑆𝑣)} 

This gives 𝑆𝑆𝑣 = 𝑆𝑣. Thus 𝑆𝑣 is a common fixed point  of 𝐴 and 𝑆. 

Hence  𝑆𝑣 =  𝑇𝑧 is a common fixed point of 𝑆, 𝑇, 𝐴 and 𝐵. 

Finally, in order to prove uniqueness of 𝑇𝑧, Suppose that 𝑇𝑧 and 𝑇𝑤, 𝑇𝑧 ≠ 𝑇𝑤 are common 

fixed points of 𝑆, 𝑇, 𝐴 and 𝐵. 

Next we claim that  𝑇𝑧 = 𝑇𝑤. Now putting 𝑥 = 𝑇𝑧 and 𝑦 = 𝑇𝑤 in (C2) 

   𝑑3(𝑆𝑇𝑧, 𝑇𝑇𝑤) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑇𝑧, 𝑆𝑇𝑧)𝑑(𝐵𝑇𝑤, 𝑇𝑇𝑤)

+𝑑(𝐴𝑇𝑧, 𝑆𝑇𝑧)𝑑2(𝐵𝑇𝑤, 𝑇𝑇𝑤)
] ,

𝑑(𝐴𝑇𝑧, 𝑆𝑇𝑧)𝑑(𝐴𝑇𝑧, 𝑇𝑇𝑤)𝑑(𝐵𝑇𝑤, 𝑆𝑇𝑧),
𝑑(𝐴𝑇𝑧, 𝑇𝑇𝑤)𝑑(𝐵𝑇𝑤, 𝑆𝑇𝑧)𝑑(𝐵𝑇𝑤, 𝑇𝑇𝑤)}

 

 
− ∅{𝑚(𝐴𝑇𝑧, 𝐵𝑇𝑤)}      
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                           where      𝑚(𝐴𝑇𝑧, 𝐵𝑇𝑤) = max

{
 
 

 
 

𝑑2(𝐴𝑇𝑧, 𝐵𝑇𝑤),
𝑑(𝐴𝑇𝑧, 𝑆𝑇𝑧)𝑑(𝐵𝑇𝑤, 𝑇𝑇𝑤),
𝑑(𝐴𝑇𝑧, 𝑇𝑇𝑤)𝑑(𝐵𝑇𝑤, 𝑆𝑇𝑧),

1

2
[
𝑑(𝐴𝑇𝑧, 𝑆𝑇𝑧)𝑑(𝐴𝑇𝑧, 𝑇𝑇𝑤)

+𝑑(𝐵𝑇𝑤, 𝑆𝑇𝑧)𝑑(𝐵𝑇𝑤, 𝑇𝑇𝑤)
]
}
 
 

 
 

 

   𝑑3(𝑇𝑧, 𝑇𝑤) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅{𝑑2(𝑇𝑧, 𝑇𝑤)} 

This gives 𝑇𝑧 = 𝑇𝑤. Thus 𝑇𝑧 = 𝑇𝑤 is unique common fixed point of the four self mappings 𝑆, 

𝑇, 𝐴 and 𝐵. This completes the proof. 

Theorem 3.5 Theorem 3.1 remains true if  a "weakly compatible property " is replaced by any 

one (Retaining the rest of the hypotheses) of the following: 

      (I)  ℜ-weakly commuting mappings, 

     (II) ℜ-weakly commuting mappings of type (𝐴𝑓), 

    (III) ℜ-weakly commuting mappings of type (𝐴𝑔), 

     (IV)  ℜ-weakly commuting mappings of type (𝑃), 

      (V)  Weakly commuting mappings. 

Proof. Since all the conditions of Theorem 3.1 are satisfied, then both the pairs (𝐴, 𝑆) and (𝐵, 𝑇) 

have coincidence points. From the Theorem 3.1, we  obtained 𝑤 and 𝑣 are the coincidence point 

of the pairs (𝐴, 𝑆) and (𝐵, 𝑇) respectively. 

(I)   we  are given that the pairs (𝐴, 𝑆) and (𝐵, 𝑇)  are ℜ-weakly commuting mappings, then  

      𝑑(𝐴𝑆𝑤, 𝑆𝐴𝑤 ) ≤ ℜ 𝑑(𝐴𝑤, 𝑆𝑤 ) =  0  and  𝑑(𝐵𝑇𝑣, 𝑇𝐵𝑣 ) ≤ ℜ 𝑑(𝐵𝑣, 𝑇𝑣 ) =  0,   

 which amounts to say that 𝐴𝑆𝑤 = 𝑆𝐴𝑤  and 𝐵𝑇𝑣 = 𝑇𝐵𝑣. Thus the pairs (𝐴, 𝑆)  and (𝐵, 𝑇)       

are weakly  compatible. Now from the proof of the  Theorem 3.1, we have that z is a common 

fixed point theorems for the four self mappings 𝑆, 𝑇, 𝐴 and 𝐵. 
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(II)  In the case when the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are ℜ-weakly commuting mappings of type 

(𝐴𝑓),  then   𝑑(𝐴𝑆𝑤, 𝑆𝑆𝑤 ) ≤ ℜ 𝑑(𝐴𝑤, 𝑆𝑤, ) =  0 implies that 𝐴𝑆𝑤 =  𝑆𝑆𝑤. 

    Now 𝑑(𝐴𝑆𝑤, 𝑆𝐴𝑤 ) ≤ 𝑑(𝐴𝑆𝑤, 𝑆𝑆𝑤 ) + 𝑑(𝑆𝑆𝑤, 𝑆𝐴𝑤 ) = 0 + 0, gives   𝐴𝑆𝑤 = 𝑆𝐴𝑤.   

 Similarly, 𝑑(𝐵𝑇𝑣, 𝑇𝑇𝑣 ) ≤ ℜ 𝑑(𝐵𝑣, 𝑇𝑣 ) =  0 implies that 𝐵𝑇𝑣 =  𝑇𝑇𝑣. 

    Now 𝑑(𝐵𝑇𝑣, 𝑇𝐵𝑣) ≤ 𝑑(𝐵𝑇𝑣, 𝑇𝑇𝑣 ) + 𝑑(𝑇𝑇𝑣, 𝑇𝐵𝑣 ) = 0 + 0, gives   𝐵𝑇𝑣 =  𝑇𝑇𝑣.   Thus the 

pairs (𝐴, 𝑆)  and (𝐵, 𝑇) are weakly  compatible. Again from the Theorem 3.1, we have that the 

four self mappings 𝑆, 𝑇, 𝐴 and 𝐵 have a common fixed point in 𝑋. 

(III)  When the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are ℜ-weakly commuting mappings of type (𝐴𝑔),  then   

𝑑(𝑆𝐴𝑤, 𝐴𝐴𝑤 ) ≤ ℜ 𝑑(𝐴𝑤, 𝑆𝑤, ) =  0 implies that 𝑆𝐴𝑤 =  𝐴𝐴𝑤. 

    Now 𝑑(𝐴𝑆𝑤, 𝑆𝐴𝑤 ) ≤ 𝑑(𝐴𝑆𝑤, 𝐴𝐴𝑤 ) + 𝑑(𝐴𝐴𝑤, 𝑆𝐴𝑤 ) = 0 + 0, gives   𝐴𝑆𝑤 = 𝑆𝐴𝑤.   

 Similarly, 𝑑(𝑇𝐵𝑣, 𝐵𝐵𝑣 ) ≤ ℜ 𝑑(𝐵𝑣, 𝑇𝑣 ) =  0 implies that 𝑇𝐵𝑣 =  𝐵𝐵𝑣. 

    Now 𝑑(𝐵𝑇𝑣, 𝑇𝐵𝑣) ≤ 𝑑(𝐵𝑇𝑣, 𝐵𝐵𝑣 ) + 𝑑(𝐵𝐵𝑣, 𝑇𝐵𝑣 ) = 0 + 0 , gives   𝐵𝑇𝑣 =  𝑇𝑇𝑣.   Thus 

the pairs (𝐴, 𝑆)  and (𝐵, 𝑇) are weakly  compatible. Again from the Theorem 3.1, we have that 

the four self mappings 𝑆, 𝑇, 𝐴 and 𝐵 have a common fixed point in 𝑋. 

(IV)  When the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are ℜ-weakly commuting mappings of type (𝑃),  then   

𝑑(𝑆𝑆𝑤, 𝐴𝐴𝑤 ) ≤ ℜ 𝑑(𝑆𝑤, 𝐴𝑤, ) =  0 implies that 𝑆𝑆𝑤 =  𝐴𝐴𝑤. Using triangular inequality we 

have 𝐴𝑆𝑤  = 𝑆𝐴𝑤  also we have 𝐵𝑇𝑣 =  𝑇𝑇𝑣.  Thus the pairs (𝐴, 𝑆)  and (𝐵, 𝑇)  are weakly  

compatible. Again from the Theorem 3.1, we have that the four self mappings 𝑆, 𝑇, 𝐴 and 𝐵 have 

a common fixed point in 𝑋.  

(V) Similarly in the case when (𝐴, 𝑆) and (𝐵, 𝑇) are weakly commuting mappings we can also 

prove that 𝑆, 𝑇, 𝐴 and 𝐵 have a common fixed point in 𝑋. 

As an application of Theorem 3.1, we prove a common fixed point theorem for four finite 

families of mappings which runs as follow: 
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Theorem 3.6 Let {𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚}, {𝑇1, 𝑇2, 𝑇3, … . 𝑇𝑛}, {𝐴1, 𝐴2, 𝐴3, … . 𝐴𝑟}, {𝐵1, 𝐵2, 𝐵3, … . 𝐵𝑡} are 

four finite families of self mappings of a metric space (𝑋, 𝑑)  such that 𝑆 =

{𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚},   𝑇 = {𝑇1, 𝑇2, 𝑇3, … . 𝑇𝑛},     𝐴 = {𝐴1, 𝐴2, 𝐴3, … . 𝐴𝑟}  

  and    𝐵 = {𝐵1, 𝐵2, 𝐵3, … . 𝐵𝑡} satisfy the condition (C1), (C2),      

  (C3) If  One of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is complete subspace of 𝑋 

         (i) 𝐴 and 𝑆 have a point of coincidence, 

         (ii) 𝐵 and 𝑇 have a point of coincidence. 

Moreover, if 𝑆𝑖𝑆𝑗 = 𝑆𝑗𝑆𝑖 , 𝑇𝑝𝑇𝑞 = 𝑇𝑞𝑇𝑝, 𝐴𝑘𝐴𝑙 = 𝐴𝑙𝐴𝑘 and  𝐵𝑢𝐵𝑣 = 𝐵𝑣𝐵𝑢 ,  

for all 𝑖, 𝑗 ∈ 𝐼1 = {1,2,3, … . . , 𝑚} ,  𝑝, 𝑞 ∈ 𝐼2 = {1,2,3, … , 𝑛} , 𝑘, 𝑙 ∈ 𝐼3 = {1,2,3, … , 𝑟}  and 𝑢, 𝑣 ∈

𝐼4={1,2,3, … , 𝑡}, then for all (𝑖 ∈ 𝐼1, 𝑝 ∈ 𝐼2, 𝑘 ∈ 𝐼3 and 𝑢 ∈ 𝐼4) 𝑆𝑖 ,𝑇𝑝 , 𝐴𝑘 and 𝐵𝑢 have a common 

fixed point. 

Proof. Since all the conditions of Theorem 3.1 are satisfied, then both the pairs (𝐴, 𝑆)and (𝐵, 𝑇) 

have coincidence points. From the Theorem 3.1, we obtained 𝑤 and 𝑣 are the coincidence point 

of the pairs (𝐴, 𝑆)and (𝐵, 𝑇) respectively. Now applying to component wise commutativity of 

various pairs, one can immediately prove that 𝐴𝑆 = 𝑆𝐴  and 𝐵𝑇 = 𝑇𝐵, hence obviously  both the 

pairs (𝐴, 𝑆)and (𝐵, 𝑇) are coincidently commuting. From all the conditions of Theorem 3.1 are 

satisfied ensuring that  𝑧 is a unique common fixed point. Now one need to show that z remains 

the fixed point of all the component maps. For this consider  𝑆(𝑆𝑖𝑧)= ((𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚)𝑆𝑖)𝑧 =

(𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚−1)((𝑆𝑚𝑆𝑖)𝑧)) 

=  (𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚−1)(𝑆𝑚𝑆𝑖𝑧) = (𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚−2)(𝑆𝑚−1𝑆𝑖(𝑆𝑚𝑧)) 

= (𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚−2)(𝑆𝑖𝑆𝑚−1(𝑆𝑚𝑧)) 

= ⋯ 𝑆1𝑆𝑖(𝑆2, 𝑆3, … . 𝑆𝑚𝑧) = 𝑆𝑖𝑆1(𝑆2, 𝑆3, … . 𝑆𝑚𝑧) = 𝑆𝑖(𝑆𝑧) = 𝑆𝑖𝑧. 

Similarly, we can prove that  

𝑆(𝐴𝑘𝑧) = 𝐴𝑘(𝑆𝑧) = 𝐴𝑘𝑧, 𝐴(𝐴𝑘(𝑧)) = 𝐴𝑘(𝐴𝑧) = 𝐴𝑘𝑧 

             and             𝐴(𝑆𝑖z)= 𝑆𝑖(𝐴𝑧) = 𝑆𝑖𝑧. 

which shows that (for all 𝑖 and 𝑘 ) 𝑆𝑖z and 𝐴𝑘(𝑧) are others fixed point of the pair (𝐴, 𝑆). In the 

same manner we can prove that 𝑇𝑝z and 𝐵𝑢(𝑧) are others fixed point of the pair (𝐵, 𝑇). Now  

applying the uniqueness of common fixed points of the pairs (𝐴, 𝑆)and (𝐵, 𝑇) we get  
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𝑧 = 𝑆𝑖z = 𝐴𝑘(𝑧) = 𝑇𝑝z = 𝐵𝑢(𝑧). Hence z is a common fixed point of 𝑆𝑖  ,𝑇𝑝  , 𝐴𝑘  and 𝐵𝑢(𝑖 ∈

𝐼1, 𝑝 ∈ 𝐼2, 𝑘 ∈ 𝐼3 and 𝑢 ∈ 𝐼4). 

By setting 𝑆 = {𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑚},   𝑇 = {𝑇1, 𝑇2, 𝑇3, … . 𝑇𝑛},     𝐴 = {𝐴1, 𝐴2, 𝐴3, … . 𝐴𝑟}  

  and    𝐵 = {𝐵1, 𝐵2, 𝐵3, … . 𝐵𝑡} we deduce the following 

Corollary 3.3 Let 𝑆, 𝑇, 𝐴 and 𝐵 are the four self mappings  of a metric spaces (𝑋, 𝑑) such that 

𝑆𝑚 ,𝑇𝑛 , 𝐴𝑟 and 𝐵𝑡 satisfies the conditions (𝐶1), (𝐶2) and (𝐶3). If one of the 𝑆𝑚(𝑋),𝑇𝑛 (𝑋), 𝐴𝑟(𝑋) 

or 𝐵𝑡(𝑋) is a complete subspace of 𝑋, then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point 

provided (𝐴, 𝑆)and (𝐵, 𝑇) commutes. 

 

4. (E.A.) PROPERTY AND (CLR) PROPERTY 

 In 2002, Aamri and EI Moutawakil [1] introduced the notion of E.A. property follows:  

Definition 4.1[1] Let 𝑓 and 𝑔 be two self mappings of a metric space (𝑋, 𝑑). We say that 𝑓 and 

𝑔 satisfy (E.A) property if there exists a sequence {𝑥𝑛} in 𝑋 such that 

                              𝑙𝑖𝑚𝑛𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑡 for some 𝑡 in𝑋. 

Remark 4.1 [1] It is to be noted that weak compatibility and E.A. property are independent to 

each other. 

 In 2011, Sintunavarat and Kumam [17] coined the idea of common limit range property 

(called CLR) which relaxes the requirement of completeness. 

Definition 4.2[17] Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑) are are said to satisfy the 

common limit in the range of 𝑔 property if               

                              𝑙𝑖𝑚𝑛𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑔𝑡 for some 𝑡 in 𝑋. 

In what follows, the common limit in the range of 𝑔 property will be denoted by CLR𝑔 property.  

Theorem 4.1 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying the following conditions: 

(C1)    𝑆(𝑋) ⊂ 𝐵(𝑋), 𝑇(𝑋) ⊂ 𝐴(𝑋); 

      (C2)           𝑑3(𝑆𝑥, 𝑇𝑦) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑇𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}                                                                                                    
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              where             𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 

 
𝑑2(𝐴𝑥, 𝐵𝑦), 𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)
]

}
 

 

,               

for all 𝑥, 𝑦 ∈ 𝑋, 𝑝 ≥ 0 is a real number and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) 

= 0 ⇔ 𝑡 = 0 and ∅(𝑡) > 0 for each 𝑡 > 0 .                                                                                              

(C3) one of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is closed subset of X,  

(C4) The pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  

(C5) The pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfies E.A. property. 

Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point.  

Proof:  Suppose that the pairs 𝐴, 𝑆 satisfies E.A. property then there exists a sequence {𝑥𝑛} in 𝑥 

such that 𝑙𝑖𝑚𝑛𝐴𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑆𝑥𝑛 = 𝑧 for some 𝑧 in  𝑋. Since 𝑆(𝑋) ⊂ 𝐵(𝑋), there exists a sequence 

{𝑦𝑛}  in 𝑋  such that  𝐵𝑦𝑛 = 𝑆𝑥𝑛 . Hence  𝑙𝑖𝑚𝑛𝐵𝑦𝑛 = 𝑧 . Also 𝑇(𝑋) ⊂ 𝐴(𝑋)  so there exists a 

sequence {𝑤𝑛} in 𝑋 such that 𝑇𝑤𝑛 = 𝐴𝑥𝑛. Hence 𝑙𝑖𝑚𝑛𝑇𝑤𝑛 = 𝑧.   

Now suppose that 𝐵𝑋  is closed subset of 𝑋,  then there exists 𝑢 ∈ 𝑋  such that 𝑧 = 𝐵𝑢 . 

Subsequently, we have      

𝑙𝑖𝑚𝑛𝐴𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑆𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑤𝑛 = 𝑙𝑖𝑚𝑛𝐵𝑦𝑛 = 𝑧 = 𝐵𝑢, for some 𝑢 ∈ 𝑋.   

First we claim that 𝑇𝑢 = 𝑧. 

Now putting 𝑥 = 𝑥𝑛 and 𝑦 = 𝑢 in (C2) 

𝑑3(𝑆𝑥𝑛, 𝑇𝑢) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑(𝐵𝑢, 𝑇𝑢)

+𝑑(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑
2(𝐵𝑢, 𝑇𝑢)

] ,

𝑑(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑(𝐴𝑥𝑛, 𝑇𝑢)𝑑(𝐵𝑧, 𝑆𝑥𝑛),

𝑑(𝐴𝑥𝑛, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑥𝑛)𝑑(𝐵𝑢, 𝑇𝑢) }
 

 

− ∅{𝑚(𝐴𝑥𝑛, 𝐵𝑢)}                                                                                           

where    𝑚(𝐴𝑥𝑛, 𝐵𝑢) = max

{
 
 

 
 

𝑑2(𝐴𝑥𝑛, 𝐵𝑢),

𝑑(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑(𝐵𝑢, 𝑇𝑢),

𝑑(𝐴𝑥𝑛, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑥𝑛),

1

2
[
𝑑(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑(𝐴𝑥𝑛, 𝑇𝑢)

+𝑑(𝐵𝑢, 𝑆𝑥𝑛)𝑑(𝐵𝑢, 𝑇𝑢)
]
}
 
 

 
 

= 0 

Therefore, we get 
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𝑑3(𝑧, 𝑇𝑢) ≤ 𝑝𝑚𝑎𝑥 {

1

2
[0 + 0],

0,
0

} − ∅(0)         

This gives 𝑧 = 𝑇𝑢  and hence  𝑧 = 𝑇𝑢 = 𝐵𝑢 . Since 𝑇(𝑋) ⊂ 𝐴(𝑋) therefore there exists 𝑣 ∈ 𝑋 

such that 𝑇𝑢 = 𝑧 = 𝐴𝑣. 

Next we claim that 𝑆𝑣 = 𝑧. On setting 𝑥 = 𝑣 and 𝑦 = 𝑢 in (C2) we get 

𝑑3(𝑆𝑣, 𝑇𝑢) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑢, 𝑇𝑢)

+𝑑(𝐴𝑣, 𝑆𝑣)𝑑2(𝐵𝑢, 𝑇𝑢)
] ,

𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑣),
𝑑(𝐴𝑣, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑣)𝑑(𝐵𝑢, 𝑇𝑢)}

 

 
− ∅{𝑚(𝐴𝑣, 𝐵𝑢)}                                                                                                 

where    𝑚(𝐴𝑣, 𝐵𝑢) = max

{
 

 
𝑑2(𝐴𝑣, 𝐵𝑢), 𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑢, 𝑇𝑢),

𝑑(𝐴𝑣, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑣),

1

2
[
𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑢)

+𝑑(𝐵𝑢, 𝑆𝑣)𝑑(𝐵𝑢, 𝑇𝑢)
]

}
 

 
 

𝑚(𝐴𝑣, 𝐵𝑢) = max{
𝑑2(𝑧, 𝑧), 𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧), 𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑣),
1

2
[𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧)]

} = 0 

Therefore, we get 

𝑑3(𝑆𝑣, 𝑧) ≤  𝑝𝑚𝑎𝑥 {

1

2
[𝑑2(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑣)𝑑2(𝑧, 𝑧)],

𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑣),
𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧)

} − ∅(0)          

This implies that 𝑆𝑣 = 𝑧 and hence 𝑆𝑣 = 𝐴𝑣 = 𝑧  so 𝐴𝑣 = 𝑆𝑣 = 𝑇𝑢 = 𝐵𝑢 = 𝑧. Since the pairs 

𝐴, 𝑆 and 𝐵, 𝑇 are weakly compatible and 𝑣 and 𝑢 are their coincidence point respectively, so we 

have   𝐴𝑧 = 𝐴(𝑆𝑣) = 𝑆(𝐴𝑣) = 𝑆𝑧,      𝐵𝑧 = 𝐵(𝑇𝑢) = 𝑇(𝐵𝑢) = 𝑇𝑧.  

Now we prove that 𝑧 is a common fixed point of 𝐴, 𝐵, 𝑆 and 𝑇. For this we prove that 𝑆𝑣 = 𝑇𝑧.  

On setting 𝑥 = 𝑣 and 𝑦 = 𝑧 in (C2) we get 

𝑑3(𝑆𝑣, 𝑇𝑧) ≤ 𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)

+𝑑(𝐴𝑣, 𝑆𝑣)𝑑2(𝐵𝑧, 𝑇𝑧)
] ,

𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣),
𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)}

 

 
 − ∅{𝑚(𝐴𝑣, 𝐵𝑧)}                                                                                                
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where    𝑚(𝐴𝑣, 𝐵𝑧) = max

{
 

 
𝑑2(𝐴𝑣, 𝐵𝑧), 𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧),

𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣),

1

2
[
𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑧)

+𝑑(𝐵𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)
]

}
 

 
 

𝑚(𝐴𝑣, 𝐵𝑧) = max

{
 

 
𝑑2(𝑆𝑣, 𝑇𝑧), 𝑑(𝑧, 𝑧)𝑑(𝐵𝑧, 𝐵𝑧),

𝑑(𝑆𝑣, 𝑇𝑧)𝑑(𝑇𝑧, 𝑆𝑣),
1

2
[

𝑑(𝑧, 𝑧)𝑑(𝑆𝑣, 𝑇𝑧)

+𝑑(𝑇𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)
]
}
 

 
= 𝑑2(𝑆𝑣, 𝑇𝑧) 

Therefore, we get 

𝑑3(𝑆𝑣, 𝑇𝑧) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝑧, 𝑧)𝑑(𝐵𝑧, 𝑇𝑧)

+𝑑(𝑧, 𝑧)𝑑2(𝐵𝑧, 𝑇𝑧)
] ,

𝑑(𝑧, 𝑧)𝑑(𝑆𝑣, 𝑇𝑧)𝑑(𝑇𝑧, 𝑆𝑣),
𝑑(𝑆𝑣, 𝑇𝑧)𝑑(𝑇𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)}

 

 
− ∅{𝑑2(𝑆𝑣, 𝑇𝑧)}          

This implies that 𝑆𝑣 = 𝑇𝑧. and hence 𝑧 = 𝑆𝑣 = 𝑇𝑧  and 𝑧 = 𝑇𝑧 = 𝐵𝑧 So 𝑧 is a common fixed 

point of 𝐵 and 𝑇. Also we can prove that 𝑆𝑣 = 𝑧 is also a common fixed point of 𝐴 and 𝑆 . 

Similarly we can complete the proof for cases in which 𝐴𝑋 or 𝑆𝑋 or 𝑇𝑋 is closed subset of 𝑋. 

The uniqueness follows easily. This completes the proof.  

Now we prove the following theorem as an application of Theorem 4.1. 

Theorem 4.2 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying  (𝐶1), (𝐶3), (𝐶4), (𝐶5)  and the following condition: 

                                                     ∫ φ(t) dt ≤ ∫ φ(t) dt
ℳ(𝓍,𝓎)

0

𝑑3(𝑆𝑥,𝑇𝑦)

0
 

                             ℳ(𝓍,𝓎) =  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑇𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}      

                where      𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 
 

 
 

𝑑2(𝐴𝑥, 𝐵𝑦),

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)
]
}
 
 

 
 

,            
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for all 𝑥, 𝑦 ∈ 𝑋 and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) = 0 ⇔ 𝑡 = 0 and 

∅(𝑡) > 0  for each 𝑡 > 0.  Further, where φ ∶  R+  →  R+  is a Lebesgue - integrable over 

R+function which is summable on each compact subset of R+, non-negative, and such that for 

each ∈ > 0, ∫ φ(𝓉)d𝓉 >  0.
∈

0
 Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point. 

Proof. The proof of the theorem follows on the same lines of the proof of the Theorem 4.1. on 

setting φ (t) = 1. 

Next we prove a theorem for (CLR) property along with weakly compatible and closeness of one 

the subspaces. 

Theorem 4.3 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying the following conditions: 

(C1)   𝑆(𝑋) ⊂ 𝐵(𝑋), 𝑇(𝑋) ⊂ 𝐴(𝑋); 

       

       (C2)     𝑑3(𝑆𝑥, 𝑇𝑦) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑇𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}                                                                                                    

                       where     𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 

 
𝑑2(𝐴𝑥, 𝐵𝑦), 𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)
]

}
 

 

               

for all 𝑥, 𝑦 ∈ 𝑋, 𝑝 ≥ 0 is a real number and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) 

= 0 ⇔ 𝑡 = 0 and ∅(𝑡)  >  0 for each 𝑡 > 0 .                                                                                              

(C3) one of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is closed subset of X,  

(C4) The pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  

(C5) The pairs (𝐴, 𝑆) satisfiies CLRA property or the pair (𝐵, 𝑇) satisfies CLRB property. 

Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point. 

Proof: If the pair 𝐵, 𝑇 satisfies CLRB property so there exists a sequence {𝑥𝑛} in 𝑋 such that  

𝑙𝑖𝑚𝑛𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑧 ∈ 𝐵𝑋. Sinch  𝑇(𝑋) ⊂ 𝐴(𝑋) so for each {𝑥𝑛} in 𝑋 there corresponds a 

sequence {𝑦𝑛} in 𝑋 such that 𝑇𝑥𝑛 = 𝐴𝑦𝑛. Therefore, 𝑙𝑖𝑚𝑛𝐴𝑦𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑧 ∈ 𝐵𝑋. Thus we 

have 𝑙𝑖𝑚𝑛𝐴𝑦𝑛 = 𝑙𝑖𝑚𝑛𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑧.   
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Now suppose that 𝐵𝑋 is a closed subset of 𝑋, there exists a point 𝑢 ∈ 𝑋 such that 𝐵𝑢 = 𝑧. 

Now we show that 𝑙𝑖𝑚𝑛𝑆𝑦𝑛 = 𝑧. Putting 𝑥 = 𝑦𝑛 and 𝑦 = 𝑥𝑛. We have  

𝑑3(𝑆𝑦𝑛, 𝑇𝑥𝑛) ≤  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑(𝐵𝑥𝑛, 𝑇𝑥𝑛)

+𝑑(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑
2(𝐵𝑥𝑛, 𝑇𝑥𝑛)

] ,

𝑑(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑(𝐴𝑦𝑛, 𝑇𝑥𝑛)𝑑(𝐵𝑥𝑛, 𝑆𝑦𝑛),

𝑑(𝐴𝑦𝑛, 𝑇𝑥𝑛)𝑑(𝐵𝑥𝑛, 𝑆𝑦𝑛)𝑑(𝐵𝑥𝑛, 𝑇𝑥𝑛)}
 

 

−  ∅{𝑚(𝐴𝑦𝑛, 𝐵𝑥𝑛)}         

𝑚(𝐴𝑦𝑛, 𝐵𝑥𝑛) = max

{
 

 
𝑑2(𝐴𝑦𝑛, 𝐵𝑥𝑛), 𝑑(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑(𝐵𝑥𝑛, 𝑇𝑥𝑛),

𝑑(𝐴𝑦𝑛, 𝑇𝑥𝑛)𝑑(𝐵𝑥𝑛, 𝑆𝑦𝑛),

1

2
[
𝑑(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑(𝐴𝑦𝑛, 𝑇𝑥𝑛)

+𝑑(𝐵𝑦, 𝑆𝑦𝑛)𝑑(𝐵𝑥𝑛, 𝑇𝑥𝑛)
]

}
 

 

               

𝑑3(𝑆𝑦𝑛, 𝑧) ≤  𝑝𝑚𝑎𝑥 {

1

2
[𝑑2(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑦𝑛)𝑑

2(𝑧, 𝑧)],

𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛),

𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)

} − ∅{𝑚(𝑧, 𝑧)}         

𝑚(𝑧, 𝑧) = max

{
 

 
𝑑2(𝑧, 𝑧), 𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧),

𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛),
1

2
[
𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)

+𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)
]
}
 

 

= 0 

𝑑3(𝑆𝑦𝑛, 𝑧) ≤   𝑝𝑚𝑎𝑥 {

1

2
[𝑑2(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑦𝑛)𝑑

2(𝑧, 𝑧)],

𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛),

𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)

} − ∅{𝑚(𝑧, 𝑧)}         

which implies that  𝑙𝑖𝑚𝑛𝑑(𝑆𝑦𝑛, 𝑧) = 0. Hence 𝑙𝑖𝑚𝑛𝐴𝑦𝑛 = 𝑙𝑖𝑚𝑛𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑆𝑦𝑛 =

𝑧 = 𝐵𝑢 for some u in X. From the proof of theorem 2.6 we can easily prove that z is a common 

fixed point of 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇. Also one can easily prove that the pair 𝐴, 𝑆 satisfies CLRA property. 

Similarly we can complete the proof for cases in which 𝐴𝑋 or 𝑇𝑋 or 𝑆𝑋 is a closed subset of 𝑋. 

This completes the proof.  

Now we prove the following theorem as an application of Theorem 4.3. 

Theorem 4.4 Let 𝑆,𝑇, 𝐴 and 𝐵 be four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying  (𝐶1), (𝐶3), (𝐶4), (𝐶5)  and  the following condition: 

                                                     ∫ φ(t) dt ≤ ∫ φ(t) dt
ℳ(𝓍,𝓎)

0

𝑑3(𝑆𝑥,𝑇𝑦)

0
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                             ℳ(𝓍,𝓎) =  𝑝𝑚𝑎𝑥

{
 

 
1

2
[
𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)

+𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑇𝑦)
] ,

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)}
 

 

− ∅{𝑚(𝐴𝑥, 𝐵𝑦)}      

                where      𝑚(𝐴𝑥, 𝐵𝑦) = max

{
 
 

 
 

𝑑2(𝐴𝑥, 𝐵𝑦),

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦),

𝑑(𝐴𝑥, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

1

2
[
𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)

+𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦)
]
}
 
 

 
 

,            

for all 𝑥, 𝑦 ∈ 𝑋 and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝑡) = 0 ⇔ 𝑡 = 0 and 

∅(𝑡) > 0  for each 𝑡 > 0.  Further, where φ ∶  R+  →  R+  is a Lebesgue - integrable over 

R+function which is summable on each compact subset of R+, non-negative, and such that for 

each ∈ > 0, ∫ φ(𝓉)d𝓉 >  0.
∈

0
 Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point. 

Proof. The proof of the theorem follows on the same lines of the proof of the Theorem 4.3. on 

setting φ (t) = 1. 

CONCLUSION 

In this paper, we  prove a common fixed point theorem for six self mapping using weakly 

compatible mapping in a metric space. At the last we give corollaries and example in support of 

our theorem. 
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