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Abstract. In this paper, we will find the solution to the quadratic fractional integral equation involving the Q

function which is the generalization of Mittag-Leffler function with the help of forming the sequence of solutions

converging to the solution of the fractional integral equation involving the Q function. We will study in this paper

the existence and convergence of a nonlinear quadratic fractional integral equation with the new Q function which

is the generalization of Mittag-Leffler function, on a closed and bounded interval of the real line with the help of

some conditions.
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1. INTRODUCTION

Linear and nonlinear integral equations form an essential class of problems in mathematics.

The theory of integral operators and integral equations is an imperative part of nonlinear analy-

sis. It is initiated by the fact that this theory is often applicable in other branches of mathematics

∗Corresponding author

E-mail address: brsontakke@rediffmail.com

Received April 26, 2021
6090



APPROXIMATIONS TO THE SOLUTION OF QUADRATIC FRACTIONAL INTEGRAL EQUATION 6091

and some equations define mathematical models in physics, engineering or biology as well in

describing problems linked with real world. Many authors have demonstrated applications of

fractional calculus in the nonlinear oscillation of earthquakes [13], fluid-dynamic traffic model

[14], to model frequency dependent damping behavior of many viscoelastic materials [15, 16],

continuum and statistical mechanics [17], colored noise [18], solid mechanics [19], economics

[20], bioengineering [21, 22, 23], anomalous transport [24], and dynamics of interfaces be-

tween nanoparticles and substrates[25]. There are also such equations whose interest lies in

other branch of pure mathematics. Integral equations of fractional order create an interesting

and important branch of the theory of integral equations. The theory of such integral equations

is developed intensively in recent years together with the theory of differential equations of frac-

tional order ([1, 2, 3, 4, 5, 6, 7]). On the other hand the theory of quadratic integral equations

is also intensively studied and finds numerous applications in describing real world problems

([8, 9, 10, 11]). Let us mention that this theory was initiated by considering a quadratic inte-

gral equation of Chandrasekhar type ([2, 11, 12]).In this paper we prove the existence as well

as approximations of the solutions of a certain generalized quadratic integral equation via an

algorithm based on successive approximations under weak partial Lipschitz and compactness

type conditions.

Given a closed and bounded interval J = [0,T ] of the real line R for some T > 0, we consider

the quadratic fractional integral equation (in short QFIE)

(1.1) x(t) = x(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q)+

1
Γ(q)

∫ t

0
(t− s)(q−1)Qγ,q,r

α,β ,δ (−a(t− s)q) f (s,x(s))ds

where f : J×R→ R and q : J → R are continuous functions, 1 ≤ q < 2 and Γ is the Euler

gamma function, and Qγ,q,r
α,β ,δ (x) is generalized mittag leffler function.

By a solution of the QFIE (1.1) we mean a function x ∈ C(J,R) that satisfies the equation

(1.1) on J, where C(J,R) is the space of continuous real-valued functions defined on J.

2. AUXILIARY RESULTS

Unless otherwise mentioned, throughout this paper that follows, let E denote a partially or-

dered real normed linear space with an order relation � and the norm ‖ · ‖. It is known that E

is regular if {xn}n∈N is a nondecreasing (resp. nonincreasing) sequence in E such that xn→ x∗
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as n→ ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. Clearly, the partially ordered Banach

space C(J,R) is regular and the conditions guaranteeing the regularity of any partially ordered

normed linear space E may be found in Heikkilä and Lakshmikantham [39] and the references

therein.

In this section,we present some basic definitions and preliminaries which are useful in further

discussion.

Definition 2.1. (Mittag-Leffler Function) [28] The Mittag - Leffler function of one parameter is

denoted by Eα(z) and defined as,

(2.1) Eα(z) =
∞

∑
k=0

1
Γ(αk+1)

zk

where z,α ∈C, Re(α)> 0.

If we put α = 1 , then the above equation becomes

(2.2) E1(z) =
∞

∑
k=0

zk

Γ(k+1)
=

∞

∑
k=0

zk

k!
= ez.

Definition 2.2. (Mittag-Leffler Function for two parameters) The generalization of Eα(z) was

studied by Wiman (1905) [33] , Agarwal [26] and Humbert and Agarwal [29] defined the func-

tion as ,

(2.3) Eα,β (z) =
∞

∑
k=0

1
Γ(αk+β )

zk

where z,α,β ∈C, Re(α)> 0,Re(β )> 0,

In 1971,The more generalized function is introduced by Prabhakar [38] as

(2.4) Eγ

α,β ((z) =
∞

∑
k=0

(γ)kzk

Γ(αk+β )
.

where z,α,β ,γ ∈C, Re(α)> 0,Re(β )> 0,Re(γ)> 0,

where γ 6= 0,γ)k = γ(γ +1)(γ +2)...(γ + k−1) is the Pochhammer symbol [31], and

(γ)k =
Γ(γ+k)

Γ(γ)
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In 2007,Shulka and Prajapati [31] introduced the function which is defined as,

(2.5) Eγ,q
α,β ((z) =

∞

∑
k=0

(γ)qkzk

k!Γ(αk+β )
.

where z,α,β ,γ ∈C, min{Re(α),Re(β ),Re(γ)}> 0, and q ∈ (0,1)∪N

In 2012,further generalization of Mittag - Leffler function was defined by Salim [32] and

Chauhan [27] as,

(2.6) Eγ,δ ,q
α,β ((z) =

∞

∑
k=0

(γ)qkzk

(δ )(qk)Γ(αk+β )
.

where z,α,β ,γ ∈C, min{Re(α),Re(β ),Re(γ)}> 0, and q ∈ (0,1)∪N

(γ)qk =
Γ(γ+qk)

Γ(γ) and (δ )qk =
Γ(δ+qk)

Γ(δ )

denote the generalized Pochhammer symbol [31] ,

Definition 2.3. [30] The generalization of Mittag - Leffler function denoted by Qγ,q,r
α,β ,δ (x) and

defined by

Qγ,q,r
α,β ,δ (x) = Qγ,q,r

α,β ,δ (a1,a2, ...,ar,b1,b2, ...,br,x)

=
∞

∑
s=0

Πr
n=1β (bn,s)(γ)qs

Πr
n=1β (an,s)(δ )qsΓ(αs+β )

xs,
(2.7)

where x,α,β ,γ,δ ,ai,bi ∈C,

min{Re(α),Re(β ),Re(γ)}> 0, and q ∈ (0,1)∪N,

(γ)qk =
Γ(γ+qk)

Γ(γ) and (δ )qk =
Γ(δ+qk)

Γ(δ )

Definition 2.4. A mapping T : E → E is called isotone or nondecreasing if it preserves the

order relation �, that is, if x� y implies T x�T y for all x,y ∈ E.

Definition 2.5 ( [36]). A mapping T : E→ E is called partially continuous at a point a ∈ E if

for ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε whenever x is comparable to a and

‖x− a‖ < δ . T called partially continuous on E if it is partially continuous at every point

of it. It is clear that if T is partially continuous on E, then it is continuous on every chain C

contained in E.
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Definition 2.6. A mapping T : E→ E is called partially bounded if T (C) is bounded for every

chain C in E. T is called uniformly partially bounded if all chains T (C) in E are bounded by

a unique constant. T is called bounded if T (E) is a bounded subset of E.

Definition 2.7. A mapping T : E→ E is called partially compact if T (C) is a relatively com-

pact subset of E for all totally ordered sets or chains C in E. T is called uniformly partially

compact if T (C) is a uniformly partially bounded and partially compact on E. T is called

partially totally bounded if for any totally ordered and bounded subset C of E, T (C) is a rela-

tively compact subset of E. If T is partially continuous and partially totally bounded, then it is

called partially completely continuous on E.

Definition 2.8 ( [36]). The order relation � and the metric d on a non-empty set E are said to

be compatible if {xn}n∈N is a monotone, that is, monotone nondecreasing or monotone nonin-

creasing sequence in E and if a subsequence {xnk}n∈N of {xn}n∈N converges to x∗ implies that

the original sequence {xn}n∈N converges to x∗. Similarly, given a partially ordered normed

linear space (E,�,‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be compatible if �

and the metric d defined through the norm ‖ · ‖ are compatible.

Definition 2.9 ( [34]). A upper semi-continuous and monotone nondecreasing function ψ :

R+→ R+ is called a D-function provided ψ(r) = 0 iff r = 0. Let (E,�,‖ · ‖) be a partially

ordered normed linear space. A mapping T : E → E is called partially nonlinear D-Lipschitz

if there exists a D-function ψ : R+→ R+ such that

(2.8) ‖T x−T y‖ ≤ ψ(‖x− y‖)

for all comparable elements x,y ∈ E. If ψ(r) = k r, k > 0, then T is called a partially Lipschitz

with a Lipschitz constant k.

Let (E,�,‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{

x ∈ E | x� θ , where θ is the zero element of E
}

and

(2.9) K = {E+ ⊂ E | uv ∈ E+ for all u,v ∈ E+}.
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The elements of K are called the positive vectors of the normed linear algebra E. The

following lemma follows immediately from the definition of the set K and which is often

times used in the applications of hybrid fixed point theory in Banach algebras.

Lemma 2.10 ([35]). If u1,u2,v1,v2 ∈K are such that u1 � v1 and u2 � v2, then u1u2 � v1v2.

Definition 2.11. An operator T : E→ E is said to be positive if the range R(T ) of T is such

that R(T )⊆K .

Theorem 2.12 ( [37]). Let
(
E,�,‖ · ‖

)
be a regular partially ordered complete normed linear

algebra such that the order relation � and the norm ‖ · ‖ in E are compatible in every compact

chain of E. Let A ,B : E→K be two nondecreasing operators such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-functions ψA ,

(b) B is partially continuous and uniformly partially compact, and

(c) MψA (r)< r, r > 0, where M = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ X such that x0 �A x0 +Bx0 or x0 �A x0 +Bx0.

Then the operator equation

(2.10) A x+Bx = x

has a solution x∗ in E and the sequence {xn} of successive iterations defined by xn+1 = A xn +

Bxn, n = 0,1, . . . , converges monotonically to x∗.

3. MAIN RESULT

The QFIE (1.1) is considered in the function space C(J,R) of continuous real-valued func-

tions defined on J. We define a norm ‖ · ‖ and the order relation ≤ in C(J,R) by

(3.1) ‖x‖= sup
t∈J
|x(t)|

and

(3.2) x≤ y ⇐⇒ x(t)≤ y(t)
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for all t ∈ J respectively. Clearly, C(J,R) is a Banach algebra with respect to above supremum

norm and is also partially ordered w.r.t. the above partially order relation ≤. The following

lemma in this connection follows by an application of Arzelá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤,‖ ·‖

)
be a partially ordered Banach space with the norm ‖ ·‖ and

the order relation ≤ defined by (3.1) and (3.2) respectively. Then ‖ · ‖ and ≤ are compatible in

every partially compact subset of C(J,R).

Definition 3.2. A function v ∈ C(J,R) is said to be a lower solution of the QFIE (1.1) if it

satisfies

v(t)≤ v(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q)+

1
Γ(q)

∫ t

0
(t− s)(q−1)Qγ,q,r

α,β ,δ (−a(t− s)q) f (s,v(s))ds

for all t ∈ J. Similarly, a function u ∈C(J,R) is said to be an upper solution of the QFIE (1.1)

if it satisfies the above inequalities with reverse sign.

We consider the following set of assumptions in what follows:

(A1) The functions f : J×R→ R+,q : J→ R+ where q is continuous function.

(A2) There exists constant M f ,M > 0 such that 0 ≤ f (t,x) ≤ M f and

x(t)Qγ,q,r
α,β ,δ (−a(t− s)q)< M for all t ∈ J and x ∈ R.

(A3) There exists a D-function ψ f such that

0≤ f (t,x)− f (t,y)≤ ψ f (x− y)

for all t ∈ J and x,y ∈ R,x≤ y.

(A4) f (t,x) is nondecreasing in x for all t ∈ J.

(A5) The QFIE (1.1) has a lower solution v ∈C(J,R).

Theorem 3.3. Assume that hypotheses (A1)-(A5) holds

then the QFIE (1.1) has a solution x∗ defined on J and the sequence {xn}n∈N∪{0} of successive

approximations defined by

(3.3)

xn+1(t) = xn(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q)+

1
Γ(q)

∫ t

0
(t− s)(q−1)Qγ,q,r

α,β ,δ (−a(t− s)q) f (s,xn(s))ds
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for all t ∈ J, where x0 = v, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in E pos-

sesses the compatibility property with respect to the norm ‖ · ‖ and the order relation ≤ in E.

Define two operators A and B on E by

(3.4) A x(t) = x(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q), t ∈ J,

(3.5) Bx(t) =
1

Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t− s)q) f (s,x(s))ds, t ∈ J,

From the continuity of the integral and the hypotheses (A1)-(A5), it follows that A and B

define the maps A ,B : E→K . Now by definitions of the operators A and B, the QFIE (1.1)

is equivalent to the operator equation

(3.6) A x(t)+Bx(t) = x(t), t ∈ J.

We shall show that the operators A and B satisfy all the conditions of Theorem 2.12. This

is achieved in the series of following steps.

Step I: A and B are nondecreasing on E.

Let x,y ∈ E be such that x≤ y. Then by hypothesis (A3)and (A4), we obtain

A x(t) = x(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q)≤ y(tq−1)Qγ,q,r

α,β ,δ (−a(t− s)q) = A y(t),

and

Bx(t) =
1

Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t− s)q) f (s,x(s))ds, t ∈ J,

≤ 1
Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t− s)q) f (s,y(s))ds, t ∈ J,

= By(t)

for all t ∈ J. This shows that A and B are nondecreasing operators on E into E. Thus, A

and B are nondecreasing positive operators on E into itself.

Step II: A is partially bounded and partially D-Lipschitz on E.
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Let x ∈ E be arbitrary. Then by (A2),

|A x(t)| ≤
∣∣xn(tq−1)Qγ,q,r

α,β ,δ (−a(t− s)q)
∣∣≤M,

for all t ∈ J. Taking supremum over t, we obtain ‖A x‖ ≤M and so, A is bounded. This further

implies that A is partially bounded on E.

Now, let x,y ∈ E be such that x≤ y. Then, by hypothesis,

|A x(t)−A y(t)| =
∣∣x(tq−1)Qγ,q,r

α,β ,δ (−a(t− s)q)− y(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q)

∣∣
≤ Qγ,q,r

α,β ,δ (−a(t− s)q|x(tq−1)− y(tq−1)|

≤ M(|x− y|),

for all t ∈ J. Taking supremum over t, we obtain

‖A x−A y‖ ≤M(‖x− y‖)

for all x,y ∈ E with x ≤ y. Hence A is partially nonlinear D-Lipschitz operators on E which

further implies that it is also a partially continuous on E into itself.

Step III: B is a partially continuous operator on E.

Let {xn}n∈N be a sequence in a chain C of E such that xn → x for all n ∈ N. Then, by

dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

1
Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t− s)q) f (s,xn(s))ds,

=
1

Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t− s)q)
[

lim
n→∞

f (s,xn(s))
]

ds

=
1

Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t− s)q) f (s,x(s))ds

= Bx(t),

for all t ∈ J. This shows that Bxn converges monotonically to Bx pointwise on J.

Next, we will show that {Bxn}n∈N is an equicontinuous sequence of functions in E. Let

t1, t2 ∈ J with t1 < t2. Then∣∣∣Bxn(t2)−Bxn(t1)
∣∣∣
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≤
∣∣∣∣ 1
Γ(q)

∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t2− s)q) f (s,xn(s))ds

− 1
Γ(q)

∫ t1

0
(t1− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds
∣∣∣∣

≤ 1
Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t2− s)q) f (s,xn(s))ds

−
∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds

−
∫ t1

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t1

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds

−
∫ t1

0
(t1− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds
∣∣∣∣

≤ 1
Γ(q)

∫ t2

0
(t2− s)q−1

∣∣∣Qγ,q,r
α,β ,δ ((t2− s)q)−Qγ,q,r

α,β ,δ ((t1− s)q)
∣∣∣ | f (s,xn(s))|ds

+
1

Γ(q)

∣∣∣∣∫ t2

t1
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,xn(s))ds
∣∣∣∣

+
1

Γ(q)

∫ t1

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣Qγ,q,r
α,β ,δ ((t1− s)q) | f (s,xn(s))|ds

≤ 1
Γ(q)

∫ T

0
(t2− s)q−1

∣∣∣Qγ,q,r
α,β ,δ ((t2− s)q)−Qγ,q,r

α,β ,δ ((t1− s)q)
∣∣∣M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)α−1∣∣Qγ,q,r
α,β ,δ ((t1− s)q)M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣Qγ,q,r
α,β ,δ ((t1− s)q)M f ds

≤
M f

Γ(q)

(∫ T

0

∣∣(t2− s)q−1∣∣2 ds
)1/2(∫ T

0

∣∣∣Qγ,q,r
α,β ,δ ((t2− s)q)−Qγ,q,r

α,β ,δ ((t1− s)q)
∣∣∣2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣2 ds
)1/2(∫ T

0

∣∣∣Qγ,q,r
α,β ,δ ((t1− s)q)

∣∣∣2 ds
)1/2 M f

Γ(q)

(3.7)
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Since the functions Qγ,q,r
α,β ,δ , q are continuous on compact interval J and interval is continuous

on compact set J×J, they are uniformly continuous there. Therefore, from the above inequality

(3.7) it follows that

|Bxn(t2)−Bxn(t1)| → 0 as n→ ∞

uniformly for all n ∈ N. This shows that the convergence Bxn→Bx is uniform and hence B

is partially continuous on E.

Step IV: B is uniformly partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded and equicon-

tinuous set in E. First we show that B(C) is uniformly bounded. Let y ∈B(C) be any element.

Then there is an element x ∈C be such that y = Bx. Now, by hypothesis (A1),

|y(t)| ≤
∣∣∣∣ 1
Γ(q)

∫ t

0
(t− s)q−1Qγ,q,r

α,β ,δ ((t2− s)q) f (s,x(s))ds
∣∣∣∣

≤ r

for all t ∈ J. Taking the supremum over t, we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all y ∈B(C). Hence,

B(C) is a uniformly bounded subset of E. Moreover, ‖B(C)‖ ≤ r for all chains C in E. Hence,

B is a uniformly partially bounded operator on E.

Next, we will show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J with t1 < t2. Then,

for any y ∈B(C), one has∣∣∣Bx(t2)−Bx(t1)
∣∣∣

≤
∣∣∣∣ 1
Γ(q)

∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t2− s)q) f (s,x(s))ds

− 1
Γ(q)

∫ t1

0
(t1− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds
∣∣∣∣

≤ 1
Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t2− s)q) f (s,x(s))ds

−
∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds
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−
∫ t1

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t1

0
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds

−
∫ t1

0
(t1− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds
∣∣∣∣

≤ 1
Γ(q)

∫ t2

0
(t2− s)q−1

∣∣∣Qγ,q,r
α,β ,δ ((t2− s)q)−Qγ,q,r

α,β ,δ ((t1− s)q)
∣∣∣ | f (s,x(s))|ds

+
1

Γ(q)

∣∣∣∣∫ t2

t1
(t2− s)q−1Qγ,q,r

α,β ,δ ((t1− s)q) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∫ t1

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣Qγ,q,r
α,β ,δ ((t1− s)q) | f (s,x(s))|ds

≤ 1
Γ(q)

∫ T

0
(t2− s)q−1

∣∣∣Qγ,q,r
α,β ,δ ((t2− s)q)−Qγ,q,r

α,β ,δ ((t1− s)q)
∣∣∣M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)α−1∣∣Qγ,q,r
α,β ,δ ((t1− s)q)M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣Qγ,q,r
α,β ,δ ((t1− s)q)M f ds

≤
M f

Γ(q)

(∫ T

0

∣∣(t2− s)q−1∣∣2 ds
)1/2(∫ T

0

∣∣∣Qγ,q,r
α,β ,δ ((t2− s)q)−Qγ,q,r

α,β ,δ ((t1− s)q)
∣∣∣2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣2 ds
)1/2(∫ T

0

∣∣∣Qγ,q,r
α,β ,δ ((t1− s)q)

∣∣∣2 ds
)1/2 M f

Γ(q)

−→ 0 as t1→ t2,

uniformly for all y ∈B(C). Hence B(C) is an equicontinuous subset of E. Now, B(C) is a

uniformly bounded and equicontinuous set of functions in E, so it is compact. Consequently,

B is a uniformly partially compact operator on E into itself.

Step V: v satisfies the operator inequality v≤A v +Bv.

By hypothesis (A5), the QFIE (1.1) has a lower solution v defined on J. Then, we have

(3.8)

v(t)≤ v(tq−1)Qγ,q,r
α,β ,δ (−a(t− s)q)+

1
Γ(q)

∫ t

0
(t− s)(q−1)Qγ,q,r

α,β ,δ (−a(t− s)q) f (s,v(s))ds
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for all t ∈ J. From the definitions of the operators A , B and C it follows that v(t)≤A v(t) +

Bv(t) for all t ∈ J. Hence v≤A v +Bv.

Step VI: The D-functions ψA satisfy the growth condition MψA (r)< r, for r > 0.

Finally, the D-function ψA of the operator A satisfy the inequality given in hypothesis (d)

of Theorem 2.12, viz.,

MψA (r)< r

for all r > 0.

Thus A and B satisfy all the conditions of Theorem 2.12 and we conclude that the operator

equation A x +Bx = x has a solution. Consequently the QFIE (1.1) has a solution x∗ defined on

J. Furthermore, the sequence {xn}n∈N of successive approximations defined by (3.3) converges

monotonically to x∗. This completes the proof. �
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