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Abstract. If p(z) is a polynomial of degree n and p(z) 6= 0 in |z|< 1, it was proved by Hans and Lal [Anal. Math.

40, 105-115(2014)] that for any β ∈ C with |β | ≤ 1,1≤ s≤ n,

∣∣∣zs p(s)(z)+β
ns

2
p(z)

∣∣∣≤ ns

2

{(∣∣∣∣1+ β

2s

∣∣∣∣+ ∣∣∣∣ β

2s

∣∣∣∣)‖p‖∞−
(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β

2s

∣∣∣∣)m
}
,

where ns = n(n−1)...(n− s+1),‖p‖∞ = max
|z|=1
|p(z)| and m = min

|z|=1
|p(z)|,

In this paper, we prove an inequality which gives an improved and generalized extension of the above inequality

into Lγ norm.

Keywords: Lγ norm; inequality; polynomial; zero.
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1. INTRODUCTION

Let Pn be the class of polynomials of degree n. For p ∈ Pn, we denote its sth derivative by

p(s)(z).
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Next for p ∈ Pn, we define

‖p‖γ =

{
1

2π

∫ 2π

0

∣∣∣p(eiθ )
∣∣∣γ dθ

} 1
γ

, 0 < γ < ∞.(1)

If we let γ → ∞ in the above equality and make use of the well-known fact from analysis [12]

that

lim
γ→∞

{
1

2π

∫ 2π

0
|p(eiθ )|γdθ

} 1
γ

= max
|z|=1
|p(z)|,

we can suitably denote

‖p‖∞ = max
|z|=1
|p(z)|.

Similarly, one can define ‖p‖0 = exp
{

1
2π

∫ 2π

0 log |p(eiθ )|dθ

}
and show that lim

γ→0+
‖p‖γ = ‖p‖0.

It would be of further interest that by taking limits as lim
γ→0+

that the stated result holding for

γ > 0, holds for γ = 0 as well.

A famous result due to Bernstein [9](also see [13]) states that if p(z) is a polynomial of degree

n, then

‖p′‖∞ ≤ n‖p‖∞.(2)

Inequality (2) can be obtained by letting γ → ∞ in the inequality

(3) ‖p′‖γ ≤ n‖p‖γ , γ > 0.

Inequality (3) for γ ≥ 1 is due to Zygmund [15]. Arestov [1] proved that (3) remains valid for

0 < γ < 1 as well.

If we restrict ourselves to the class of polynomials having no zeros in |z|< 1, then inequality

(2) and (3) can be respectively improved by

‖p′‖∞ ≤
n
2
‖p‖∞(4)

and

‖p′‖γ ≤
n

‖1+ z‖γ

‖p‖γ ,γ > 0.(5)

Inequality (4) was conjectured by Erdös and later verified by Lax [8] , whereas, inequality (5)

was proved by de-Bruijn [3] for γ ≥ 1. Rahman and Schmeisser [11] showed that (5) remains

true for 0 < γ < 1.
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As an extension of (4), Jain [6] proved that if p ∈ Pn and p(z) 6= 0 in |z|< 1, then∣∣∣∣zp′(z)+
nβ

2
p(z)

∣∣∣∣≤ n
2

(∣∣∣∣1+ β

2

∣∣∣∣+ ∣∣∣∣β2
∣∣∣∣)‖p‖∞,(6)

for |z|= 1 and for every β ∈ C with |β | ≤ 1.

Further, Jain [7] improved (6) by obtaining under the same hypothesis that

(7)
∣∣∣∣zp′(z)+

nβ

2
p(z)

∣∣∣∣≤ n
2

{(∣∣∣∣1+ β

2

∣∣∣∣+ ∣∣∣∣β2
∣∣∣∣)‖p‖∞−

(∣∣∣∣1+ β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣)m

}
,

for |z|= 1 and for every β ∈ C with |β | ≤ 1 and m = min
|z|=1
|p(z)|.

Further, Hans and Lal [5] generalized (6) and (7) for the sth derivative of polynomials under

the same hypothesis that∣∣∣zs p(s)(z)+β
ns

2
p(z)

∣∣∣≤ ns

2

(∣∣∣∣1+ β

2s

∣∣∣∣+ ∣∣∣∣ β

2s

∣∣∣∣)‖p‖∞(8)

and ∣∣∣zs p(s)(z)+β
ns

2
p(z)

∣∣∣≤ ns

2

{(∣∣∣∣1+ β

2s

∣∣∣∣+ ∣∣∣∣ β

2s

∣∣∣∣)‖p‖∞−
(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β

2s

∣∣∣∣)m
}

(9)

for |z| = 1 and for every β ∈ C with |β | ≤ 1, 1 ≤ s ≤ n , m = min
|z|=1
|p(z)| and where here and

throughout this paper ns = n(n−1)...(n− s+1).

Recently, Gulzar [4] obtained an Lγ analogue of (8) by proving the following result.

Theorem 1. If p ∈ Pn and p(z) 6= 0 in |z|< 1, then for every β ∈C with |β | ≤ 1, 1≤ s≤ n and

0≤ γ ≤ ∞,
2π∫
0

∣∣∣eisθ p(s)(e
iθ )+β

ns

2s p(eiθ )
∣∣∣γ dθ


1
γ

≤nsEγ


2π∫
0

∣∣∣∣(1+
β

2s

)
eiα +

β

2s

∣∣∣∣γ


1
γ

×


2π∫
0

∣∣∣p(eiθ )
∣∣∣γ dθ


1
γ

,(10)

where

Eγ =


2π∫
0

∣∣∣1+ eiθ
∣∣∣γ

− 1

γ

.(11)

The result is best possible and equality in (10) holds for p(z) = azn +b with |a|= |b|= 1.
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2. LEMMAS

For the proofs of the theorem, we require the following lemmas.

Lemma 1. If p(z) is a polynomial of degree n, having all its zeros in the disk |z| ≤ k,k ≤ 1 and

1≤ s≤ n, then for |z|= 1

|zs p(s)(z)| ≥ ns

(1+ k)s |p(z)|,(12)

where ns = n(n−1)...(n− s+1) and for every β ∈ C with |β | ≤ 1, the zeros of polynomial

zs p(s)(z)+β
ns

(1+ k)s p(z), lie in |z| ≤ 1.(13)

The above lemma was obtained by Zireh [14] and (13) is a consequence of Lemma 3.

Lemma 2. Let F(z) be a polynomial of degree n, having all its zeros in the disk |z| ≤ k,k ≤ 1,

and p(z) a polynomial of degree not exceeding that of F(z). If |p(z)| ≤ |F(z)| for |z|= k,k≤ 1,

then for any β ∈ C with |β | ≤ 1 and |z|= 1,1≤ s≤ n,∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsF(s)(z)+β

ns

(1+ k)s F(z)
∣∣∣∣ .(14)

This lemma was proved by Zireh [14].

Lemma 3. Let F ∈ Pn and let f be a polynomial of degree at most n, such that | f (z)| ≤ |F(z)|

for |z| = 1. If F(z) 6= 0 for |z| < 1 (respectively |z| > 1) and for every z ∈ C and every real α ,

f (z) 6= eiαF(z), then

(1) | f (z)|< |F(z)| for |z|< 1 (respectively |z|> 1),

(2) F(z)+β f (z) 6= 0 for |z|< 1 (respectively |z|> 1) and β ∈ C with |β | ≤ 1 and

(3) f (z)+λF(z) 6= 0 for |z|< 1 (respectively |z|> 1) and λ ∈ C with |λ | ≥ 1.

The above lemma is due to Gulzar [4].

Lemma 4. If p(z) is a polynomial of degree n and p(z) 6= 0 in |z| < k,k ≤ 1, then for every

β ∈ C with |β | ≤ 1,1≤ s≤ n and for |z|= 1,∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣

−ns

{
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣}m,(15)
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where Q(z) =
( z

k

)n
p
(

k2

z

)
and m = min

|z|=k
|p(z)|.

Proof. Let m = min
|z|=k
|p(z)|, then m ≤ |p(z)| for |z| ≤ k. Now for λ with |λ | < 1, we have for

|z|= k

|λm|< m≤ |p(z)|.

Hence by Rouche’s theorem the polynomial G(z) = p(z)−λm has no zero in |z|< k. Therefore

the polynomial

H(z) =
( z

k

)n
G
(

k2

z

)
= Q(z)−λm

( z
k

)n

will have all its zeros in |z| ≤ k, where Q(z) =
( z

k

)n
p
(

k2

z

)
. Also |G(z)|= |H(z)| for |z|= k.

On applying Lemma 2 to the polynomial H(z) for F(z) of degree n, we have for |β | ≤ 1 and

|z|= 1 ∣∣∣∣zsG(s)(z)+β
ns

(1+ k)s G(z)
∣∣∣∣≤ ∣∣∣∣zsH(s)(z)+β

ns

(1+ k)s H(z)
∣∣∣∣

i.e, ∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s (p(z)−λm)

∣∣∣∣≤ ∣∣∣zsQ(s)(z)−nsλm
( z

k

)n

+β
ns

(1+ k)s

(
Q(z)−λm

( z
k

)n)∣∣∣∣ .
This can be rewritten as∣∣∣∣zs p(s)(z)+β

ns

(1+ k)s p(z)−β
ns

(1+ k)s λm
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)

−nsλm
( z

k

)n
(

1+
β

(1+ k)s

)∣∣∣∣ .(16)

Since all the zeros of Q(z) lie in |z| ≤ k ≤ 1, we have |p(z)| = |Q(z)| for |z| = k. On applying

Lemma 11 to the polynomial Q(z), we have for |z|= 1

|zsQ(s)(z)+β
ns

(1+ k)s Q(z)| ≥ nskn|1+ β

(1+ k)s |m,
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where |β | ≤ 1. Then for an appropriate choice of the argument of λ , we have∣∣∣∣zsQ(s)(z)+β
ns

(1+ k)s Q(z)−nsλm
( z

k

)n
(

1+
β

(1+ k)s

)∣∣∣∣
=

∣∣∣∣zsQ(s)(z)+β
ns

(1+ k)s Q(z)
∣∣∣∣−|λ |nsk−n

∣∣∣∣1+ β

(1+ k)s

∣∣∣∣m.(17)

By combining (16) and (17), we get for |z|= 1 and |β | ≤ 1∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣−ns

∣∣∣∣ β

(1+ k)s λm
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣

−nsk−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣ |λ |m.

Equivalently,∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣

−ns

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣) |λ |m.

As |λ | → 1, we have∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣

−ns

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)m.

This completes the proof of lemma 4. �

Lemma 5. If p(z) is a polynomial of degree n, having no zeros in |z| ≤ k,k ≤ 1, then for every

β ∈ C with |β | ≤ 1,1≤ s≤ n and |z| ≥ 1,∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣ ,(18)

where Q(z) =
( z

k

)n
p
(

k2

z

)
.

Proof. Since p(z) has no zeros in |z| ≤ k. Correspondingly the polynomial Q(z) = ( z
k)

n p(k2

z )

has all its zeros in |z| < k and |p(z)| = |Q(z)| for |z| = k. Therefore, by Lemma 2, for |β | ≤ 1

and |z|= 1, we have the desired result. �
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Lemma 6. If p ∈ Pn and p(z) does not vanish in |z| ≤ k,k ≤ 1 and Q(z) =
( z

k

)n
p
(

k2

z

)
, then

for every β ∈ C with β ≤ 1,1≤ s≤ n and α real,(
zs p(s)(z)+β

ns

(1+ k)s p(z)
)

eiα +
zn

kn
M
(

k2

z

)
6= 0

for |z|< 1 (respectively |z| ≤ 1), where M(z) = zsQ(s)(z)+β
ns

(1+ k)s Q(z).

Proof. By hypothesis, p(z) =
n
∑
j=0

a jz j does not vanish in |z|< k,k≤ 1. Therefore, by Lemma 5

for every β ∈ C with |β | ≤ 1 and |z|= 1, we have,∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣

= |M(z)|

=

∣∣∣∣∣ zn

kn M
(

k2

z

)∣∣∣∣∣ .
Since p(0) 6= 0, then deg(Q(z)) = n. Moreover, Q(z) 6= 0 for |z| ≥ k and then by (13) of Lemma

1 implies that |M(z)| 6= 0 for |z|> 1. Therefore
zn

kn M
(

k2

z

)
6= 0 for |z|< 1. Then, by Lemma 3,

for |z|< 1, (
zs p(s)(z)+β

ns

(1+ k)s p(z)
)

eiα +
zn

kn M
(

k2

z

)
6= 0.

If p(z) 6= 0 for |z| ≤ 1, then we have again the above result for |z|< 1.

Now, for |z| = 1, we observe that in this case there is some r > 1 such that p(rz) 6= 0 for

|z| < 1. Thus, if Q1(z) = zn p
(

r
z

)
and M1(z) = zsQ(s)

1 (z)+β
ns

(1+ k)s Q1(z), then we have, for

|z|< 1, (
zsrs p(s)(rz)+β

ns

(1+ k)s p(rz)
)

eiα + znM1

(
1
z

)
6= 0.

For z =
eiθ

r
, |z|= 1

r
< 1, we obtain(

eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

)
eiα +

(
einθ

rn

)
M1(reiθ ) 6= 0 for 0≤ θ < 2π

or (
zs p(s)(z)+β

ns

(1+ k)s p(z)
)

eiα +

(
zn

rn

)
M1

(
r
z

)
6= 0 for |z|= 1.
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Also, a short calculation shows that(
zn

rn

)
M1

(
r
z

)
=

(
zn

kn

)
M
(

k2

z

)
for any z

and so (
zs p(s)(z)+β

ns

(1+ k)s p(z)
)

eiα +

(
zn

kn

)
M
(

k2

z

)
6= 0 for |z|= 1.

This completes the proof of Lemma 6. �

Next we describe a result of Arestov [1].

For γ = (γ0,γ1, ...,γn) ∈ Cn+1 and p(z) =
n

∑
j=0

a jz j, we define

Cγ p(z) =
n

∑
j=0

γ ja jz j.

The operator Cγ is said to be admissible if it preserves one of the following properties:

(1) p(z) has all its zeros in z ∈ C : |z| ≤ 1,

(2) p(z) has all its zeros in z ∈ C : |z| ≥ 1.

Lemma 7. Let φ(x) = ψ(logx) where ψ is a convex non-decreasing function on R and p(z) is

a polynomial of degree n. Then, for each admissible operator Cγ ,

2π∫
0

φ

(∣∣∣Cγ p(eiθ )
∣∣∣)dθ ≤

2π∫
0

φ

(
Cγ |p(eiθ )|

)
dθ ,

where Cγ = max(|γ0|, |γn|).

In particular, Lemma 7 applies with φ : x→ xγ for every γ ∈ (0,∞) and with φ : x→ logx as

well. Therefore, we have, for 0≤ γ < ∞,


2π∫
0

∣∣∣Cγ p(eiθ )
∣∣∣γ dθ


1
γ

≤Cγ


2π∫
0

∣∣∣p(eiθ )
∣∣∣γ dθ


1
γ

.

The above lemma is due to Gulzar [4].
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Lemma 8. If p ∈ Pn and p(z) has no zeros in |z| ≤ k,k≤ 1 and Q(z) =
( z

k

)n
p
(

k2

z

)
, then, for

every β ∈ C with |β | ≤ 1,α real, 1≤ s≤ n and γ > 0,

2π∫
0

∣∣∣∣(eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

)
eiα + einθ M(eiθ )

∣∣∣∣γ dθ

≤ nγ
s

∣∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣∣
γ 2π∫

0

∣∣∣p(eiθ )
∣∣∣γ dθ ,(19)

where M(z) = zsQ(s)(z)+β
ns

(1+ k)s Q(z).

Proof. Since p(z) =
n

∑
j=0

a jz j does not vanish in |z| ≤ k,k ≤ 1, therefore, by Lemma 6, the

polynomial

Cγ p(z) =
(

zs p(s)(z)+β
ns

(1+ k)s p(z)
)

eiα +
zn

kn M
(

k2

z

)
= ns

{
k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

}
anzn

+ ...+ns

{
k−n

(
1+

β

(1+ k)s

)
+

β

(1+ k)s eiα

}
a0

does not vanish in |z|< 1 for every β ∈C with |β | ≤ 1 and α real. Therefore, Cγ is an admissible

operator. Applying Lemma 7, the desired result follows immediately for γ > 0. This completes

the proof. �

Lemma 9. If A,B,C are non-negative real numbers such that B+C ≤ A, then for every real

number α , ∣∣(A−C)+ eiα(B+C)
∣∣≤ ∣∣A+ eiαB

∣∣ .(20)

The above lemma was proved by Aziz and Shah [2].

Lemma 10. Let a,b ∈ C with |b| ≥ |a|. Then for γ > 0 and α real, we have,

2π∫
0

∣∣a+ eiαb
∣∣γ dα ≥ |a|γ

2π∫
0

∣∣1+ eiα ∣∣γ dα.(21)

The above lemma is due to Mir [10].
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Lemma 11. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k,k ≤ 1, then for

every real or complex number β with |β | ≤ 1 and 1≤ s≤ n,

min
|z|=1

∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≥ nsk−n

∣∣∣∣1+ β

(1+ k)s

∣∣∣∣min
|z|=k
|p(z)|.(22)

The above lemma was obtained by Zireh [14].

3. MAIN RESULTS

In this paper, we improve as well as generalise Theorem 1 by considering polynomials not

vanishing in |z|< k,k ≤ 1. More precisely, we prove

Theorem 2. If p(z) is a polynomial of degree n, having no zeros in |z|< k,k≤ 1, then for every

real or complex number β ,δ with |β | ≤ 1, |δ | ≤ 1,1≤ s≤ n and 0≤ γ < ∞,{∫ 2π

0

∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )+δm
ns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣
−
∣∣∣∣ β

(1+ k)s

∣∣∣∣)∣∣∣∣γ dθ

} 1
γ

≤ nsEγ

{∫ 2π

0

∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣γ dα

} 1
γ

×
{∫ 2π

0

∣∣∣p(eiθ )
∣∣∣γ dθ

} 1
γ

,(23)

where m = min
|z|=k
|p(z)| and Eγ is given by (11).

The result is best possible and equality in (23) holds for the polynomial p(z) = azn+bkn with

|a|= |b| and β ≥ 0.

Proof. Since p(z) 6= 0 in |z|< k,k ≤ 1, therefore, by Lemma 4,∣∣∣∣zs p(s)(z)+β
ns

(1+ k)s p(z)
∣∣∣∣≤ ∣∣∣∣zsQ(s)(z)+β

ns

(1+ k)s Q(z)
∣∣∣∣

−nsm
{

k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣}

where Q(z) =
( z

k

)n
p
(

k2

z

)
and ns = n(n−1)...(n− s+1).
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For every θ , 0≤ θ < 2π , β ∈ C with |β | ≤ 1 and 1≤ s≤ n,∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣+ mns

2

{
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣}
≤
∣∣∣∣eisθ Q(s)(eiθ )+β

ns

(1+ k)s Q(eiθ )

∣∣∣∣− mns

2

{
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣} .(24)

Taking A =

∣∣∣∣eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ )

∣∣∣∣,
B =

∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣ and

C =
mns

2

{
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣} in Lemma 9, so that by (24)

B+C ≤ A−C ≤ A, we get for all real α ,∣∣∣∣{∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣+ mns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)}eiα

+

{∣∣∣∣eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ )

∣∣∣∣− mns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)}∣∣∣∣
≤
∣∣∣∣∣∣∣∣eisθ p(s)(eiθ )+β

ns

(1+ k)s p(eiθ )

∣∣∣∣eiα +

∣∣∣∣eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ )

∣∣∣∣∣∣∣∣ .
Which implies for every γ > 0,

2π∫
0

∣∣F(θ)+ eiαG(θ)
∣∣γ dθ ≤

2π∫
0

∣∣∣∣∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣eiα

+

∣∣∣∣eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ )

∣∣∣∣∣∣∣∣γ dθ ,(25)

where

F(θ) =

∣∣∣∣eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ )

∣∣∣∣
− mns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)

and

G(θ) =

∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣+ mns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣) .
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Integrating inequality (25) with respect to α from 0 to 2π , we get from Lemma 8, that for every

γ > 0,

2π∫
0

2π∫
0

∣∣F(θ)+ eiαG(θ)
∣∣γ dθdα

≤
2π∫
0


2π∫
0

∣∣∣∣∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣eiα +

∣∣∣∣eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ )

∣∣∣∣∣∣∣∣γ dα

dθ

=

2π∫
0


2π∫
0

∣∣∣∣∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣eiα +

∣∣∣∣einθ (eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ ))

∣∣∣∣∣∣∣∣γ dα

dθ

=

2π∫
0


2π∫
0

∣∣∣∣(eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ ))eiα + einθ (eisθ Q(s)(eiθ )+β
ns

(1+ k)s Q(eiθ ))

∣∣∣∣γ dθ

dα

≤ nγ
s

2π∫
0

∣∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣∣
γ

dα

2π∫
0

∣∣p(eiθ )
∣∣γ dθ .

(26)

Since

2π∫
0

∣∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣∣
γ

dα =

2π∫
0

∣∣∣∣∣
∣∣∣∣k−n

(
1+

β

(1+ k)s

)∣∣∣∣eiα +

∣∣∣∣∣ β

(1+ k)s

∣∣∣∣∣
∣∣∣∣∣
γ

dα

=
∫ 2π

0
||k−n(1+

β

(1+ k)s )|e
iα + | β

(1+ k)s ||
γdα

=

2π∫
0

∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣γ dα.

Using this in inequality (26), we get for every γ > 0,

2π∫
0

2π∫
0

∣∣F(θ)+ eiαG(θ)
∣∣γ dθdα ≤nγ

s

2π∫
0

∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣γ dα

×
2π∫
0

∣∣∣p(eiθ )
∣∣∣γ dθ .(27)

When taking

a = G(θ) and b = F(θ),
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since |b| ≥ |a| from (24), we obtain from Lemma 10, that for every γ > 0,

2π∫
0

∣∣F(θ)+ eiαG(θ)
∣∣γ dα ≥ |G(θ)|γ

2π∫
0

∣∣1+ eiα ∣∣γ dα.(28)

Integrating inequality (28) with respect to θ from 0 to 2π , we get from (27), that for every γ > 0,
2π∫
0

∣∣1+ eiα ∣∣γ dα

2π∫
0

[∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )

∣∣∣∣
+

mns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)]γ

dθ

} 1
γ

≤ ns


2π∫
0

∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣γ dα


1
γ


2π∫
0

∣∣∣p(eiθ )
∣∣∣γ dθ


1
γ

.(29)

Using δ ∈ C with |δ | ≤ 1,we have∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )+
δmns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)∣∣∣∣
≤
∣∣∣∣eisθ p(s)(eiθ )+β

ns

(1+ k)s p(eiθ )

∣∣∣∣+ mns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣) ,

we get from (29) that for every γ > 0,


2π∫
0

∣∣∣∣eisθ p(s)(eiθ )+β
ns

(1+ k)s p(eiθ )+
δmns

2

(
k−n
∣∣∣∣1+ β

(1+ k)s

∣∣∣∣− ∣∣∣∣ β

(1+ k)s

∣∣∣∣)∣∣∣∣γ dθ


1
γ

≤ ns


2π∫
0

∣∣∣∣k−n
(

1+
β

(1+ k)s

)
eiα +

β

(1+ k)s

∣∣∣∣γ dα


1
γ

{
2π∫
0

∣∣p(eiθ )
∣∣γ dθ

} 1
γ

{
2π∫
0
|1+ eiα |γ dα

} 1
γ

,

which proves the theorem. �

Remark 1. If we take k = 1 in Theorem 2, then inequality (23) reduces to an inequality recently

proved by Mir [10], which is again a generalization of Theorem 1.
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Corollary 1. If p ∈ Pn and p(z) 6= 0 in |z| < 1, then for any β ,δ ∈ C with |β | ≤ 1, |δ | ≤ 1,

1≤ s≤ n and 0≤ γ < ∞,{∫ 2π

0

∣∣∣∣eisθ p(s)(eiθ )+β
ns

2s p(eiθ )+δm
ns

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β

2s

∣∣∣∣)∣∣∣∣γ dθ

} 1
γ

≤ nsEγ

{∫ 2π

0

∣∣∣∣(1+
β

2s

)
eiα +

β

2s

∣∣∣∣γ dα

} 1
γ
{∫ 2π

0

∣∣∣p(eiθ )
∣∣∣γ dθ

} 1
γ

,(30)

where m = min
|z|=k
|p(z)| and Eγ is given by (11).

The result is best possible and equality in (30) holds for the polynomial p(z) = azn +b with

|a|= |b|= 1.

If we take k = 1 and δ = 0 in Theorem 2, then inequality (23) reduces to inequality (10) of

Theorem 1.

If we take s = 1 in (23), we get the following result.

Corollary 2. If p(z) is a polynomial of degree n, having no zeros in |z|< k,k≤ 1, then for every

real or complex number β ,δ with |β | ≤ 1, |δ | ≤ 1, and 0≤ γ < ∞,{∫ 2π

0

∣∣∣∣eiθ p′(eiθ )+β
n

(1+ k)
p(eiθ )+δm

n
2

(
k−n
∣∣∣∣1+ β

(1+ k)

∣∣∣∣
−
∣∣∣∣ β

(1+ k)

∣∣∣∣)∣∣∣∣γ dθ

} 1
γ

≤ nEγ

{∫ 2π

0

∣∣∣∣k−n
(

1+
β

(1+ k)

)
eiα +

β

(1+ k)

∣∣∣∣γ dα

} 1
γ

×
{∫ 2π

0

∣∣∣p(eiθ )
∣∣∣γ dθ

} 1
γ

,(31)

where m = min
|z|=k
|p(z)| and Eγ is given by (11).

Further, if we take β = 0 in Theorem 2, we have

Corollary 3. If p(z) is a polynomial of degree n, having no zeros in |z|< k,k≤ 1, then for every

real or complex number δ with |δ | ≤ 1,1≤ s≤ n and 0≤ γ < ∞,{∫ 2π

0

∣∣∣eisθ p(s)(eiθ )+ k−n
δm

ns

2

∣∣∣γ dθ

} 1
γ

≤ nsEγk−n
{∫ 2π

0

∣∣∣p(eiθ )
∣∣∣γ dθ

} 1
γ

,(32)

where m = min
|z|=k
|p(z)| and Eγ is given by (11).
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For k = 1, s = 1 and δ = 0, inequality (32) reduces to inequality (5). An important result is

further implied by Corollary 2 on taking limit γ → ∞, that

Corollary 4. If p(z) is a polynomial of degree n, having no zeros in |z|< k,k≤ 1, then for every

real or complex number δ with |δ | ≤ 1,1≤ s≤ n,

max
|z|=1

∣∣∣zs p(s)(z)+ k−n
δm

ns

2

∣∣∣≤ ns

2kn max
|z|=1
|p(z)|.(33)

Further, in Corollary 2, if we put s = 1,δ = 0 and taking limit γ → ∞, we get

max
|z|=1
|p′(z)| ≤ n

2
k−n max

|z|=1
|p(z)|.(34)

Remark 2. Inequality (34) is expected to have smaller bound compared to inequality (2) for

k ≥
(

1
2

) 1
n

. This inequality (34) gives inequality analogue to Lax [8] for
1

2
1
n
≤ k ≤ 1.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR.

Ser. Math. 45 (1981), 3-22.

[2] A. Aziz, W.M. Shah, Lp inequalities for polynomials with restricted zeros, Glasn. Math. 32 (1997), 247-258.

[3] N.G. de-Bruijn, Inequalities concerning polynomials in the complex domian, Nederl. Akad. Wetench. Proc.

Ser. A. 50 (1947), 1265-1272.

[4] S. Gulzar, Some Zygmund type inequalities for the sth derivative of polynomials, Anal. Math. 42 (2016),

339-352.

[5] S. Hans, R. Lal, Generalization of some polynomial inequalities not vanishing in a disk, Anal. Math. 40

(2014), 105-115.

[6] V.K. Jain, Generalization of certain well known inequalities for polynomials, Glas. Math. 32 (1997), 45-51.

[7] V.K. Jain, Inequalities for a polynomial and its derivative, Proc. Indian. Acad. Sci. (Math. Sci) 110 (2000),

137-146.

[8] P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50

(1944), 509-513.
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