Available online at http://scik.org J. Math. Comput. Sci. 11 (2021), No. 6, 6872-6896 https://doi.org/10.28919/jmcs/5961 ISSN: 1927-5307

THE IMPLEMENTATION OF MEMETIC ALGORITHM ON IMAGE: A SURVEY

PRIATI ASSIROJ^{1,*}, HARCO LESLIE HENDRIC SPITS WARNARS¹, EDI ABDURACHMAN¹, ACHMAD IMAM KISTIJANTORO², ANTOINE DOUCET³

¹Binus Graduate Program, Doctor of Computer Science, Bina Nusantara University, Jakarta 11530, Indonesia
 ²School of Electronics Engineering and Informatics, Institut Teknologi Bandung, Bandung 40132, Indonesia
 ³Laboratoire L3i - Université de La Rochelle, Avenue Michel Crépeau, F-17 042 La Rochelle Cedex 1, France
 Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
 unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The growth of information technology is equal to the use of the algorithm. One of the most well-known algorithms is Memetic Algorithm (MA). MA is a part of the evolutionary algorithm and has been implemented on the most complex computational challenges. MA could be implemented in any field of research such as optimization, scheduling, prediction, image processing, image recognition, and many more. However, this research concerns the survey on the implementation of MA in image classification, image processing, and image recognition to find how many works are conducted related to MA and image. In this work, we use the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) method to survey another research about the implementation of MA in image data. Finally, we found each 1 paper uses MA for image retrieval, 12 papers use MA for image processing and 18 papers use MA for image recognition and 2 papers use MA for image classification.

^{*}Corresponding author

E-mail address: priati@binus.ac.id

Received April 30, 2021

THE IMPLEMENTATION OF MEMETIC ALGORITHM

Keywords: memetic algorithm; image classification; image processing; image recognition; prisma method.

2010 AMS Subject Classification: 68W40.

1. INTRODUCTION

The Memetic algorithm represents one of the most distinctive and thriving research fields in evolutionary computation. The term memetic algorithm has been used widely to describe the enhancement of searching procedures based on individual or population approaches. Memetic algorithm refers to Baldwinian Evolutionary Algorithm, Lamarckian Evolutionary Algorithm, Cultural Algorithm, and Local Search Genetic Algorithm.

The memetic algorithm is a part of the evolutionary algorithm and has been implemented on the most complex computational challenge [1]. Memetic algorithm [2][3] is an enhancement of the evolutionary algorithm with local search separation [4]. This is a simple algorithm with reliable performance [5][6], provides solutions to many real problems with high accuracy [7][8][9].

Many things developed to address optimization problems caused by huge research fields, such as economic, biology, chemistry, physics, and many more. Many researchers use a memetic algorithm to address complex problems as graph partition, graph coloring, packing, and many other common problems. The newest applications implementation of memetic algorithm are artificial neural network [10], pattern recognition [11], robotic motion planning [12], beam orientation [13], circuit design [14], electric service restoration [15], medical expert systems [16], single scheduling machine [17], automatic scheduling [18], person scheduling [19], nurse rostering optimization [20], processors allocation [21], maintenance scheduling [22], VLSI design [23], clustering of gene expression profiles [24], feature/gene selection [25][26], and multi-class, multi-objective feature selection [27][28]. Generally, the MA flowchart is shown in figure 2 below.

Figure 1. Local Seach

The MA is an enhancement of the evolutionary algorithm with local search separation [2][3]. This is a simple algorithm with reliable performance [29], provide solution of any real problems with high accuracy [30]. The MA is also an enhancement of the genetic algorithm (GA). GA runs a local search in parallel condition, therefore it will never be stuck in the local extreme. However, it has to verify the appropriate solution in every iteration so that it will increase processing time, which means this algorithm is slower than others. This weakness can be overcome by adding a local search feature hereinafter known as MA. The MA is a heuristic search method, a combination of genetic algorithm and separated local search method that can increase the quality of solution [31]. The local search feature in MA can be implemented before or after the selection process, crossover, and mutation. It is also useful to minimize search space. Below is the pseudocode of the memetic algorithm.

THE IMPLEMENTATION OF MEMETIC ALGORITHM

Begin

INITIALIZE population;

EVALUATE each candidate;

Repeat Until (TERMINATION CONDITION) Do

SELECT parents;

CROSSOVER to produce offspring;

MUTATE offspring;

IMPROVE offspring by Local Search;

EVALUATE offspring;

SELECET individual for next generation;

EndDo

End

Figure 2. Memetic Algorithm

2. RESEARCH METHOD

We have surveyed several papers related to the implementation of the Memetic Algorithm (MA) then conducted a review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) method [32]. This method has five stages, 1st is Defining Eligibility Criteria, 2nd is Defining Information Resources, 3rd is Literature Selection, 4th is Data Collection, and 5th is Data Item Selection.

To aim for the best selection result, those 5 stages must be done in sequence, make sure that every stage is well done before moving to the next stage. Repeat the previous stage if there are deficiencies.

2.1. Stage 1: Defining Eligibility Criteria

As defined in [36], the eligibility criteria are specified by Inclusion Criteria (IC). In this work, we defined the articles into three criteria, which are:

- 1) IC1: Original articles that are written in English.
- 2) IC2: Original articles that have been published from 2004 until 2021.
- 3) IC3: Original articles that analyze the implementation of MA on the image.

Thus this work surveys the articles that implement MA on the image, written in English, and published from 2004 until 2021.

2.2. Stage 2: Defining Information Resource

- The articles can be found in online academics repositories such as Google Scholar, IEEE Xplore, ScienceDirect, and Springer Link.
- In those online academic repositories, we will select the articles that appropriate to this work.

2.3. Stage 3: Literature Selection

 Determining keywords. The 1st keyword is "memetics algorithm", we use this keyword to know more about MA in general. The 2nd is "memetics algorithm and implementation", we use this keyword because we want to know about MA and its implementation. The 3rd keyword is "memetics algorithm and image", and we use it to know specifically about MA on the image. The 4th is "memetics algorithm and implementation and image", and we use this keyword to get some information about the implementation of MA on image data. The 5th keyword is "memetics and image", this is almost the same as number 3, but we do not include the word "algorithm" to get information about memetics and images in general. The last keyword is "memetics and fingerprint", we use this keyword because in future work, specifically, we will focus on the implementation of MA on fingerprint image datasets.

- 2) Select articles that are related to criteria by the title, abstract, and article's keywords.
- Articles that are not eliminated from the previous stage will be read, fully, or partially to define items' eligibility.

Only short-listed articles will be assessed to find the linkage to this work. These articles will be re-assessed by doing steps 3 to step 4 above.

2.4. Stage 4: Data Collection

We have created a data extraction form to collect data manually. From each keyword, this survey assesses 33,965 articles based on keywords "memetics algorithm"; 22,343 articles based on keywords "memetics algorithm and implementation"; 19,513 articles based on keyword "memetics algorithm and image"; 17,014 articles based on the keyword "memetics algorithm and image"; 17,014 articles based on the keyword "memetics algorithm and image"; 17,014 articles based on the keyword "memetics algorithm and image"; and 1,156 articles based on the keyword "memetics and fingerprint". The total of searched articles is 113,140.

Table 1 Data From Google Scholar

Table 1. Data From Google Scholar				
Source	Keywords			Results
	Memetics a	lgorithm		23800
	Memetics	algorithm	and	16600
	implementa	tion		
	Memetics	algorithm	and	16900
Google Scholar	image	-		
-	Memetics	algorithm	and	15500
	implementa	tion and imag	ge	
	Memetics a	nd image		17300
	Memetics and fingerprint			1051
Total		5 1		91150
Selected				6

ASSIROJ, WARNARS, ABDURACHMAN, KISTIJANTORO, DOUCET

Source	K	Results		
	Memetics alg	orithm		1089
	Memetics	algorithm	and	49
	implementation	on		
IEEE Valore	Memetics algorithm and image			92
IEEE Aplore	Memetics	algorithm	and	3
	implementation and image			
	Memetics and	l image		97
	Memetics and	l fingerprint		5
Total				1335
Selected				13

Table 2. Data From IEEE Xplore

Source	K	Results		
	Memetics a	lgorithm		3353
	Memetics	algorithm	and	2766
	implementa	tion		
Saianaa	Memetics	algorithm	and	774
Direct	image			
Direct	Memetics	algorithm	and	618
	implementa			
	Memetics and image			862
	Memetics and fingerprint			33
Total				8406
Selected				8

Table 3. Data From Science Direct

Table 4. Data From Springer Link

Source	Keywords	Results
	Memetics algorithm	5723
	Memetics algorithm and	2928
	implementation	
Springer Link	Memetics algorithm and image	1747
	Memetics algorithm and	893
	implementation and image	
	Memetics and image	890
	Memetics and fingerprint	68
Total		12249
Selected		6

2.5. Stage 5: Data Item Selection

Data are obtained from short-listed articles that explain the use or the implementation of the memetics algorithm. Finally, we decide and select 33 articles that are appropriate to the survey based on the titles, abstracts, keywords, and contents. The other papers are not included in the survey because they are not eligible in every selection stage (stage 1 to 4). Tables 1, 2, 3, and 4 show the data that have been collected from each source.

3. RESULT AND DISCUSSION

The research proposed to observe the implementation of Memetics Algorithms (MA) that have been done by other researchers. Based on this purpose, the research identifies many implementations of the MA shown in table 5.

Table 5 shows research papers that are focus on the method and implementation of MA. Most of them are from the journal and only four papers from the conference. Based on the 33 papers in table 5, we divide the implementation of the MA into four categories, image processing, image recognition, image classification, and image retrieval. 12 papers use MA for image processing, 18 papers use MA for image recognition, and every 2 papers use MA for image classification, and 1 paper use MA for image retrieval.

Title	Publication Type	Publication year
MA Image Enhancement[33]	Journal	2019
Feature Selection[34]	Journal	2019
An Enhanced[35]	Journal	2019
Feature[36]	Journal	2005
Evolutionary[37]	Journal	2019
Sub-pixel[38]	Journal	2015
Memetic algorithm[39]	Journal	2017
Affinity Propagation[40]	Conference	2010
A Memetic algorithm[41]	Journal	2013
A Memetic Fingerprint[42]	Journal	2007
Memetically[43]	Journal	2012

Table 5. Data From Springer Link

An instantaneous[44]	Journal	2004
Bacterial memetic[45]	Journal	2016
Fully Automatic[46]	Journal	2019
Particle Gravitation[47]	Journal	2015
Modified[48]	Journal	2018
SAR[49]	Journal	2005
A Flower[50]	Conference	2018
High Resolution[51]	Conference	2013
binary image[52]	Journal	2016
Automatic feature point[53]	Conference	2015
Automatic SAR[54]	Journal	2014
for reconstructing [55]	Journal	2016
Pattern[56]	Journal	2013
Similarity measure[31]	Journal	2017
3D Protein[57]	Journal	2020
For Handwritten[58]	Journal	2017
Filter design[29]	Journal	2008
binary image[30]	Journal	2008
face recognition[59]	Journal	2009
A multi-objective[60]	Journal	2005
A memetic[61]	Journal	2010
Measuring Memetic[62]	Journal	2021

Papers included image processing papers with the scope of research about operations that are conducted on images with MA. The image recognition category consists of papers that use MA to identify and detect features in a digital image. The image classification category consists of papers that classify image and image retrieval consist of the papers that use MA to retrieve images based on its features.

At first, researchers suggest that this algorithm is only used for optimization such as scheduling problems and many more things refer to it. For image datasets, this algorithm can be implemented very well and provide an optimal solution. In this survey (on the researches between 2004 and 2021) we found that MA for image (recognition) is the most implemented. Generally, table 6 shows the implementation, method, and result.

Author	Yea	Implementatio	Methods	Results
	r	n on		
Montazer i, et.al	2019	Image enhancement (image processing)	equalizing population of chromosomes with an array of integer to gray level then introduce fitness function to measure solutions quality	MA has higher value and quality solution, preserves brightness
Ghosh, et.al	2019	facial emotion recognition (image recognition)	Local search MA, use greedy and late hill- climbing base MA (LHCMA)	MA has the best performance in 17 of 30 cases, LHCMA performs better 66%
Bereta, M.	2018	Mitigates Baldwin effect and Lamarckian evolution (optimization)	Local search procedure of the genetic and memetic algorithm	Solve optimization problems and find an optimal solution
Welekar, et.al	2019	Recognize characters (image recognition)	An improvised local search of memetic algorithm	Using MA, research achieved efficiency, reduce memory consumption, enabling better utilization of available resources of processing systems.
Ghosh, et.al	2005	Recognize handwritten (image recognition)	multi-objective MA-based feature selection technique.	Improved recognition accuracy for an individual as well as for a combined feature vector.
Kumar, et.al	2019	Processing retinal fundus image (image processing)	Memetic differential evolution (MDE)	Achieves optimal solution, Integrated local search using DE algorithms enhances the search capability and reduces the number

Table 6. Several Implementations of Memetic algorithm, methods, and results

				of generations to achieve the solution
Mu, et.al	2014	Detecting Community Structure in Complex Networks (prediction)	Memetic algorithm using local structural information (MA-LSI)	MA with LSI is superior to the original MA for network detection problems
Zhang, et.al	2015	Sub-Pixel Mapping (image recognition)	Sub-Pixel Mapping based on Memetic Algorithm	SMMA was implementing with hybrid memetic and DE. Algorithm tested on sub-pixel mapping remote sensing image
Zhang, et.al	2017	Image classification	MA-based un-supervised band selection method	Design new crossover and local search strategy. The method obtains high- quality band subsets
Zhu, et.al	2010	Image classification	Affinity Propagation based Memetic band selection (APMA),	The method improves performance and accelerates more compact subsets
Chi, et.al	2014	Learning large scale fuzzy cognitive maps (optimization)	Hybrid MA and neural network	The algorithm learns FCMs with 100 nodes efficient
Buck, et.al	2013	Matching spatial configuration in geographic information system (image recognition)	Combining evolutionary strategy on memetic algorithm	The original sketch location found with a longer running time
Sheng, et.al.	2007	Fingerprint matching (image recognition)	Memetic fingerprint matching without local improvement operation	This algorithm reduces several generations to find high-quality

Haque, et.al	2017	Community detection (prediction)	Connected cohesion with memetic algorithm (CCMA)	optimization problems Capture the largest and the most cohesive group in the network.
Pagacz, et.al	2010	Generalized minimum network problems (optimization)	Node oriented and greedy crossover to generate solutions, mutate probability with new solutions, and optimize with local improvement	The high-quality solution is achieved with small running times. Limited to the size of data.
Bhatt, et.al	2012	Matching sketches with a digital image (image recognition)	Extract information from sketch and digital images using automated memetic	Existing methods and commercial systems are poor compared to the proposed method
Fernande z, et.al	2004	Illumination correction (image processing)	Instantaneous Memetic Illumination Correction (IMIC)	The convergence of the algorithm is very fast and improves both in accuracy and variance of the results
Zhou, et.al	2016	Surface electromyograph y based hand motion recognition (image recognition)	Bacterial Memetic Algorithm with specific feature selection	The proposed method increases the 1% error rate experiments, and smaller than 2/3 reduction number of extracted features, it would reduce processing time
Wan, et.al	2019	Remote sensing, multispectral imagery (image processing)	Fully automatic clustering using an adaptive multi- objective memetic algorithm (AMOMA)	The framework for fully automated remote sensing image clustering. This is a spatial structure that is

				utilized to find high- quality solutions.
Huang, et.al	2019	Image segmentation (image processing)	memetic particle gravitation optimization (MPGO) algorithm	MPGO outperforms k- means significantly in results
Huang, et.al	2015	Solving clustering problem (optimization)	Memetic gravitation search algorithm (MGSA)	Algorithm gets a better solution with computation time reduction. It is better than the original GSA algorithm and the Artificial bee colony algorithm.
Galvez, et.al	2018	Image reconstruction (optimization)	Modified self-adaptive firefly algorithm coupled with heuristics method for local search	Achieved unsatisfied solution, furthermore might improve the method in several ways.
Yang, et.al	2013	Image recognition on radar target	Using less sampling data to measure target accurately. proposing an MA optimizer that making more rapid convergence and shorter optimization time possible	Memetic reflectivity was superior to genetic and more accurate.
Ruiz, et.al	2018	Predicting energy consumption in buildings (optimization)	Adaptive search algorithm called "Cross-generational elitist selection, Heterogeneous recombination, and Cataclysmic mutation" (CHC).	The proposed method can be modified to produce a parallel memetic energy efficiency prediction proposal.
Nagi, et.al	2016	Image reconstruction (image processing)	Original memetic algorithm to compare experimental results on the algorithm based on 6 direction projections.	3 directions are faster than 6 directions in similar parameters.
Moscato, et.al	2007	Ordering microarray data (optimization)	Embedding tabu search procedure on evolutionary algorithm	Memetic has more time-consuming but consistent to

				improve initial solutions.
Matsui, et.al	2015	Augmented reality (image recognition)	extends hybrid meta- heuristics based on memetic and tabu search.	Choose a point selection feature to reduce computational time.
Li, et.al	2014	image enhancement (image processing)	Improving enhancement function to shrink and stretch image contourlet coefficient	Method tested on simulated and real images. The proposed method suppresses the speckle noise on the synthetic aperture radar image edges and texture
Gong, et.al	2016	Cross-cut shred document reconstruction (image processing)	Using splicing-driven memetic algorithm (SD- MA) with novel crossover, mutation operators, and an elitism-based local search strategy	The algorithm achieves stability for instances of 6×6 and 6×9 shreds. For 9×9 shreds, the improvement becomes more prominent
Bao, et.al	2013	Pattern search (image recognition)	PSO-PS (Particle swarm optimization -pattern search based on MA	Memetic is inferior to PSO. memetic consume much fewer fitness evaluations.
Alsmadi, M.K	2017	Similarity measurement (image recognition)	Use memetic to generate Content-based image retrieval (CBIR) system. And use memetic to measure similarity.	Memetic can discriminate color, shape, and image texture. System tested on different image queries. The proposed method outperforms the other systems
Ghosh, et.al	2017	Handwritten recognition	Proposes MA-based Wrapper-filter feature	Variety of accuracies in every execution due to the usage of

6886

		(image recognition)	selection (FS) framework for handwritten recognition	random weights. An increase/decrease in recognition accuracies in virtue of feature reduction indicates the usefulness of the proposed method.
Dworak, et.al	2012	Cryptography	Proposed MASA-memetic algorithm using a standard simulated annealing algorithm to achieves high- quality solutions in less processing time with improving local search process.	MASA checks 130000–140000 fewer sub-keys than the previously proposed NGA.
Tirronen, et.al	2008	Defect detection in paper production (image processing)	Design digital filters with memetic differential evolution (MDE).	DE is better than an evolutionary strategy for accuracy
Botzhei m, et.al	2012	Offline path planning of mobile robot (optimization)	Bacterial MA (BMA). Speed up the evolutionary process by combining BMA with local search.	The bacterial evolutionary algorithm (BEA) is faster than BMA. Several bacteria and their generation can improve high-quality solutions.
Aranha, et.al	2009	Financial portfolio optimization (prediction)	Three steps memetic tree- based genetic algorithm (MTGA), 1 st introduce a new genome representing the problems. 2 nd evaluates sub-trees, 3 rd combines GA with a local optimization (memetic) step.	Generates a more understandable portfolio by removing assets that are not relevant.
Cabido, et.al	2012	Multiple object tracking on GPU (optimization)	Memetic algorithm particle filter (MAPF),	Solve high dimension problems and don't suffer a

				when the number of targets grows.
Gesu, et.al	2000 8	Image reconstruction (image processing)	Crossover is applied vertically or horizontally; mutation: operator locates white and black pixels randomly; compactness: algorithm is suitable to reconstruct objects.	The method is robust enough, through images satisfying a priori knowledge, like the hv-convex polyominoes constraint returned better results.
Caponio, et.al	2012	MA in engineering and design (optimization)	For offline optimization: Compare Fast Adaptive Memetic Algorithm (FAMA) with a pure GA and a simplex algorithm. For online optimization: compare FAMA with a pure GA only.	Pay attention to peculiarities of the specific optimization problem when designing MA. It could not be enough if we put it together with an evolutionary framework.
Feng, et.al	2016	Band selection for hyperspectral imagery (optimization)	Memetic solver for band selection and probabilistic memetic algorithm	Achieves better quality than the counterparts in training and testing accuracy. in the online search, the algorithm can adaptively balance the exploration and exploitation
Galinier, et.al	2011	Graph partitioning problem (optimization)	A memetic algorithm for graph partitioning (MAGP) algorithm	MAGP was able to reach or outperform a majority of the best former results.
Kielarov a, et.al	2017	Optimization on Jewelry Design Applications (optimization)	General Regression Neural Network, Hybrid MA	Computational time: MA is 5,306 s and GA is 1,935 s. during the evolutionary process MA used five more

lack of performance

Kumar, et.al	2008	Face recognition (image recognition)	Proposes PCA-principal component analysis using MA. It can determine interesting regions in the search space and achieve that quickly find good	computational times than the GA. The proposed method is better to process recognition based on features selected
Liang, et.al	2015	body gamma knife stereotactic radiotherapy treatment planning (optimization)	solutions. memetic performs the optimization on relative dosimetric distribution.	Generates feasible treatment plan
Naveen, et.al	2016	Bankruptcy prediction (prediction)	Combining memetic to cuckoo search algorithm and particle swarm optimization algorithm.	Achieves better results in the case of WBC and Turkish bank with good accuracy
Nguyen, et.al	2011	Time table problem (optimization)	Implement MA and GA then compare the results of those two algorithms.	MA and GA are tested on 6 instances collected from real- world data in 4 studying years of the University of Science. MA provides a better final solution
Ozcan, et.al	2006	Partial shape matching (image recognition)	MA with crossover, mutation, and hill-climbing operators; MA run was terminated when the correct solution was reached, or if the number of crossovers equals 500,000; Test was repeated 100 times	If the hill-climbing feature omitted algorithm performance unsatisfied; the algorithm is used; the advantages are: computationally efficient, space- efficient, fast, better

				than GA without hill climbing. successful
				for partial shape
				matching, even with
				a large database
Potti,	2011	Very large scale	Parallelize memetic on	General-purpose
et.al		integrated	Graphical Processing Units	GPU (GPGPU) has
		(VLSI) circuit	(GPU); compare parallel MA	good accelerated
		floor-planning	with an ordinary MA	performance on
		problem (ontimization)		larger population
Dodtko	2005	(optimization)	MOMA Multi abiastiva	Sizes MOCA
Rauike, et al	2005	extraction on	Memetic Algorithm with	approach for better
Ct.ai		nattern	IFF-intelligent feature	convergence with a
		recognition	extraction: IFE methodology	lower number of
		(image	assessed to generate	unique individual
		recognition)	representations for isolated	evaluations, the LS
		0	handwritten digits.	with the greedy first
				improvement
				strategy is most
				appropriate
Peralta,	2017	Fingerprint	General decomposition on	Asses the algorithm
et.al		matching (image	the matching algorithms	at the well-known
		recognition)	based on minutiae	big data framework
				ApacheHadoop and
				ApacheSpark with
Doralta	2014	Fingerprint	Use a distributed framework	With two sets of
r crana, et al	2014	identification	for fingerprint matching with	fingerprint data
Ct.ai		(image	a reliable processing time	synthetic and
		(inage recognition)	a renable processing time.	scanned, the system
		10008		can compute 400000
				data at a half-second
				rate.
Assiroj,	2021	Fingerprint	Parallelize MA called	HPCMA identifies
et.al		identification	HPCMA to process image	fingerprints with
		(image	fingerprint datasets.	high accuracy and
		recognition)		speed.

According to table 6 above, the research analyzes the implementations of the memetic algorithm (MA) in various research fields. Most of the implementation of this algorithm is in image processing and image recognition, with various proposed methods. The amount is shown in Figure 3.

Figure 2. Memetic Algorithm

4. CONCLUSION

According to the survey that has been done, the MA implementation for image processing consists of 12 papers, 1 paper uses MA for retrieval, 2 papers use MA for image classification and the most is 18 papers use this algorithm for image recognition. In image processing, MA can distinguish colors, shapes, and image's texture. The result of this research could be a reference for future research about MA implementation that categorized into four, image processing, image classification, image retrieval, and image recognition. Some method has proposed for the novel of its implementation.

ACKNOWLEDGEMENT

This work is supported by Research and Technology Transfer Office, Bina Nusantara University as a part of Bina Nusantara University's International Research Grant entitled MEMETIC ALGORITHM IN HIGH-PERFORMANCE COMPUTATION with contract number: No.026/VR.RTT/IV/2020 and contract date: 6 April 2020.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

- P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, Technical Report, no. C3P 826, 1989.
- [2] P. Moscato, Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and F. Glover (eds.), New Ideas in Optimization. London: McGraw-Hill, (1999), pp. 219–234.
- [3] J. Y. Lin, Y. P. Chen, Analysis on the collaboration between global search and local search in memetic computation, IEEE Trans. Evol. Comput. 15 (2011), 608–623.
- [4] P. Merz, B. Freisleben, Fitness Landscapes and Memetic Algorithm Design, In D. Corne, M. Dorigo, and F. Glover (eds.), New Ideas in Optimization. London: McGraw-Hill, (1999), pp. 245–260.
- Y. S. Ong, M. H. Lim, N. Zhu, K. W. Wong, Classification of adaptive memetic algorithms: A comparative study, IEEE Trans. Syst. Man Cybern. B. 36 (2006), 141–152.
- [6] [1]A. Caponio, G.L. Cascella, F. Neri, N. Salvatore, M. Sumner, A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives, IEEE Trans. Syst., Man, Cybern. B. 37 (2007), 28–41.
- [7] L. Jiao, M. Gong, S. Wang, B. Hou, Z. Zheng, Q. Wu, Natural and Remote Sensing Image Segmentation Using Memetic Computing, IEEE Comput. Intell. Mag. 5 (2010), 78–91.
- [8] M. Urselmann, S. Barkmann, G. Sand, S. Engell, A Memetic Algorithm for Global Optimization in Chemical Process Synthesis Problems, IEEE Trans. Evol. Computat. 15 (2011), 659–683.
- [9] T. Ichimura, Y. Kuriyama, Learning of neural networks with parallel hybrid GA using a royal road function, in: 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227), IEEE, Anchorage, AK, USA, 1998: pp. 1131–1136.
- [10] J. Aguilar, A. Colmenares, Resolution of pattern recognition problems using a hybrid Genetic/Random Neural

Network learning algorithm, Pattern Anal. Appl. 1 (1998), 52-61.

- [11] M.A. Ridao, E.F. Camacho, J. Riquelme, M. Toro, An evolutionary and local search algorithm for motion planning of two manipulators, J. Robotic Syst. 18 (2001), 463–476.
- [12] O.C.L. Haas, K.J. Burnham, J.A. Mills, Optimization of beam orientation in radiotherapy using planar geometry, Phys. Med. Biol. 43 (1998), 2179–2193.
- [13] S.P. Harris, E.C. Ifeachor, Automatic design of frequency sampling filters by hybrid genetic algorithm techniques, IEEE Trans. Signal Process. 46 (1998), 3304–3314.
- [14] A. Augugliaro, L. Dusonchet, E.R. Sanseverino, Service restoration in compensated distribution networks using a hybrid genetic algorithm, Electric Power Syst. Res. 46 (1998), 59–66.
- [15] R. Wehrens, C. Lucasius, L. Buydens, G. Kateman, HIPS, a hybrid self-adapting expert system for nuclear magnetic resonance spectrum interpretation using genetic algorithms, Anal. Chimica Acta, 277 (1993), 313–324.
- [16] P. França, A. Mendes, P. Moscato, Memetic Algorithms to Minimize Tardiness on a Single Machine with Sequence-Dependent Setup Times, Proceedings of the DSI' 99 - 5th International Conference of the Decision Sciences Institute, 1999, 1708–1710.
- [17] D. Costa, An evolutionary tabu search algorithm and the nhl scheduling problem, INFOR: Inform. Syst. Oper. Res. 33 (1995), 161–178.
- [18] U. Aickelin, Nurse Rostering with Genetic Algorithms, SSRN. (1998). https://doi.org/10.2139/ssrn.2832070..
- [19] E. Özcan, Memes, Self-generation and Nurse Rostering, in: E.K. Burke, H. Rudová (Eds.), Practice and Theory of Automated Timetabling VI, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007: pp. 85–104.
- [20] E. Özcan, E. Onbaşioğlu, Memetic Algorithms for Parallel Code Optimization, Int. J. Parallel. Prog. 35 (2007) 33–61.
- [21] E.K. Burke, A.J. Smith, A memetic algorithm to schedule planned maintenance for the national grid, ACM J. Exp. Algorithmics. 4 (1999) 1.
- [22] E. Özcan, C. Başaran, A case study of memetic algorithms for constraint optimization, Soft Comput. 13 (2009) 871–882.
- [23] S. Areibi, Z. Yang, Effective Memetic Algorithms for VLSI Design = Genetic Algorithms + Local Search + Multi-Level Clustering, Evol. Comput. 12 (2004) 327–353.

- [24] P. Merz, A. Zell, Clustering Gene Expression Profiles with Memetic Algorithms, in: J.J.M. Guervós, P. Adamidis,
 H.-G. Beyer, H.-P. Schwefel, J.-L. Fernández-Villacañas (Eds.), Parallel Problem Solving from Nature PPSN
 VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002: pp. 811–820.
- [25] Z. Zhu, Y.-S. Ong, M. Dash, Markov blanket-embedded genetic algorithm for gene selection, Pattern Recognition.40 (2007) 3236–3248.
- [26] Z. Zhu, Y.-S. Ong, M. Dash, Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework, IEEE Trans. Syst., Man, Cybern. B. 37 (2007) 70–76.
- [27] Z. Zhu, Y.S. Ong, J.M. Zurada, Identification of Full and Partial Class Relevant Genes, IEEE/ACM Trans. Comput. Biol. and Bioinf. 7 (2010) 263–277.
- [28] G.V. Karkavitsas, G.A. Tsihrintzis, Automatic Music Genre Classification Using Hybrid Genetic Algorithms, in: G.A. Tsihrintzis, M. Virvou, L.C. Jain, R.J. Howlett (Eds.), Intelligent Interactive Multimedia Systems and Services, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 323–335.
- [29] V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, T. Rossi, An Enhanced Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production, Evol. Comput. 16 (2008) 529–555.
- [30] V. Di Gesù, G. Lo Bosco, F. Millonzi, C. Valenti, A Memetic Algorithm for Binary Image Reconstruction, in: V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.), Combinatorial Image Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008: pp. 384–395.
- [31] M.K. Alsmadi, An efficient similarity measure for content based image retrieval using memetic algorithm, Egypt.J. Basic Appl. Sci. 4 (2017) 112–122.
- [32] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, The PRISMA Group, Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement, PLoS Med. 6 (2009) e1000097.
- [33] M. Montazeri, Memetic Algorithm Image Enhancement for Preserving Mean Brightness Without Losing Image Features, Int. J. Image Grap. 19 (2019) 1950020.
- [34] M. Ghosh, T. Kundu, D. Ghosh, R. Sarkar, Feature selection for facial emotion recognition using late hillclimbing based memetic algorithm, Multimed Tools Appl. 78 (2019) 25753–25779.
- [35] R. Welekar, N.V. Thakur, Best Bound Population-Based Local Search for Memetic Algorithm in View of Character Recognition, in: X.-S. Yang, S. Sherratt, N. Dey, A. Joshi (Eds.), Third International Congress on

Information and Communication Technology, Springer Singapore, Singapore, 2019: pp. 343–350.

- [36] M. Ghosh, S. Malakar, S. Bhowmik, R. Sarkar, M. Nasipuri, Feature Selection for Handwritten Word Recognition Using Memetic Algorithm, in: J.K. Mandal, P. Dutta, S. Mukhopadhyay (Eds.), Advances in Intelligent Computing, Springer Singapore, Singapore, 2019: pp. 103–124.
- [37] B. Vinoth Kumar, G.R. Karpagam, Y. Zhao, Evolutionary Algorithm With Memetic Search Capability for Optic Disc Localization in Retinal Fundus Images, in: Intelligent Data Analysis for Biomedical Applications, Elsevier, 2019: pp. 191–207.
- [38] Y. Zhang, Y. Zhong, Sub-pixel mapping based on memetic algorithm for hyperspectral imagery, in: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, Milan, Italy, 2015: pp. 393–396.
- [39] M. Zhang, Jingjing Ma, M. Gong, Hao Li, Jia Liu, Memetic algorithm based feature selection for hyperspectral images classification, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, Donostia, San Sebastián, Spain, 2017: pp. 495–502.
- [40] Z. Zhu, S. Jia, Z. Ji, Affinity propagation based memetic band selection on hyperspectral imagery datasets, in: IEEE Congress on Evolutionary Computation, IEEE, Barcelona, Spain, 2010: pp. 1–7.
- [41] A.R. Buck, J.M. Keller, M. Skubic, A Memetic Algorithm for Matching Spatial Configurations With the Histograms of Forces, IEEE Trans. Evol. Computat. 17 (2013) 588–604.
- [42] W. Sheng, G. Howells, M. Fairhurst, F. Deravi, A Memetic Fingerprint Matching Algorithm, IEEE Trans. Inform. Forensic Secur. 2 (2007) 402–412.
- [43] H.S. Bhatt, S. Bharadwaj, R. Singh, M. Vatsa, Memetically Optimized MCWLD for Matching Sketches With Digital Face Images, IEEE Trans. Inform. Forensic Secur. 7 (2012) 1522–1535.
- [44] E. Fernandez, M. Grana, J.R. Cabello, An instantaneous memetic algorithm for illumination correction, in: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), IEEE, Portland, OR, USA, 2004: pp. 1105–1110.
- [45] D. Zhou, Y. Fang, J. Botzheim, N. Kubota, H. Liu, Bacterial memetic algorithm based feature selection for surface EMG based hand motion recognition in long-term use, in: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, Athens, Greece, 2016: pp. 1–7.
- [46] Y. Wan, Y. Zhong, A. Ma, Fully Automatic Spectral-Spatial Fuzzy Clustering Using an Adaptive Multiobjective

Memetic Algorithm for Multispectral Imagery, IEEE Trans. Geosci. Remote Sensing. 57 (2019) 2324–2340.

- [47] K.-W. Huang, Z.-X. Wu, H.-W. Peng, M.-C. Tsai, Y.-C. Hung, Y.-C. Lu, Memetic Particle Gravitation Optimization Algorithm for Solving Clustering Problems, IEEE Access. 7 (2019) 80950–80968.
- [48] A. Galvez, A. Iglesias, Modified Memetic Self-Adaptive Firefly Algorithm for 2D Fractal Image Reconstruction, in: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), IEEE, Tokyo, Japan, 2018: pp. 165–170.
- [49] M.E. Aydemir, T. Gunel, S. Kargin, I. Erer, S. Kumaz, SAR image processing by a memetic algorithm, in: Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005., IEEE, Istanbul, Turkey, 2005: pp. 684–687.
- [50] Z. Xiao, S. Zhou, M. Cao, A flower image retrieval method based on memetic feature selection algorithm, in:
 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), IEEE, Xiamen, 2018:
 pp. 85–90.
- [51] S. Yang, K. Cheng, M. Wang, D. Xie, L. Jiao, High resolution range-reflectivity estimation of radar targets via compressive sampling and Memetic Algorithm, Inform. Sci. 252 (2013) 144–156.
- [52] B. Nagy, E.V. Moisi, Memetic algorithms for reconstruction of binary images on triangular grids with 3 and 6 projections, Appl. Soft Comput. 52 (2017) 549–565.
- [53] T. Matsui, Y. Katagiri, H. Katagiri, K. Kato, Automatic Feature Point Selection through Hybrid Metaheauristics based on Tabu Search and Memetic Algorithm for Augmented Reality, Procedia Computer Science. 60 (2015) 1120–1127.
- [54] Y. Li, J. Hu, Y. Jia, Automatic SAR image enhancement based on nonsubsampled contourlet transform and memetic algorithm, Neurocomputing. 134 (2014) 70–78.
- [55] Y.-J. Gong, Y.-F. Ge, J.-J. Li, J. Zhang, W.H. Ip, A splicing-driven memetic algorithm for reconstructing crosscut shredded text documents, Appl. Soft Comput. 45 (2016) 163–172.
- [56] Y. Bao, Z. Hu, T. Xiong, A PSO and pattern search based memetic algorithm for SVMs parameters optimization, Neurocomputing. 117 (2013) 98–106.
- [57] L. de Lima Corrêa, M. Dorn, A multi-population memetic algorithm for the 3-D protein structure prediction problem, Swarm Evol. Comput. 55 (2020) 100677.

- [58] M. Ghosh, S. Malakar, S. Bhowmik, R. Sarkar, M. Nasipuri, Memetic Algorithm Based Feature Selection for Handwritten City Name Recognition, in: J.K. Mandal, P. Dutta, S. Mukhopadhyay (Eds.), Computational Intelligence, Communications, and Business Analytics, Springer Singapore, Singapore, 2017: pp. 599–613.
- [59] D. Kumar, S. Kumar, C.S. Rai, Feature selection for face recognition: a memetic algorithmic approach, J. Zhejiang Univ. Sci. A. 10 (2009) 1140–1152.
- [60] P.V.W. Radtke, T. Wong, R. Sabourin, A Multi-objective Memetic Algorithm for Intelligent Feature Extraction, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005: pp. 767–781.
- [61] C. Schauer, M. Prandtstetter, G.R. Raidl, A Memetic Algorithm for Reconstructing Cross-Cut Shredded Text Documents, in: M.J. Blesa, C. Blum, G. Raidl, A. Roli, M. Sampels (Eds.), Hybrid Metaheuristics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 103–117.
- [62] P. Assiroj, H.L.H.S. Warnars, E. Abdurrachman, A.I. Kistijantoro, A. Doucet, Measuring memetic algorithm performance on image fingerprints dataset, TELKOMNIKA. 19 (2021) 96.