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Abstract: This paper focuses on the modelling of financial time series using the coupling of the discrete wavelet 

transform and nonlinear autoregressive neural network. This hybrid modelling method is based on the use of 

decomposed time series using the discrete wavelet transform as inputs to the artificial neural networks. This method 

has been applied to three financial series (exchange rate EUR/USD, the Brent price and NASDAQ composite price). 

The simulation results using R software show the robustness of the proposed model compared to other modelling 

methods applied to the same financial time series.    
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1. INTRODUCTION 

Forecasting financial time series is an essential element of any investment activity in the entire 

investment industry. Traditional financial time series forecasting methods include sales percentage 

method and linear regression analysis method. One of the most popular method is the 

autoregressive integrated moving average (ARIMA). However, in order to improve the quality of 

financial forecasting, we need to rely on more accurate forecasting methods. Time series 

forecasting method is a method specially used to analyse a series of observations arranged in 

chronological order. It has extremely important significance in economics, especially in 

macroeconomics. Although there are already many machine learning and deep learning models 

applied to financial time series analysis, such as stacked auto-encoders (SAE) [1], artificial neural 

network (ANN) and long short-term memory (LSTM) [2]. In recent years, wavelet transformation 

has been proposed for time series analysis [3, 4]. 

In this paper, we propose a prediction method, based on the combination between the non-linear 

autoregressive neural network and the discrete wavelet transform. As with other prediction 

methods, the basic idea is that we use the data available, constituting the past evolution of the 

series, to determine, at least partially, its future development. To overcome the insufficient 

accuracy of traditional financial time series forecasting methods, the hybrid proposed model is 

established including three stages, which are data pre-processing stage, data prediction stage and 

prediction result analysis stage. In the first stage, we decompose the financial time series using the 

discrete wavelet transform into sub-series. In the second stage we use to pre-processed data as 

input for the ANN and in the final stage we analyse the predicted data using evaluation criteria. 

The rest of this paper is organized as follows. The section 2 briefly presents the artificial neural 

network. In section 3, the concept of wavelet analysis will be introduced, while in section 4 we 

describe the prediction method. In section 5, we apply the proposed model and ARIMA model to 

three financial time series (exchange rate EUR/USD, the Brent price and NASDAQ composite 

price). Finally, section 6 is dedicated to the conclusions.             
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2. NONLINEAR AUTOREGRESSIVE NEURAL NETWORK 

Artificial neural network was first introduced to solve complex classification problems. But due 

to their universal approximation property [5, 6], they were quickly used as nonlinear regression 

models, and then for the modelling of time series and forecasting [7, 8]. In this paper we consider 

a family of multilayer perceptron (MLP see figure 1) models called nonlinear autoregressive neural 

network model (NAR), defined by: 

𝑌𝑡 = ℎ(𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑑) + 𝜀𝑡, 

where 𝑌𝑡 ∈ ℝ, ℎ represents a function implemented by a multi-layered perceptron with a single 

output unit, 𝑌𝑡−𝑗 , 𝑗 = 1, … , 𝑑 are the delays of the time series (𝑌𝑡) and 𝜀𝑡 is a white noise. 

The NAR model can be defined exactly by the following equation: 

𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜓 (∑ 𝛽𝑗𝑖𝑌𝑡−𝑗 + 𝛽0𝑖

𝑑

𝑗=1
)

𝑘

𝑖=1
+ 𝜀𝑡. 

d Number of entries 

k Number of hidden layer 

𝜓 Activation function 

𝛽𝑗𝑖 The weight of the connection between the input unit i and the hidden unit j 

𝛼𝑖 The weight of the connection between the hidden unit j and the output unit 

𝛼0  Constants that correspond to the output unit 

𝛽0𝑖 Constants that correspond to the hidden unit j 

Table 1: Symbol definition 

To achieve the approximation of a time series, from generally noisy samples, using a neural 

network, three successive steps are necessary. First we have to choose the network architecture 

(number of layers and neurons) in such a way that the network is able to reproduce what is 

deterministic in the data. the adjustment of the number of weights of the network to avoid the 

possession of bad interpolation properties (generalization of the network) [9]. Secondly, it is 

necessary to estimate the parameters of the nonlinear regression, by minimizing the approximation 

error on the points of the training set, this step constitutes the supervised learning for the neural 
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network. In the final stage, it is necessary to estimate the quality of the network obtained by testing 

it with examples which are not part of the training set.  

There are many training functions used to train an ANN [10, 11]. Most of the learning algorithms 

of neural networks are optimization algorithms, they seek to minimize, by nonlinear optimization 

methods, a cost function which constitutes a measure of the difference between the desired 

responses and the real responses of the network. This optimization is done iteratively, by modifying 

the weights as a function of the gradient of the cost function: the gradient is estimated by a method 

specific to neural networks, called the backpropagation method. In our work, we chose the 

Levenberg-Marquardt method, characterized by its great computational and memory requirements.  

The Levenberg-Marquardt algorithm is given by: 

𝑊𝑘+1 = 𝑊𝑘 − (𝐽𝑇𝐽 + 𝜇𝐼)−1𝐽𝑡𝑒, 

where, ‘W’ is the weights of the neural network, ‘J’ is the Jacobian matrix of the performance 

criteria to be minimized, ‘I’  is the unit matrix, µ is a learning rate that controls the learning process 

and ‘e’ is the residual error vector. Hence, µ is decreased after each successful step and increased 

only when a step increases the error.    

 

3. WAVELET ANALYSIS 

The introduction to theory and practice of wavelet analysis are described by several authors in 

numerous books and articles [12, 13, 14]. Some other authors have described the application of 

wavelets in statistics and time series analysis [15, 16]. Unlike the Fourier transform, which does 

not work well when it has to locally describe a function that shows discontinuities, wavelet analysis 

offers a wide range of basic functions from which one we can choose the most appropriate for a 

given application. In his article, Strang make a more in-depth comparison between the Fourier 

transform and the wavelet transform [17]. The wavelet transform offers the possibility of analysing 

a signal simultaneously in the time domain and in the frequency domain (necessary for a non-

stationary signal), it can be used to explore, denoise and smoothen any kind and size of time series 

[18]. A wavelet is an oscillating function 𝜑 of mean zero, possessing a certain degree of regularity 

and whose support is finite. The mother wavelet of a signal is defined by:  



5491 

FINANCIAL TIME SERIES PREDICTION 

                          𝜓(𝜏, 𝑎) = 𝑎−
1

2𝜓 (
𝑡−𝜏

𝑎
),                       (1) 

where ‘t’ stands for time, ‘τ’ is a translation parameter in time and ‘a’ is a dilation parameter, who 

referred to a scale parameter, with a value selected in the range of 0 < 𝑎 < 1 . Regularity 

conditions also can be imposed such as multiple vanishing moments: 

∫ 𝜓(𝑡)𝑑𝑡 = 0,
+∞

−∞

 

second the integral of the square of the wavelet function is unity 

∫ 𝜓2(𝑡)𝑑𝑡
+∞

−∞

= 1, 

In addition, it is usually assumed that the following condition is true: 

𝐶𝜓 = ∫
|𝜓(𝑠)|2

𝑠
𝑑𝑠

+∞

−∞

, 

where 𝐶𝜓 will be within the range of 0 < 𝐶𝜓 < ∞. We called the admissibility condition, which 

is necessary to reconstruct the signal. In this study, to analyse the financial time series, we choose 

the discrete wavelet transform (DWT), defined as follows: 

𝑊𝜓𝑌(𝜏, 𝑎) = |𝑎|−
1
2 ∫ 𝑌(𝑡)𝜓 (

𝑡 − 𝜏

𝑎
) 𝑑𝑡

+∞

−∞

, 

where 𝜓(𝑡) is the basic wavelet with effective length (t) that is usually shorter than the target time 

series 𝑌(𝑡). Using the DWT the original time series 𝑌(𝑡) is decomposed to approximate series (A) 

and detailed (D) contains the rapid and sudden changes (see figure 2).    

 

3. HYBRID SYSTEM DESIGN DWT-ANN 

In this section, the prediction method will be described in detail. The main idea is to use as inputs 

for the MLP (NAR) network, the components of the subseries (details and approximations) which 

are derived from the use of the discrete wavelet transform on the original data of the time series 

according to the following steps:  

• Step 1:  Dividing the data into a training set and testing set (65%, 25%, 10%). 
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• Step 2: Data Pre-processing, using the discrete wavelet transform in order to obtain the 

approximation coefficients and detail coefficients of the original time series. 

• Step 3: We use the approximation and detail coefficients as input to the nonlinear 

autoregressive neural network models. The network gives output as coefficients only.  

• Step 4: We reconstructed the output coefficients from the ANN using inverse wavelet 

function.  

 

4.1 Performance evaluation 

This step consists in evaluating the models formed by comparing the difference between the 

estimated values and the actual values. The evaluation criteria are necessary to choose the best 

model. The indicators taken in this study are: the Mean Square Error (MSE) and Coefficient of 

determination (R2). The definitions of these two indices are presented below: 

• 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑌𝑖 − �̅�𝑖)2𝑁

𝑖=1 , 

• 𝑅2 =
[∑ (𝑌𝑖−�̅�𝑖)(�̂�𝑖−�̅̂�𝑖)]2𝑁

𝑖=1

∑ (𝑌𝑖−�̅�𝑖)2 ∑ (�̂�𝑖−�̅̂�𝑖)2𝑁
𝑖=1

𝑁
𝑖=1

, with �̅�𝑖 =
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖=1  and N is the number of sample. 

 

5. RESULTS AND DISCUSSION 

The data used in this study was collected from the "https://www.investing.com/" website. It 

represents the daily exchange rate EUR/USD, the Brent oil price and NASDAQ composite price 

between 02 January 2015 and 31 December 2020 (see figures 3, 4 and 5).  

In a first part of the simulation, we apply the Box and Jenkins methodology [19] to the three 

financial time series, in order to determine the best ARIMA model, by following to three main step: 

Identification, Estimation, and Model checking according to the smaller AIC and BIC values and 

the higher likelihood value [20]. The most suitable model according to the smaller AIC and BIC 

values and the higher likelihood value for the daily exchange rate EUR/USD is ARIMA (1,1,1), 

for the Brent oil price is ARIMA (1,1,0) and for the NASDAQ composite price is ARIMA (0,1,2). 

In the second part of the simulation, we have chosen the Daubechies wavelet as the mother wavelet 
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and a decomposition number equal to 7 to represent our signals in the time scale domain. The level 

of decomposition depends on the sampling frequency of the signal to be analysed, it is determined 

by the application of to the following formula: 

𝐿 = 𝑖𝑛𝑡(ln(𝑁)), 

where ‘L’ is the level of decomposition and ‘N’ is the signal length. Note that the original time 

series 𝑌𝑡  can be synthesized by the approximation and detail sequences, i.e., 𝑌𝑡 = 𝐴7 + 𝐷7 +

𝐷6 + 𝐷5 + 𝐷4 + 𝐷3 + 𝐷2 + 𝐷1 (see figures 6, 7 and 8). After decomposing the time series, we use 

the sub series as inputs to our artificial neural network. In this study, the number of hidden nodes 

was determined by the learning algorithm [9]. The architecture and parameters of the NAR and 

DWT-NAR used for each data are described in the following table. 

 Number of 

input neuron(s) 

Number of 

output 

neuron(s) 

Number of 

hidden layer(s) 

Number of 

neurons in 

hidden layer(s) 

Transfer 

function 

 

Time series NAR DWT-

NAR 

NAR DWT-

NAR 

NAR DWT-

NAR 

NAR DWT-

NAR 

NAR DWT-

NAR 

Brent oil One Seven One One 27 Sigmoid 

function EUR/USD One Seven One One 27 

NASDAQ One Seven One One 32 

Table 2: NAR and DWT-NAR parameter settings 

  In table 3, we find the MSE and Coefficient of determination (R2) for the three models (ARIMA, 

NAR, DWT-NAR).  

Time 

series 

RMSE 𝑅2 

ARIMA ANN(NAR) DWT-NAR ARIMA ANN(NAR) DWT-NAR 

Brent oil 1.267195 1.427403 0,116317 0.7531 0.7941 0.8865 

EUR/USD 0.005742 0.005197 0.000556 0.8282 0.8852 0.9623 

NASDAQ 97.68545 92.99349 44.94144 0.5427 0.7457 0.8429 

Table 3: Models performance 
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The MSE and Coefficient of determination (R2) for the three proposed methods are summarized 

in Table III. We find that the decomposition of the financial series in detail and approximation 

coefficients and use them as new entries of the studied system, optimizes the results obtained (see 

figures 9, 10 and 11). 

 

6. CONCLUSION 

In this article, a method for predicting financial time series was presented. This method was 

developed by the combination of the nonlinear autoregressive neural network and the wavelet 

transform. This combination was performed by taking as inputs to the neural network the 

approximations and details obtained by decomposing each input variable using the discrete 

wavelet transform. This method was applied to the series of exchange rate EUR/USD, the Brent 

price and NASDAQ composite price. The results clearly surpass those obtained by using the 

ARIMA model and nonlinear autoregressive neural networks (inputs undecomposed). 
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FIGURES 

 

 

Figure 1: Architecture of the nonlinear autoregressive neural network 
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Figure 3: Daily price of Brent oil from 2015 to 2020 

 

Figure 4: Daily exchange rate of EUR/USD from 2015 to 2020 

 

Figure 5: Daily price of NASDAQ composite from 2015 to 2020 
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Figure 6: Decomposed wavelet sub-time series of daily Brent oil price from 2015 to 2020 

 

Figure 7: Decomposed wavelet sub-time series of daily exchange rate of EUR/USD from 2015 to 2020 

 

Figure 8: Decomposed wavelet sub-time series of daily NASDAQ composite price from 2015 to 2020 
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Figure 9: Actual, predict and forecast values of the Brent oil price 

 

Figure 10: Actual, predict and forecast values of the EUR/USD exchange rates 

 

Figure 11: Actual, predict and forecast values of the NASDAQ composite price 
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