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Abstract. The Jump graph J(G) of a graph G is the graph whose vertices are edges of G and two vertices of J(G)

are adjacent if and only if they are not adjacent in G. In this article, we have given characterization for the Jump

graph of paths into Continuous monotonic star decomposition. Also we have given characterization for the Jump

graph of complete graphs into Continuous monotonic tree decomposition.
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1. INTRODUCTION

Let G = (V,E) be a simple undirected graph without loops or multiple edges. A path on n

vertices is denoted by Pn, cycle on n vertices is denoted by Cn and complete graph on n vertices

is denoted by Kn. The neighbourhood of a vertex v in G is the set N(v) consisting of all vertices

that are adjacent to v. |N(v)| is called the degree of v and is denoted by d(v). A complete bipar-

tite graph with partite sets V1 and V2, where |V1|= r and |V2|= s, is denoted by Kr,s. The graph
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K1,r is called a star and is denoted by Sr. Claw is a star with three edges. For any set S of points

of G, induced subgraph < S > is the maximal subgraph of G with point set S. An edge induced

subgraph < E ′ > of G is the subgraph of G whose vertex set is the set of ends of edges in E ′

and whose edge set is E ′. The terms not defined here are used in the sense of [3].

A decomposition of a graph G is a family of edge-disjoint subgraphs {G1,G2, . . . ,Gk}

such that E(G) = E(G1)∪E(G2)∪ . . .∪E(Gk). If each Gi is isomorphic to H for some sub-

graph H of G, then the decomposition is called a H-decomposition of G. A decomposition,

{G1,G2, . . . ,Gk} for all k ∈ N is said to be a Continuous Monotonic Decomposition (CMD) if

each Gi is connected and |E(Gi)| = i for all i ∈ N. The concept of CMD was introduced by

Paulraj Joseph and Gnanadhas [4].

The Jump graph J(G) of a graph G is the graph whose vertices are edges of G and two ver-

tices of J(G) are adjacent if and only if they are not adjacent in G. Equivalently complement

of line graph L(G) is the Jump graph J(G) of G. This concept was introduced by Chartrand in

[1]. Coconut tree CT (m,n) is a graph obtained from the path Pn by appending m new pendant

edges at an end vertex of Pn. Double coconut tree D(n,r,m) is a graph obtained by attaching

n > 1 pendant vertices to one end of the path Pr and m > 1 pendant vertices to the other end of

the path Pr.

2. CONTINUOUS MONOTONIC STAR DECOMPOSITION OF JUMP GRAPH OF PATHS

Let J(Pn) denote the Jump graph of paths. Then J(Pn) is a connected graph if and only if

n≥ 5. Let us consider the connected jump graph of paths. Let the edges of path Pn be labelled

as x1,x2, . . . ,xn−1. Since the number of edges of path Pn is (n− 1), the number of vertices of

J(Pn) is (n−1). The number of edges of Jump graph of paths J(Pn) is
(n−2

2

)
.

Definition 2.1. [4] If G admits a CMD {G1,G2, . . . ,Gk} for all k ∈ N, where each Gi is a star,

then we say that G admits a Continuous Monotonic Star Decomposition (CMSD).

Theorem 2.2. [4] Let G be a connected simple graph of order p and size q. Then G admits a

CMD {H1,H2, . . . ,Hn} if and only if q =
(n+1

2

)
.

Lemma 2.3. Let m ≥ 2. The set {1,2, . . . ,m} can be partitioned into two sets B1 and B2 such

that ∑x∈B1 x = (n−3)(n−4)
2 and ∑y∈B2 y = n−3 where m(m+1)

2 =
(n−2

2

)
.
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Proof. Let m ≥ 2. and n = m + 3. Let us prove this lemma by induction on m.

When m = 2, n = 5. If B1 = 1 and B2 = 2 then ∑x∈B1 x = 1 and ∑y∈B2 y = 2. Hence the

result is true for m = 2.

Assume that the result is true for m− 1. Hence the set {1,2, . . . ,m−1} can be partitioned

into two sets B1 and B2 such that ∑x∈B1 x = (m−1)(m−2)
2 and ∑y∈B2 y = m− 1. Then the set

{1,2, . . . ,m} can be partitioned into two sets B′1 and B′2 where B′1 = B1∪{m−1} and B′2 = m.

Clearly ∑x∈B′1
x = ∑x∈B1 x + {m−1} = (m−1)(m)

2 = (n−3)(n−4)
2 and

∑y∈B2 y = m = n−3. Hence the induction and lemma holds. �

Theorem 2.4. Jump graph of path J(Pn) admits Continuous monotonic star decomposi-

tion {S1,S2, . . . ,Sm} if and only if there exists an integer m such that (i) m = n− 3 and

(ii) m(m+1)
2 =

(n−2
2

)
.

Proof. We have |E[J(Pn)]|=
(n−2

2

)
.

Assume that J(Pn) admits Continuous monotonic star decomposition

{S1,S2, . . . ,Sm}. By theorem 2.2, |E[J(Pn)]| = m(m+1)
2 . Hence, m(m+1)

2 =
(n−2

2

)
. Hence

(ii).

Since J(Pn) admits Continuous monotonic star decomposition

{S1,S2, . . . ,Sm},
(n−2

2

)
= 1 + 2 + . . . + m = m(m+1)

2 . This implies m(m+1)
2 = (n−2)(n−3)

2 .

Thus m = n−3. Hence (i).

Conversely, assume that m = n−3 and m(m+1)
2 =

(n−2
2

)
.

Define T1 =
{

xix j/3≤ i≤ n−2; i > j;1≤ j ≤ n−3; j 6= i−1
}

and

T2 =
{

xn−1x j/1≤ j ≤ n−3
}
.

Now, |T1|= (n−3)(n−4)
2 and |T2|= n−3. Thus |T1|+ |T2|=

(n−2
2

)
= m(m+1)

2 = 1+2+ . . .+m.

By lemma 2.3, {1,2, . . . ,m}= B1∪B2 where ∑x∈B1 x = (n−3)(n−4)
2 and ∑y∈B2 y = n−3.

Decompose T1 and T2 into stars Si as follows:

T1 =
⋃

Si where i ∈ B1 and Si = {xi+2;x1,x2, . . . ,xi} . Here xi+2 forms center of the star Si.

T2 = Sm where m ∈ B2 and Sm = {xn−1;x1,x2, . . . ,xn−3} . Here xn−1 forms center of the star

Sm. Also|E(Si)| = i; 1 ≤ i ≤ m. Thus J(Pn) admits Continuous monotonic star decomposition

{S1,S2, . . . ,Sm} . �
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Illustration 2.5. As an illustration let us decompose J(P12).

Let E(P12) = {1,2, . . . ,11} . Therefore V [J(P12)] = {1,2, . . . ,11} .

P12 and J(P12) are given in Figure 2.1 and Figure 2.2 respectively.

FIGURE 2.1. P12

FIGURE 2.2. J(P12)

Here |E[J(P12)]|= 45.

Define T1 = {31,41,42,51,52,53,61,62,63,64,71,72,73,74,75,81,82,83,84,85,86,91,92,93,

94,95,96,97,(10)1,(10)2,(10)3,(10)4,(10)5,(10)6,(10)7, (10)8} and

T2 = {(11)1,(11)2,(11)3,(11)4,(11)5,(11)6,(11)7,(11)8,(11)9} .

|T1|+ |T2|= 45 = 1+2+3+4+5+6+7+8+9 =
(10

2

)
.

Here B1 = {1,2,3,4,5,6,7,8} and B2 = {9} .
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T1 is decomposed as S1∪S2∪ . . .∪S8 where S1 = 〈{31}〉 , S2 = 〈{41,42}〉 ,

S3 = 〈{51,52,53}〉 , S4 = 〈{61,62,63,64}〉 , S5 = 〈{71,72,73,74,75}〉 ,

S6 = 〈{81,82,83,84,85,86}〉 , S7 = 〈{91,92,93,94,95,96,97}〉 ,

S8 = 〈{(10)1,(10)2,(10)3,(10)4,(10)5,(10)6,(10)7,(10)8}〉 .

T2 is decomposed as S9 where S9 = 〈{(11)1,(11)2,(11)3,(11)4,(11)5,(11)6,(11)7,(11)8,(11)9}〉.

Clearly {S1,S2, . . . ,S9} forms a CMSD of J(P12).

3. CONTINUOUS MONOTONIC TREE DECOMPOSITION OF JUMP GRAPH OF COM-

PLETE GRAPHS

Let J(Kn) denote the Jump graph of complete graphs. Then J(Kn) is a connected graph if

and only if n≥ 5. Let us consider the connected jump graph of complete graphs. Let V (Kn) =

{1,2, . . . ,n} and E(Kn) = {12,13, . . . ,1n,23,24, . . . ,2n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n} .

Since the number of edges of complete graphs Kn is n(n−1)
2 , the number of vertices of J(Kn) is

n(n−1)
2 . The number of edges of Jump graph of complete graphs J(Kn) is n(n−1)(n−2)(n−3)

8 .

Theorem 3.1. Let n ≥ 5. Then J(Kn) is decomposed into

{T2S1,T3S2, . . . ,Tn−2Sn−3} where Tl =
l(l+1)

2 ; 2≤ l ≤ n−2.

Proof. Let n≥ 5. Let V (Kn) = {1,2, . . . ,n} and

E(Kn) = {12,13, . . . ,1n,23,24, . . . ,2n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n} .

Since edges of Kn are taken as vertices of J(Kn) we have,

V [J(Kn)] = {12,13, . . . ,1n,23, . . . ,2n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n} . Two vertices

uv,xy in J(Kn) are adjacent if u, v, x, y all are distinct elements.

Define U1 = {(n−3)(n−2),(n−3)(n−1),(n−3)n} and

V1 = {(n−2)(n−1),(n−2)n,(n−1)n} . Thus |U1|= 3 and |V1|= 3.

Now 〈{(n−3)(n−2),(n−3)(n−1),(n−3)n,(n−2)(n−1),(n−2)n,(n−1)n}〉 ∼= 3(S1).

Thus we get T2 copies of S1.

Define U2 = {(n−4)(n−3),(n−4)(n−2),(n−4)(n−1),(n−4)n} and V2 = {U1,V1} . Thus

|U2|= 4 and |V2|= 6. Now 〈{U1,U2}〉 ∼= 3(S2). Also, 〈{V1,U2}〉 ∼= 3(S2). Therefore we get T3

copies of S2.

Define U3 = {(n−5)(n−4),(n−5)(n−3),(n−5)(n−2),(n−5)(n−1),(n−5)n} and
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V3 = {U2,V2} . Thus |U3|= 5 and |V3|= 10.

Now, 〈{U2,U3}〉 ∼= |U2|(S3). Also, 〈{U1,U3}〉 ∼= |U1|(S3) and 〈{V1,U3}〉 ∼= |V1|(S3).

|U1|+ |U2|+ |V1| = 3+ 3+ 4 = (4)(5)
2 = T4. Thus we get T4 copies of S3. Proceed like this.

Finally we define U(n−3) = {12,13, . . .1n} and V(n−3) =
{

U(n−4),V(n−4)
}
.

Thus |U(n−3)|= n−1 and |V(n−3)|= |U(n−4)|+ |V(n−4)|.

Now,
〈{

U(n−4),U(n−3)
}〉∼= |U(n−4)|(Sn−3)

Also,
〈{

U(n−5),U(n−3)
}〉∼= |U(n−5)|(Sn−3),

...〈{
U1,U(n−3)

}〉∼= |U1|(Sn−3),〈{
V1,U(n−3)

}〉∼= |V1|(Sn−3).

Now |V1| + |U1| + |U2| + . . . |U(n−5)| + |U(n−4)| = 3 + 3 + 4 + 5 + . . . + (n − 3) +

(n − 2) = (n−2)(n−1)
2 = Tn−2. Thus we get T(n−2) copies of S(n−3). Hence we have

E[J(Kn)] = S1∪S1∪S1︸ ︷︷ ︸
T2 times

∪S2∪ . . .∪S2︸ ︷︷ ︸
T3 times

∪S3∪ . . .∪S3︸ ︷︷ ︸
T4 times

. . . ∪ S(n−3)∪ . . .∪S(n−3)︸ ︷︷ ︸
Tn−2 times

. Thus J(Kn)

is decomposed into {T2S1,T3S2, . . . ,Tn−2Sn−3} where Tl =
l(l+1)

2 ;2≤ l ≤ n−2. �

Lemma 3.2. Let m = n(n−3)
2 where n ≥ 5. The set {1,2, . . . ,m} can be partitioned

into two sets B1 and B2 such that ∑x∈B1 x = n(n−3)(n2−3n−2)
8 and ∑y∈B2 y = n(n−3)

2

where m(m+1)
2 = n(n−1)(n−2)(n−3)

8 .

Proof. Let n ≥ 5. Let us prove this lemma by induction on n. When n = 5, m = 5. If

B1 = {1,2,3,4} and B2 = 5 then ∑x∈B1 x = 10 and ∑y∈B2 y = 5. Hence the result is true for

n = 5.

Assume that the result is true for n − 1. Hence the set{
1,2, . . . , (n−1)(n−4)

2

}
can be partitioned into two sets B1 and B2 such that

∑x∈B1 x = (n−1)(n−4)[(n−1)2−3(n−1)−2]
8 and ∑y∈B2 y = (n−1)(n−4)

2 .

Then the set {1,2, . . . ,m} can be partitioned into two sets B′1 and B′2 where B′1 = B1 ∪B2 ∪{
(n−1)(n−4)

2 +1, (n−1)(n−4)
2 +2, . . . , (n−1)(n−4)

2 +(n−3)
}

and B′2 =
(n−1)(n−4)

2 +(n−2). Clearly

∑x∈B′1
x = ∑x∈B1 x + ∑y∈B2 y + (n−1)(n−4)

2 + 1 + (n−1)(n−4)
2 + 2 + . . .+ (n−1)(n−4)

2 + (n− 3) =
n(n3−6n2+7n+6)

8 = n(n−3)(n2−3n−2)
8 . Also ∑y∈B′2

y = (n−1)(n−4)
2 +(n−2) = n(n−3)

2 .

Hence the induction and lemma holds. �
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Theorem 3.3. Let n > 5. Then the jump graph of complete graph J(Kn) is {3DCT (2,2,2),STl ,

CT (Tl−1, t),DCT (Tl−1,r,s)} decomposable where Tl =
l(l+1)

2 ; l = 3,4, . . . ,n−3.

Proof. Let V (Kn) = {1,2, . . . ,n} and

E(Kn) = {12,13, . . . ,1n,23,24, . . . ,2n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n} . Then

V [J(kn)] = {12, . . . ,1n,23, . . . ,2n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n} .

Take D1 = {(n−4)(n−3),(n−4)(n−2),(n−4)(n−1),(n−4)n} ,

D2 = {(n−3)(n−2),(n−1)n} ,

D3 = {(n−3)(n−1),(n−2)n} and

D4 = {(n−3)n,(n−2)(n−1)} .

Now, 〈{D1,D2}〉 ∼= DCT (2,2,2),

〈{D1,D3}〉 ∼= DCT (2,2,2),

〈{D1,D4}〉 ∼= DCT (2,2,2).

Now ((n−5)(n−4);(n−3)(n−2),(n−3)(n−1),(n−3)n,(n−2)(n−1),(n−2)n,(n−1)n)∼=

S6, ((n− 5)(n− 3);(n− 4)(n− 2),(n− 4)(n− 1),(n− 2)(n− 1),(n− 2)n,(n− 1)n) ∼= S5 and

〈{(n−5)(n−3),(n−4)n,(n−5)(n−2)}〉 ∼= P3. Thus 〈E(S5)∪E(P3)〉 ∼=CT (5,3).

Now ((n−5)(n−1);(n−4)(n−2),(n−3)(n−2),(n−3)n,(n−4)n,(n−2)n)∼= S5 and

〈{(n−5)(n−1),(n−4)(n−3),(n−5)(n−2),(n−4)(n−1)}〉 ∼= P4.

Thus 〈E(S5)∪E(P4)〉 ∼=CT (5,4).

Now ((n−5)n;(n−4)(n−3),(n−4)(n−2),(n−4)(n−1), (n−3)(n−2),(n−2)(n−1))∼= S5,

〈{(n−5)n,(n−3)(n−1),(n−5)(n−2)}〉 ∼= P3 and ((n−5)(n−2);(n−3)n,(n−1)n)∼= S2.

Thus 〈E(S5)∪E(P3)∪E(S2)〉 ∼= DCT (5,3,2).

Now ((n− 6)(n− 5);((n− 4)(n− 3),(n− 4)(n− 2),(n− 4)(n− 1),(n− 4)n,(n− 3)(n− 2),

(n−3)(n−1),(n−3)n,(n−2)(n−1),(n−2)n,(n−1)n)∼= S10,

((n − 6)(n − 4);(n − 5)(n − 3),(n − 5)(n − 2),(n − 5)n,(n − 3)(n − 2),

(n−3)(n−1),(n−3)n,(n−2)(n−1),(n−2)n,(n−1)n)∼= S9 and

〈{(n−6)(n−4),(n−5)(n−1),(n−6)(n−3)}〉 ∼= P3.

Thus 〈E(S9)∪E(P3)〉 ∼=CT (9,3).

Now ((n − 6)(n − 2);(n − 5)(n − 3),(n − 5)(n − 1),(n − 5)n,(n − 4)(n − 3),

(n−4)(n−1),(n−4)n,(n−2)(n−1),(n−3)n,(n−1)n)∼= S9 and
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〈{(n−6)(n−2),(n−5)(n−4),(n−6)(n−3),(n−5)(n−2)}〉 ∼= P4.

Thus 〈E(S9)∪E(P4)〉 ∼=CT (9,4).

Now ((n − 6)(n − 1);(n − 5)(n − 4),(n − 5)(n − 3),(n − 5)(n − 2),

(n−4)(n−3),(n−4)(n−2),(n−4)n,(n−3)(n−2),(n−3)n,(n−2)n)∼= S9,

〈{(n−6)(n−1),(n−5)n,(n−6)(n−3)}〉 ∼= P3 and

((n−6)(n−3);(n−2)(n−1),(n−4)(n−1))∼= S2.

Thus 〈E(S9)∪E(P3)∪E(S2)〉 ∼= DCT (9,3,2).

Now ((n − 6)n;(n − 5)(n − 4),(n − 5)(n − 3),(n − 5)(n − 2),(n − 5)(n − 1),

(n−4)(n−3),(n−4)(n−1),(n−3)(n−2),(n−3)(n−1),(n−2)(n−1))∼= S9,

〈{(n−6)n,(n−4)(n−2),(n−6)(n−3)〉 ∼= P3 and

((n − 6)(n − 3);(n − 4)n,(n − 2)n,(n − 1)n) ∼= S2. Thus 〈E(S9)∪E(P3)∪E(S2)〉 ∼=

DCT (9,3,3).

Proceed like this,

Now (12;34,35, . . . ,3n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n)∼= S (n−3)(n−2)
2 .

Also, (13;24,25, . . . ,2n, . . . ,(n−2)(n−1),(n−2)n,(n−1)n)∼= S (n−3)(n−2)
2 −1

and

〈{(13),(26),(14)}〉 ∼= P3.

Thus
〈

E(P3)∪E
(

S (n−3)(n−2)
2 −1

)〉
∼=CT ( (n−3)(n−2)

2 −1,3).
...

(1n;23,24, . . .2(n−1), . . . ,(n−2)(n−1))∼= S (n−3)(n−2)
2 −1,

〈{(1n),(35),(14)}〉 ∼= P3 and (14;3n,5n, . . . ,(n−1)n)∼= Sn−4.

Thus we get〈
E(S (n−3)(n−2)

2 −1
)∪E(P3)∪E(S(n−4))

〉
∼= DCT

(
(n−3)(n−2)

2 −1,3,n−4
)
.

Thus E[J(Kn)] = E[3DCT (2,2,2)] ∪ E[STl ] ∪ E[CT (Tl − 1,3)] ∪ E[CT (Tl − 1,4)]∪

E[DCT (Tl − 1,3,2)]∪E[DCT (Tl − 1,3,3)]∪ . . .∪E[DCT (Tl − 1,3,n− 4)] where Tl =
l(l+1)

2 ;

l = 3,4, . . . ,n−3. �

Theorem 3.4. Jump graph of complete graph J(Kn) admits Continuous Monotonic tree decom-

position {H1,H2, . . . ,Hm} if and only if there exists an integer m such that (i) m = n(n−3)
2 and

(ii) m(m+1)
2 = n(n−1)(n−2)(n−3)

8 .
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Proof. Let |E[J(Kn)]|= n(n−1)(n−2)(n−3)
8 .

Assume J(Kn) admits Continuous Monotonic decomposition {H1,H2, . . . ,Hm} . By theorem

2.2, |E[J(Kn)]|= m(m+1)
2 . Hence, m(m+1)

2 = n(n−1)(n−2)(n−3)
8 .

Since J(Kn) admits Continuous Monotonic decomposition {H1,H2, . . . ,Hm} , n(n−1)(n−2)(n−3)
8 =

1+2+ . . .+m = m(m+1)
2 . This implies m(m+1)

2 = n(n−1)(n−2)(n−3)
8 . Hence (ii).

(ii) implies m(m+1) = n(n−3)
2 [n(n−3)

2 +1]. Thus m = n(n−3)
2 . Hence (i).

Conversely, assume that m = n(n−3)
2 and m(m+1)

2 = n(n−1)(n−2)(n−3)
8 .

By theorem 3.3, J(Kn) is decomposed into {3DCT (2,2,2),STl ,CT (Tl−1, t),

DCT (Tl−1,r,s)} where Tl =
l(l+1)

2 ; l = 3,4, . . . ,n−3.

Define T1 = {E[3DCT (2,2,2)]∪E[STl ]∪E[CT (Tl−1,3)]∪E[CT (Tl−1,4)]∪

E[DCT (Tl − 1,3,2)] ∪ E[DCT (Tl − 1,3,3)] ∪ . . . ∪ E[DCT (Tl − 1,3,n − 5)]} where

l = 3,4, . . . ,n−3 and T2 = E[DCT (Tl−1,3,n−4)] where l = n−3.

Here |T1| = n(n−3)(n2−3n−2)
8 and |T2| = n(n−3)

2 . Also |T1|+ |T2| = n(n−3)(n2−3n−2)
8 + n(n−3)

2 =

m(m+1)
2 = 1+2+ . . .+m.

By lemma 3.2, {1,2, . . . ,m}= B1∪B2 where ∑x∈B1 x = n(n−3)(n2−3n−2)
8 and ∑y∈B2 y = n(n−3)

2 .

Decompose T1 and T2 into trees Hi. For i ∈ B1 and B2, we choose Hi in such a way that

|E(Hi)|= i.

T1 =
⋃

Hi; i∈B1 where Hi ∈{3DCT (2,2,2),STl ,CT (Tl−1,3),CT (Tl−1,4),DCT (Tl−1,3,2),

DCT (Tl−1,3,3), . . . ,DCT (Tl−1,3,n−5)}.

T2 =
⋃

Hi; i ∈ B2 where Hi = {DCT (Tl−1,3,n−4)} and |E(Hi)| = i for all 1 ≤ i ≤ m.

Clearly J(Kn) admits Continuous Monotonic tree decomposition {H1,H2, . . . ,Hm} . Hence the

theorem. �

Illustration 3.5. As an illustration let us decompose J(K6).

Let E(K6) = {12,13,14,15,16,23,24,25,26,34,35,36,45,46,56} .

Thus V [J(K6)] = {12,13,14,15,16,23,24,25,26,34,35,36,45,46,56} .

K6 and J(K6) are given in Figure 3.1 and Figure 3.2 respectively.
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FIGURE 3.1. K6

FIGURE 3.2. J(K6)
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Here |E[J(K6)]|= 45.

Define T1 = {(34)(25),(34)(26),(34)(56),(56)(23),(56)(24),(35)(24),(35)(26),(35)(46),

(46)(23),(46)(25),(36)(24),(36)(25),(36)(45),(45)(23),(45)(26),(12)(34),(12)(35),(12)(36),

(12)(45),(12)(46),(12)(56),(13)(24),(13)(25),(13)(45),(13)(46),(13)(56),(13)(26),(14)(26),

(15)(24),(15)(34),(15)(36),(15)(26),(15)(46),(15)(23),(14)(23),(14)(25)} and

T2 = {(16)(23),(16)(24),(16)(25),(16)(34),(16)(45),(16)(35),(14)(36),(14)(56),(14)(35)}.

Now |T1|+ |T2|= 45 = 1+2+3+4+5+6+7+8+9 = n(n−1)(n−2)(n−3)
8 .

Here B1 = {1,2,3,4,5,6,7,8} and B2 = {9} .

T1 is decomposed as H1∪H2∪ . . .∪H8 where H1 = 〈{(34)(25)}〉 ,

H2 = 〈{(35)(24),(35)(26)}〉 , H3 = 〈{(35)(46),(46)(23),(46)(25)}〉 ,

H4 = 〈{(34)(26),(34)(56),(56)(23),(56)(24)}〉 ,

H5 = 〈{(36)(24),(36)(25),(36)(45),(45)(23),(45)(26)}〉 ,

H6 = 〈{(12)(34),(12)(35),(12)(36),(12)(45),(12)(46),(12)(56)}〉 ,

H7 = 〈{(13)(24),(13)(25),(13)(45),(13)(46),(13)(56),(13)(26),(14)(26)}〉 ,

H8 = 〈{(15)(23),(15)(34),(15)(36),(15)(26),(15)(46),(15)(24),(14)(23),(14)(25)}〉 .

Also T2 is decomposed as

H9 = 〈{(16)(23),(16)(24),(16)(25),(16)(34),(16)(45),(16)(35),(14)(36),(14)(56),(14)(35)}〉 .

Clearly {H1,H2, . . . ,H9} forms a CMTD of J(K6).
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