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Abstract. In this paper, we developed a mathematical model to describe the dynamics of Cholera with awareness

programs under limited resources. The model was fully analysed and the threshold for the eradication of the disease

was given. It was proven that the model undergoes a backward bifurcation under certain conditions. The model is

then extended to include optimal controls, namely: vaccination of susceptible individuals, killing of vectors, and

water sanitation. Numerical simulations for the application of a single control, combinations of two controls and all

three controls were given. Cost-effectiveness analysis was carried out in order to determine the most cost-effective

control strategies, which was found to be the combination of vaccination and water sanitation.
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1. INTRODUCTION

Cholera is a notable public health problem in many major parts of the world which can kill

tens of thousands of individuals [25, 12, 36, 37]. Symptoms include severe acute watery di-

arrhea. However, it is possible to be a carrier of cholera without exhibiting symptoms since

most infected people do not show symptoms for 1-10 days after infection, even though Vibro.

∗Corresponding author

E-mail address: elmojtaba@squ.edu.om

Received May 11, 2021
5380



COST-EFFECTIVENESS ANALYSIS OF A CHOLERA MODEL 5381

cholerae is present in their faeces and they can shed back into the environment and infect other

people. On the other hand, among people who develop symptoms, the major have mild or

moderate symptoms, while rare cases develop acute watery diarrhea with severe dehydration.

Cholera is acquired through direct or indirect transmission either through physical contact with

an infected host or contact with a contaminated environment [9, 4, 38, 6]. Also, Cholera can be

obtained by vector transmission when a living organism carries an infectious agent on its body

(mechanical) or as an infection host itself (biological), to a new host [30, 28, 2]. Despite recent

progress in the provision of clean water and good sewage systems especially in developed coun-

tries, cholera is still endemic in many developing countries and remains a considerable public

health problem with approximately 1.3 to 4.0 million cases, and 21 000 to 143 000 cholera-

related deaths annually worldwide[24].

Several mathematical models have been published in order to describe the dynamics of Cholera

[9, 4, 38, 6, 25, 12, 30, 28, 2]. The first mathematical model was published in 1927 by Ker-

mack and McKendrick [35]. The model includes three compartmental classes for susceptible

state S, infected people I and recovered individuals R. Capasso [33] proposed a model which

was introduced in 1973 to describe the Cholera epidemics in Italy. Then Codeco [4] in 2001

extend Capasso’s model and explicitly accounted for the Vibro Cholerae concentration in the

water supply which represents the environmental component into a basic SIR model and he

modeled the incidence by a logistic function to represent the saturation effect. Hartley et al. in

2006 extended Codeco’s model by adding a hyperinfectious state of the pathogen, representing

the ”explosive” infectivity of freshly shed Vibro Cholerae, based on the laboratory observations

[7]. Codeco’s model also modified by Joh et al. in 2009 [14] by assuming that there is an

explicit incorporation of a minimum infectious dose of pathogen to cause infection. Mukan-

davire et al. [38] proposed a model to study the 2008-2009 Cholera outbreak in Zimbabwe

in which they explicitly considered both human-to-human and environment-to-human trans-

mission pathways. Tien et.al. in 2010 [17] published a SIWR model which also included the

water state pathogen concentration in water reservoir. Their model included the dual transmis-

sion pathways, with bilinear incidence rates employed for both the environment-to-human and

human-to-human infection transmission. Moreover, Neilan et. al. [29] modified the Cholera
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model proposed by Hartley [7] and added three control measures into the model. Misra et. al. in

2012 citemisra2012modeling proposed a delay mathematical model for the control of cholera

epidemic by assuming that the disease spreads through carriers, which makes the human food

contaminated by transporting bacteria from the environment. Recently, Al-Shanfari et.al. [30]

proposed a mathematical model that describes the dynamics of Cholera by investigating the role

of houseflies in the transmission of Cholera which carry Vibro Cholerae on its body and transfer

it from unsafe environment to safe environment. These models differ from each other in some

aspects, however, the recovery rate is assumed to be a constant in most of these models.

Farai et.al. in 2019 studied the transmission dynamics of cholera in the presence of limited

resources by including a nonlinear recovery rate [10]. In real application, recovery rate depends

on many factors. The first factor is the number of infectious individuals seeking treatment. Re-

covery rate also depends on the availability of health resources to the public which are consid-

ered very sufficient for the infectious disease [1, 10, 16, 5]. The resources of the health system

includes the number of health care workers (physicians, nurses, pharmacists, etc.), number of

hospital beds and medicines and the effectiveness and efficiency of the treatment. In many de-

veloping countries, resources of treatment are very limited. So assuming constant recovery rate

cannot reflect the real cure rate and the nonlinear recovery rate is normally developed to account

for the role of the availability of medical resources.

The awareness programs play an important role in the transmission of the infectious disease.

Obviously, awareness can reduce the opportunity and probability of contact transmission among

the alerted susceptible populations, which in turn helps to control and prevent the disease from

further spreading. In recent time, information about the outbreaks is spreading quickly because

of the significant use in social media and the increase the travel around the world. Awareness

can have a reflective effect on the actual epidemic dynamics. It can have a positive influence on

the disease spread [27, 14, 22, 26, 32]. For instance, in Mexico (2009) the media coverage of

transmissibility and mortality rate associated with the virus of swine influenza strongly influ-

enced by behavioral changes and hence it helped to control the epidemic [14]. Also, awareness

can lead to negative consequences such as in Romania (2007-2012) although the implementa-

tion of two HPV vaccination programs was started, the uptake of vaccination remained low and
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the programs were failed because the information about the side effects and insufficient testing

of the vaccine was negatively spread [26].

In this study, in order to understand the impact of awareness programs on the spread and con-

trol of cholera, a mathematical model will be proposed to capture the dynamics of the effect of

awareness programs. The awareness about the disease will alert the aware individuals so that

they isolate themselves, reducing the contact with the infected and avoid unsafe environments.

Hence, the probability of contracting infection for individuals in aware class is less than those

who are in unaware class.

The rest of this paper is organised as follows; in section 2 we present the model formulation

and analysis, in section 3 we move on to present the numerical simulations and bifurcation

analysis of the model, in section 4 we study the optimal control analysis and cost-effectiveness,

and finally, in section 5 we draw the conclusion of our studies.

2. MODEL FORMULATION

We use the model in [30] and divide human population into five compartments: aware suscep-

tible Shu(t), uaware susceptible Sha(t), aware infectious Ihu(t), unaware infectious Iha(t), and

recovered Rh(t). The vector population is divided into two compartments: susceptible Sv(t),

infectious Iv(t). Furthermore, we consider two compartments B(t) and E(t) that reflects the

bacterial concentration at time t in safe and unsafe environments respectively. It is assumed that

the disease spreads due to the direct contact between susceptible and infective and by indirect

transmission either by vectors or by ingesting environmental vibrios from unsafe environment.

Also, it is considered that due to the awareness, aware susceptible individuals avoid being in

contact with the unsafe environment.

Also, we incorporate aspects of limited resources in the model by assuming that the recov-

ery rate (γ) depends on both the number of infectious individuals (Ih) and the hospital bed-

population ratio (b > 0) such that, it is a function of both b and Ih. The recovery rate γ(b, Ih) is

thus given as follows:

γ(b, Ih) = γ0 +(γ1 + γ0)
b

Ih +b
(2.1)

where γ1 is the maximum per capita recovery rate due to the sufficient health care resource and few

infectious individuals as well as the inherent property of a specific disease, γ0 is the minimum per capita
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recovery rate due to the function of basic clinical resources [5]. These assumptions are translated into

the following mathematical model:

dShu

dt
= µhNh−

βShu(Ihu + Iha)

Nh
− β1ShuB̂

κ1 + B̂
− β2ShuÊ

κ2 + Ê
− (µh +δ )Shu

dSha

dt
= δShu−

ε1βSha(Ihu + Iha)

Nh
− ε2β1ShaB̂

κ1 + B̂
−µhSha

dIhu

dt
=

βShu(Ihu + Iha)

Nh
+

β1ShuB̂
κ1 + B̂

+
β2ShuÊ
κ2 + Ê

− (µh + γ0 +(γ1 + γ0)
b̂

Ihu + b̂
)Ihu

dIha

dt
=

ε1βSha(Ihu + Iha)

Nh
+

ε2β1ShaB̂
κ1 + B̂

− (µh + γ0 +(γ1 + γ0)
b̂

Iha + b̂
)Iha

dRh

dt
= (γ0 +(γ1 + γ0)

b̂
Ihu + b̂

)dIhu +(γ0 +(γ1 + γ0)
b̂

Iha + b̂
)Iha−µhRh

dSv

dt
= µvNv−

λ1SvB̂
κ1 + B̂

− λ2SvÊ
κ2 + Ê

−µvSv(2.2)

dIv

dt
=

λ1SvB̂
κ1 + B̂

+
λ2SvÊ
κ2 + Ê

−µvIv

dB̂
dt

= εα1Iv−µbB̂

dÊ
dt

= α1Iv +α2Ihu−µeÊ

Symbol Parameter

µh Natural human birth and death rate

β Contact rate from human to human

β1 Rates of ingesting vibrios from the safe environment to human

β2 Rates of ingesting vibrios from the unsafe environment to human

γ0 Minimum per capita recovery rate

γ1 Maximum per capita recovery rate

b Hospital bed-population ratio

λ1 Rates of ingesting vibrios from the safe environment to vectors

λ2 Rates of ingesting vibrios from the aquatic environment to vector

µv Death rate of vector

µb Death rate of vibrios in safe environment

µe Death rate of vibrios in aquatic (unsafe) environment

ε , ε1, ε2 Modification parameter

α1 Rate of contribution to V. cholera in the both environments by vectors

α2 Rate of contribution to V. cholera in the unsafe environment by human

TABLE 1. Cholera model parameters
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3. ANALYSIS OF THE MODEL

3.1. Non-dimensionalization of the model. Our system of equations has different dimen-

sions with respect to the human population, vector population and V. cholerae. To make system

(2.2) dimensionless, the following substitutions are made: Sh = shNh, Ih = ihNh, Rh = rhNh,

Sv = svNv, Iv = ivNv, B̂ = BNh, Ê = ENh and b̂ = bNh with sh + ih + rh = 1 and sv + iv = 1. The

new system becomes:

dshu

dt
= µh−β shu(ihu + iha)−

β1shuB
κ1 +B

− β2shuE
κ2 +E

− (µh +δ )shu

dsha

dt
= δ shu− ε1β sha(ihu + iha)−

ε2β1shaB
κ1 +B

−µhsha

dihu

dt
= β shu(ihu + iha)+

β1shuB
κ̂1 +B

+
β2shuE
κ2 +E

− (γ0 +(γ1 + γ0)
b

ihu +b
)ihu−µhihu

diha

dt
= ε1β sha(ihu + iha)+

ε2β1shaB
κ1 +B

− (γ0 +(γ1 + γ0)
b

iha +b
)iha−µhiha

drh

dt
= (γ0 +(γ1 + γ0)

b
ihu +b

)ihu +(γ0 +(γ1 + γ0)
b

iha +b
)iha−µhrh

dsv

dt
= µv−

λ1svB
κ1 +B

− λ2svE
κ2 +E

−µvsv(3.1)

div
dt

=
λ1svB
κ1 +B

+
λ2svE
κ2 +E

−µviv

dB
dt

= εα0iv−µbB

dE
dt

= α0iv +α2ihu−µeE

where α0 =
α1Nv

Nh
. Equation of rh is not needed in the model analysis since rh = 1− shu− sha−

ihu− iha .

The feasible region for model (3.1) is Γ = Γh×Γv ⊂ℜ7
+×ℜ2

+, where

Γh = {(shu,sha, ihu, iha,rh,B,E) ∈ℜ7
+ : 0 < shu + sha + ihu + iha + rh ≤ 1},

and Γv = {(sv, iv) ∈ℜ2
+ : 0 < sv + iv ≤ 1}.

The set Γ is compact. To show that Γ is positively invariant set, i.e., all the variables of model

(3.1) stay non-negative if it starts with non-negative initial data, we rewrite model (3.1) as

xi = Fi(x) with i = 1...9, then it is obvious that Fi(x)≥ 0 and hence Γ is positively invariant set.

We assume that all parameters are positive and the initial conditions of system (2.2) are given
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by: shu(0) = shu0 > 0,sha(0) = sha0 > 0, ihu(0) = ihu0 > 0 ≥ 0, iha(0) = iha0 > 0 ≥ 0,rh(0) =

rh0 ≥ 0,sv(0) = sv0 ≥ 0, iv(0) = iv0 ≥ 0,B(0) = B0 ≥ 0,E(0) = E0 ≥ 0

The C1 smoothness of the right side of system (3.1) implies the local existence and uniqueness

of the solution with the initial values in ℜ9+.

3.2. Equilibria and the basic reproduction number. Obviously, model (3.1) admits a

unique disease-free equilibrium DFE ξ 0. A positive equilibrium of (3.1) in the inte-

rior of Γ, if one exists, is called an endemic equilibrium EE, and denoted by ξ ∗ =

(s∗hu,s
∗
ha, i
∗
hu, i
∗
ha, i
∗
h,B
∗,E∗). Here s∗hu,s

∗
ha, i
∗
hu, i
∗
ha, i
∗
h,B
∗,E∗ > 0.

Finding Disease-Free Equilibrium Point (DFE):

The disease-free equilibrium (DFE) of model (3.1)is:

(3.2) ξ
0 = (

µh

µh +δ
,

δ

µh +δ
,0,0,1,0,0,0)

The basic reproduction number, R0, is a threshold parameter that allows us to predict whether

the disease will die out or persist. Here, we used the constant term of characteristic equation

method to find R0 since the next generation matrix failed to find its value.

The Jacobian matrix at the DFE is given by:

J(ξ 0) =



−Π1 0 −Π2 −Π2 0 0 −Π3 −Π4

δ −µh −Π5 −Π5 0 0 −Π6 0

0 0 Π2−Π7 Π2 0 0 Π3 Π4

0 0 Π5 Π5−Π7 0 0 Π6 0

0 0 0 0 −µv 0 −Π8 −Π9

0 0 0 0 0 −µv Π8 Π9

0 0 0 0 0 ε α0 −µb 0

0 0 α2 0 0 α0 0 −µe


with Π1 = µh +δ ,Π2 =

β µh
µh+δ

,Π3 =
β1µh

(µh+δ )κ1
,Π4 =

β2µh
(µh+δ )κ2

,Π5 =
ε1β δ

µh+δ
,Π6 =

ε2β1δ

(µh+δ )κ1
,

Π7 = µh + γ1,Π8 =
λ1
κ1
,Π9 =

λ2
κ2

.
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The characteristic equation of model (3.1) around the DFE is given by

(λ +µv)(λ +µh)(λ +δ +µh)(λ
5 + c4λ 4 + c3λ 3 + c2λ 2 + c1λ + c0) = 0

where, c0 is given by:

c0 = (Π7
2
µbµeµv +((Π9(Π2 +Π5)µb + ε (Π3Π9α2 +Π8(Π2 +Π5)µe))α0 +µbµvα2Π4)Π7

+ε Π4Π5Π8α0α2)(1−R0)

and R0 is given by:

(3.3)

R0 =
α0 (ε Π8µe +Π9µb)Π7

2 +(ε α0α2Π3Π9 +µbµv (Π4α2 +µe (Π2 +Π5)))Π7 + ε α0α2 (Π2Π6Π9 +Π4Π5Π8)

Π7
2
µbµeµv +(Π9 (Π2 +Π5)µb + ε (Π4α2 +µe (Π2 +Π5))Π8)α0Π7 +α2Π5 (ε Π3Π9α0 +Π4µbµv)

The disease-free equilibrium (3.2) is locally asymptotically stable if and only if all roots of

the characteristic equation (3.2) has negative real parts which holds if and only if c0 > 0 [15].

Obviously c0 > 0 iff R0 < 1.

3.3. Existence of EE. The literature showed that the study of global stability of cholera dis-

ease is difficult to be addressed because of the incorporation of the environmental components

[18]. Thus, the question is whether the cholera disease will reach the equilibrium in long-term

dynamics. The EE of (3.1) satisfy:

shu =
µh (α0iv +κ1µb)(α0iv +α2ihu +µeκ2)

D2ihu
2 +D1ihu−D0

sha =
δ shu (κ1 +B)

Bβ ε1iha +Bβ ε1ihu +β ε1ihaκ1 +β ε1ihuκ1 + ε2β1B+µhB+µhκ1
(3.4)

sv = 1− iv

B =
α0iv
µb

E =
α0iv +α2ihu

µe
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where

D2 = β α2ivα0 +µbβ α2κ1

D1 = (iv (β iha +δ +β1 +β2 +µh)α0 +µb (β iha +δ +β2 +µh)κ1)α2 +β (α0iv +µeκ2)(α0iv +κ1µb)

D0 = iv2 (β iha +δ +β1 +β2 +µh)α0
2 +(µb (β iha +δ +β2 +µh)κ1 +κ2µe (β iha +δ +β1 +µh)) ivα0

+κ1κ2µbµe (β iha +δ +µh)

and

(3.5) A4i4hu +A3i3hu +A2i2hu +A1ihu +A0 = 0

where

A4 = α2β (α0iv +κ1µb)(γ0 +µh)

A3 = (iv(µh
2 +((b+ iha−1)β +β1 +β2 +δ + γ0)µh +(bγ1 + γ0 iha)β + γ0 (β1 +β2 +δ ))α0 +κ1(µh

2

+((b+ iha−1)β +β2 +δ + γ0)µh +(bγ1 + γ0 iha)β + γ0 (β2 +δ ))µb)α2 +β (α0iv +µeκ2)

(α0iv +κ1µb)(γ0 +µh)

A2 = α0
2iv2(((b+ iha−1)µh +bγ1 + γ0 iha)β +(γ0 +µh)(β1 +β2 +δ +µh))+ ivα0(((α2(γ1 +µh)iha

+(κ1µb +µeκ2)γ1 +µh(κ1µb +µeκ2−α2))b+((κ1µb +µeκ2)γ0 +µh(κ1nµb +µeκ2−α2))

iha−µh(κ1µb +µeκ2))β +α2(γ1 +µh)(β1 +β2 +δ +µh)b+(κ1µb +µeκ2)(γ0 +µh)δ

+(κ2γ0 µe +µh(µeκ2−α2))β1 +(γ0 µbκ1 +µh(κ1µb−α2))β2 +µh(κ1µb +µeκ2)(γ0 +µh))

+µbκ1(((α2(γ1 +µh)iha−µhα2 +µeκ2(γ1 +µh))b+(−µhα2 +µeκ2(γ0 +µh))iha−µeµhκ2)β +α2

(γ1 +µh)(β2 +δ +µh)b+µeκ2(γ0 +µh)δ +µh(−β2α2 +µeκ2(γ0 +µh

A1 = (iv2(µh
2 +((iha−1)β +β1 +β2 +δ + γ1)µh + γ1 (β iha +δ +β1 +β2))α0

2− iv((−κ1µb−µeκ2)µh
2

+(−((iha−1)β +β2 +δ + γ1)µbκ1−µe((iha−1)β +β1 +δ + γ1)κ2 +α2(β iha +β1 +β2))µh

−(κ1(β iha +δ +β2)µb +µeκ2(β iha +δ +β1))γ1)α0−κ1(−κ2µeµh
2−µe((γ1 iha + iha−1)

β +(δ +1)γ1 +δ )κ2 +α2(β iha +β2))µb)b− iv2
µh(β iha +β1 +β2)α0

2− (µb(β iha +β2)κ1 +κ2µe

(β iha +β1))ivµhα0−β ihaκ1κ2µbµe

A0 = −
(
iv2 (β iha +β1 +β2)α0

2 + iv (β (κ1µb +µeκ2) iha +β2κ1µb +κ2µeβ1)α0 +β ihaκ1κ2µbµe
)

bµh
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(3.6) B4i4ha +B3i3ha +B2i2ha +B1iha +B0 = 0

B4 = ε1β
2 (α0iv +κ1µb)

2 (γ0 +µh)(α0iv +α2ihu +µeκ2)

B3 = (α0iv +κ1µb)β ((iv2(µh
2 +(bβ +2β ihu +δ + γ0 +β1 +β2)µh +2β γ0 ihu + γ0 (β1 +β2 +δ )

+bβ γ1)α0
2 + iv((α2ihu +κ1µb +µeκ2)µh

2 +(2β α2ihu
2 +(2β µbκ1 +α2γ0 +(bβ +δ +β1 +β2)α2

+2β κ2µe)ihu +µb(bβ +δ + γ0 +β2)κ1 +κ2µe(bβ +δ + γ0 +β1))µh +2α2β γ0 ihu
2 +(2κ1β γ0 µb

+((β1 +β2 +δ )α2 +2β κ2µe)γ0 +bα2β γ1)ihu +µb(γ0 (β2 +δ )+bβ γ1)κ1 +((β1 +δ )γ0 +bβ γ1)

κ2µe)α0 +κ1µb((α2ihu +µeκ2)µh
2 +(2β α2ihu

2 +(α2γ0 +(bβ +δ +β2)α2 +2β κ2µe)ihu

+κ2µe(bβ +δ + γ0))µh +2α2β γ0 ihu
2 +((α2(β2 +δ )+2β κ2µe)γ0 +bα2β γ1)ihu +κ2µe(bβ γ1 +δ

γ0)))ε1 +(iv(β1ε2 +µh)α0 +κ1µbµh)(γ0 +µh)(α0iv +α2ihu +µeκ2))

B2 = (µh
3 +((ε1 +1)(b+ ihu)β +(ε2 +1)β1 +β2 +δ + γ0)µh

2 +(2(b+1/2 ihu)ε1ihuβ
2 +(((β1

+β2 +δ + γ0)ε1 +β1ε2 + γ0)ihu +((β1 +β2 +δ + γ1)b−δ )ε1 +b(β1ε2 + γ1))β +((ε2 +1)β1 +β2

+δ )γ0 +β1ε2(β1 +β2 +δ ))µh +2(bγ1 +1/2γ0 ihu)ε1ihuβ
2 +((β1 +β2 +δ )ε1 +β1ε2)(bγ1 + γ0 ihu)β

+β1ε2γ0 (β1 +β2 +δ ))iv3
α0

3 +((α2ihu +2κ1µb +µeκ2)µh
3 +((ε1 +1)(α2ihu +2κ1µb +µeκ2)

(b+ ihu)β +((ε2 +1)β1 +2β2 +2δ +2γ0)κ1µb +((ε2 +1)β1 +β2 +δ + γ0)α2ihu +κ2((ε2 +1)β1 +

δ + γ0)µe)µh
2 +(2(b+1/2 ihu)(α2ihu +2κ1µb +µeκ2)ε1ihuβ

2 +(α2((β1 +β2 +δ + γ0)ε1 +β1ε2

+γ0)ihu
2 +(((β1 +2β2 +2δ +2γ0)ε1 +β1ε2 +2γ0)κ1µb +(((β1 +β2 +δ + γ1)b−δ )α2 +µeκ2

(β1 +δ + γ0))ε1 +α2(β1ε2 + γ1)b+µeκ2(β1ε2 + γ0))ihu +(((β1 +2β2 +2δ +2γ1)b−2δ )ε1

+b(β1ε2 +2γ1))κ1µb +κ2(((β1 +δ + γ1)b−δ )ε1 +b(β1ε2 + γ1))µe)β +α2(((ε2 +1)β1 +β2 +δ )γ0

+β1ε2(β1 +β2 +δ ))ihu +(((ε2 +1)β1 +2β2 +2δ )γ0 +β1ε2(β2 +δ ))µbκ1 +κ2µe(((ε2 +1)β1 +δ )γ0

+β1ε2(β1 +δ )))µh +2(bγ1 +1/2γ0 ihu)(α2ihu +2κ1µb +µeκ2)ε1ihuβ
2 +(((β1 +2β2 +2δ )ε1

+β1ε2)κ1µb +α2((β1 +β2 +δ )ε1 +β1ε2)ihu +κ2((β1 +δ )ε1 +β1ε2)µe)(bγ1 + γ0 ihu)β + γ0 (κ1(β2

+δ )µb +α2(β1 +β2 +δ )ihu +µeκ2(β1 +δ ))β1ε2)iv2
α0

2 +2((µeκ2 +α2ihu +1/2κ1µb)µh
3 +((ε1 +1)

(µeκ2 +α2ihu +1/2κ1µb)(b+ ihu)β +1/2κ1(β2 +δ + γ0)µb +1/2((ε2 +1)β1 +2β2 +2δ +2γ0)

α2ihu +1/2((ε2 +1)β1 +2δ +2γ0)κ2µe)µh
2 +(2(b+1/2 ihu)ε1(µeκ2 +α2ihu +1/2κ1µb)ihuβ

2

+(1/2α2((β1 +2β2 +2δ +2γ0)ε1 +β1ε2 +2γ0)ihu
2 +(1/2 µb((β2 +δ + γ0)ε1 + γ0)κ1 +

(((1/2β1 +β2 +δ + γ1)b−δ )α2 +1/2 µeκ2(β1 +2δ +2γ0))ε1 +1/2α2(β1ε2 +2γ1)b+1/2 µeκ2

(β1ε2 +2γ0))ihu +1/2(((β2 +δ + γ1)b−δ )ε1 +bγ1)µbκ1 +1/2κ2(((β1 +2δ +2γ1)b−2δ )ε1
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+b(β1ε2 +2γ1))µe)β +1/2α2(((ε2 +1)β1 +2β2 +2δ )γ0 +β1ε2(β2 +δ ))ihu +1/2κ1γ0 (β2 +δ )µb

+1/2(((ε2 +1)β1 +2δ )γ0 +δ β1ε2)κ2µe)µh +2(bγ1 +1/2γ0 ihu)ε1(µeκ2 +α2ihu +1/2κ1µb)ihuβ
2

+1/2(κ1ε1(β2 +δ )µb +α2((β1 +2β2 +2δ )ε1 +β1ε2)ihu +((β1 +2δ )ε1 +β1ε2)κ2µe)(bγ1 + γ0 ihu)β

+1/2γ0 β1ε2(α2(β2 +δ )ihu +µeκ2δ ))κ1µbivα0 +((α2ihu +µeκ2)µh
3 +((ε1 +1)(α2ihu +µeκ2)(b+

ihu)β +α2(β2 +δ + γ0)ihu +µeκ2(δ + γ0))µh
2 +(2(b+1/2 ihu)ε1(α2ihu +µeκ2)ihuβ

2

+(α2((β2 +δ + γ0)ε1 + γ0)ihu
2 +((((β2 +δ + γ1)b−δ )α2 +µeκ2(δ + γ0))ε1

+bα2γ1 +µeκ2γ0)ihu +κ2(((δ + γ1)b−δ )ε1 +bγ1)µe)β + γ0 (α2(β2 +δ )ihu +µeκ2δ ))µh +(2(bγ1

+1/2γ0 ihu)(α2ihu +µeκ2)ihuβ +(bγ1 + γ0 ihu)(α2(β2 +δ )ihu +µeκ2δ ))ε1β )κ1
2
µb

2

B1 = ((µh
3 +(ihu(ε1 +1)β +(ε2 +1)β1 +β2 +δ + γ1)µh

2 +(ε1ihu
2
β

2 +((ε1 +1)γ1 +(β1 +β2 +δ )

ε1 +β1ε2)β ihu− ε1δ β +((ε2 +1)β1 +β2 +δ )γ1 +β1ε2(β1 +β2 +δ ))µh + γ1 (β ε1ihu +β1

ε2)(β ihu +δ +β1 +β2))iv3
α0

3 + iv2((α2ihu +2κ1µb +µeκ2)µh
3 +(α2β (ε1 +1)ihu

2 +

(2β µb(ε1 +1)κ1 +κ2µe(ε1 +1)β +((ε2 +1)β1 +β2 +δ + γ1)α2)ihu +((ε2 +1)β1 +2β2 +2δ +2γ1

)κ1µb +((ε2 +1)β1 +δ + γ1)κ2µe)µh
2 +(ε1β

2ihu
3
α2 +(2κ1ε1β µb +κ2ε1β µe +((ε1 +1)

γ1 +(β1 +β2 +δ )ε1 +β1ε2)α2)β ihu
2 +(µbβ ((2ε1 +2)γ1 +(β1 +2β2 +2δ )ε1 +β1ε2)κ1 +

(κ2µe(ε1 +1)γ1 +(−α2δ +µeκ2(β1 +δ ))ε1 +β1ε2κ2µe)β +(((ε2 +1)β1 +β2 +δ )γ1 +β1ε2

(β1 +β2 +δ ))α2)ihu +µb(−2ε1δ β +((ε2 +1)β1 +2β2 +2δ )γ1 +β1ε2(β2 +δ ))κ1 +κ2µe

(−ε1δ β +((ε2 +1)β1 +δ )γ1 +β1ε2(β1 +δ )))µh +(ε1β
2ihu

3
α2 +(2κ1ε1β µb +κ2

ε1β µe +((β1 +β2 +δ )ε1 +β1ε2)α2)β ihu
2 +(µb((β1 +2β2 +2δ )ε1 +β1ε2)β κ1 +

((β1 +δ )ε1 +β1ε2)κ2µeβ +β1α2ε2(β1 +β2 +δ ))ihu +(κ1(β2 +δ )µb +µeκ2(β1 +δ )

)ε2β1)γ1)α0
2 +κ1((2α2ihu +κ1µb +2 µeκ2)µh

3 +(2α2β (ε1 +1)ihu
2 +(β µb(ε1 +1

)κ1 +2κ2µe(ε1 +1)β +((ε2 +1)β1 +2β2 +2δ +2γ1)α2)ihu +κ1(β2 +δ + γ1)µb +((ε2 +1)β1 +2

δ +2γ1)κ2µe)µh
2 +(2ε1β

2ihu
3
α2 +(κ1ε1β µb +2κ2ε1β µe +((2ε1 +2)γ1 +(β1 +2β2 +2δ

)ε1 +β1ε2)α2)β ihu
2 +(µb((ε1 +1)γ1 + ε1(β2 +δ ))β κ1 +(2κ2µe(ε1 +1)γ1 +(−2

α2δ +κ2µe(β1 +2δ ))ε1 +β1ε2κ2µe)β +(((ε2 +1)β1 +2β2 +2δ )γ1 +β1ε2(β2 +δ ))α2)
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ihu +µb(−ε1δ β + γ1 (β2 +δ ))κ1 +κ2µe(−2ε1δ β +((ε2 +1)β1 +2δ )γ1 +δ β1ε2))µh +

(2ε1β
2ihu

3
α2 +(κ1ε1β µb +2κ2ε1β µe +((β1 +2β2 +2δ )ε1 +β1ε2)α2)β ihu

2 +(ε1β µb(β2 +δ )κ1 +

((β1 +2δ )ε1 +β1ε2)κ2µeβ +β1α2ε2(β2 +δ ))ihu +δ β1ε2κ2µe)γ1)

µbivα0 +κ1
2
µb

2((α2ihu +µeκ2)µh
3 +(α2β (ε1 +1)ihu

2 +(κ2µe(ε1 +1)β +α2(β2 +δ + γ1))ihu +µe

κ2(δ + γ1))µh
2 +(ε1β

2ihu
3
α2 +(κ2ε1β µe +((ε1 +1)γ1 + ε1(β2 +

δ ))α2)β ihu
2 +((κ2µe(ε1 +1)γ1− ε1δ (−µeκ2 +α2))β +α2γ1 (β2 +δ ))ihu−κ2

δ µe(β ε1− γ1))µh + ε1(β ihu
2
α2 +(κ2β µe +α2(β2 +δ ))ihu +µeκ2δ )γ1 ihuβ ))b−µhδ (α0iv +α2ihu

+µeκ2)(α0iv +κ1µb)(iv(β ε1ihu +β1ε2)α0 +β ihuε1κ1µb)

B0 = −δ µh (α0iv +α2ihu +µeκ2)(α0iv +κ1µb)b(iv (β ε1ihu +β1ε2)α0 +κ1ε1β ihuµb)

(3.7) C3i3v +C2i2v +C1iv +C0 = 0

C3 = α0
2 (λ1 +λ2 +µv)

C2 = α0 ((−λ1−λ2)α0 +(α2ihu +κ1µb)λ2 + ihu (λ1 +µv)α2 +κ1µbµv +µeκ2 (λ1 +µv))

C1 = ((−λ1α2−α2λ2)α0 +(α2λ2 +µvα2)κ1µb) ihu +(−κ1µbλ2−λ1µeκ2)α0 +µvµeκ2κ1µb

C0 = −α2ihuκ1λ2µb

We can clearly note that, A4 > 0 and A0 < 0 always hold, therefore, there exist at least one

positive solution for equation (3.5). Also, we can clearly note that, B4 > 0, B3 > 0 and B0 < 0

always hold, therefore, there exist at least one positive solution for equation (3.6). Moreover,

C3 > 0 and C0 < 0 always hold, therefore, there exist at least one positive solution for equation

(3.7). Hence, by applying the Descartes rule of signs on equations (3.5), (3.6) and (3.7), the

following result is established:

Theorem 3.1. The model (3.1) has:

case (i) if A3 > 0

• a unique endemic equilibrium if A2A1 > 0, B2B1 > 0 and C2C1 > 0.

• a unique endemic equilibrium if A2 > 0, B2 > 0, C2 > 0 and A1 < 0, B1 < 0, C1 < 0.
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• more then one endemic equilibria otherwise.

case (ii) if A3 < 0

• a unique endemic equilibrium if A2 < 0, A1 < 0, B2B1 > 0 and C2C1 > 0.

• a unique endemic equilibrium if A2 < 0, B2 > 0, C2 > 0 and A1 < 0, B1 < 0, C1 < 0.

• more then one endemic equilibria otherwise.

3.4. Bifurcation. We establish conditions for the existence of backward bifurcation following

Theorem 4.1 proven in [3]. We shall make the following change of variables: x1 = shu,x2 =

sha,x3 = ihu,x4 = iha,x5 = sv,x6 = iv,x7 = B,x8 = E. We now use the vector notation X =

(x1,x2,x3,x4,x5,x6,x7,x8)
T . Then, system (3.1) can be written in the form dX

dt = F(t,x(t)) =

( f1, f2, f 3, f4, f5, f6, f7, f8)
T where,

dx1

dt
= µh−βx1(x3 + x4)−

β1x1x7

κ1 + x7
− β2x1x8

κ2 + x8
− (µh +δ )x1 = f1

dx2

dt
= δx1− ε1βx2(x3 + x4)−

ε2β1x2x7

κ1 + x7
−µhx2 = f2

dx3

dt
= βx1(x3 + x4)+

β1x1x7

κ̂1 + x7
+

β2x1x8

κ2 + x8
− (γ0 +(γ1 + γ0)

b
x3 +b

)x3−µhx3 = f3

dx4

dt
= ε1βx2(x3 + x4)+

ε2β1x2x7

κ1 + x7
− (γ0 +(γ1 + γ0)

b
x4 +b

)x4−µhx4 = f4

dx5

dt
= µv−

λ1x5x7

κ1 + x7
− λ2x5x8

κ2 + x8
−µvx5 = f5

dx6

dt
=

λ1x5x7

κ1 + x7
+

λ2x5x8

κ2 + x8
−µvx6 = f6

dx7

dt
= εα0x6−µbx7 = f7

dx8

dt
= α0x6 +α2x3−µex8 = f8

Taking Φ = β , where Φ is the bifurcation parameter, we assume R0 = 1 and then find the

bifurcation parameter β =
(δ+µh)(µeκ2µh

2+(µe(δ+γ1)κ2+α2β2)µh+δ γ1 κ2µe)(γ1+µh)

µe(δ+µh)(δ ε1+µh)(γ1+µh)κ2+δ α2β2ε1µh

The Jacobian matrix, after linearizing model system (3.1) around the disease-free equi-

librium ξ 0 is
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J(ξ 0) =



−µh−δ 0 − Φ µh
δ+µh

− Φµh
δ+µh

0 0 − β1µh
(δ+µh)κ1

− β2µh
(δ+µh)κ2

δ −µh − ε1Φδ

δ+µh
− ε1Φδ

δ+µh
0 0 − ε2β1δ

(δ+µh)κ1
0

0 0 Φ µh
δ+µh

−µh− γ1
Φ µh

δ+µh
0 0 − β1µh

(δ+µh)κ1
− β2µh

(δ+µh)κ2

0 0 ε1Φδ

δ+µh

ε1Φδ

δ+µh
−µh− γ1 0 0 ε2β1δ

(δ+µh)κ1
0

0 0 0 0 −µv 0 −λ1
κ1

−λ2
κ2

0 0 0 0 0 −µv
λ1
κ1

λ2
κ2

0 0 0 0 0 ε α0 −µb 0

0 0 α2 0 0 α0 0 −µe


It can be shown that J(ξ 0), has a right eigenvector is given by w =

(w1,w2,w3,w4,w5,w6,w7,w8)
T , where

w1 = −w3 (µh + γ1)

µh +δ

w2 =
δ w1

µh
− (β ε1 (w3 +w4)κ1 +β1ε2w7)δ

(µh +δ )κ1µh

w3 = w3

w4 =

(
w3
(
µh

2 +(−β +δ + γ1)µh +δ γ1
)

κ2−w8µhβ2
)

κ1−β1κ2µhw7

κ1κ2β µh

w5 =
α2w3κ1λ2µb

ε α0κ2λ1µe−κ1κ2µbµeµv +α0κ1λ2µb
(3.8)

w6 =
µbw7

ε α0

w7 = − α2w3ε α0κ1λ2

ε α0κ2λ1µe−κ1κ2µbµeµv +α0κ1λ2µb

w8 =
α2κ2w3 (ε α0λ1−κ1µbµv)

ε α0κ2λ1µe−κ1κ2µbµeµv +α0κ1λ2µb

Further, the left eigenvector of J(ξ 0) is given by v = (v1,v2,v3,v4,v5,v6,v7,v8)
T , where

v1 = v2 = v5 = 0

v3 = v3

v4 =
v3β µh

µh
2 +δγ1 µh +δ (γ1− ε1β )

(3.9)

v6 =
(δ κ2µe +κ2µeµh)v8

(µh +δ )λ2
− v3β2µh

(µh +δ )λ2

v7 =
(δ κ2µeµv +κ2µeµhµv−δ α0λ2−α0λ2µh)v8−β2µhµvv3

(µh +δ )λ2ε α0

v8 = v8
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We compute a and b in order to apply Theorem 4.1 in [3]. For system (3.8), the associated

non-zero partial derivatives of F at the disease-free equilibrium are as follows:

∂ 2 f1

∂x1∂x3
=

∂ 2 f1

∂x1∂x4
=

∂ 2 f1

∂x3∂x1
=

∂ 2 f1

∂x4∂x1
=−β

∗

∂ 2 f1

∂x1∂x7
=

∂ 2 f1

∂x7∂x1
=−β1

κ1

∂ 2 f1

∂x1∂x8
=

∂ 2 f1

∂x8∂x1
=−β2

κ2

∂ 2 f3

∂x1∂x3
=

∂ 2 f3

∂x1∂x4
=

∂ 2 f3

∂x3∂x1
=

∂ 2 f3

∂x4∂x1
= β

∗

∂ 2 f3

∂x1∂x7
=

∂ 2 f3

∂x7∂x1
=

β1

κ1

∂ 2 f3

∂x1∂x8
=

∂ 2 f3

∂x8∂x1
=

β2

κ2

∂ 2 f2

∂x2∂x3
=

∂ 2 f2

∂x2∂x4
=

∂ 2 f2

∂x3∂x2
=

∂ 2 f2

∂x4∂x2
=−ε1β

∗

∂ 2 f2

∂x2∂x7
=

∂ 2 f2

∂x7∂x2
=−ε2β1

κ1

∂ 2 f4

∂x2∂x3
=

∂ 2 f4

∂x2∂x4
=

∂ 2 f4

∂x3∂x2
=

∂ 2 f4

∂x4∂x2
= ε1β

∗

∂ 2 f5

∂x5∂x7
=

∂ 2 f5

∂x7∂x5
=−λ1

κ1

∂ 2 f5

∂x5∂x8
=

∂ 2 f5

∂x8∂x5
=−λ2

κ2

∂ 2 f6

∂x5∂x7
=

∂ 2 f6

∂x7∂x5
=

λ1

κ1

∂ 2 f6

∂x5∂x8
=

∂ 2 f6

∂x8∂x5
=

λ2

κ2

∂ 2 f1

∂x2
7

=
2β1µh

(µh +δ )κ12

∂ 2 f2

∂x2
7

=
2ε2β1δ

(µh +δ )κ12

∂ 2 f3

∂x2
7

= − 2β1µh

(µh +δ )κ12

∂ 2 f4

∂x2∂x7
=

∂ 2 f4

∂x7∂x2
=

ε2β1

κ1
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∂ 2 f4

∂x2
7

= − 2ε2β1δ

(µh +δ )κ12

∂ 2 f5

∂x2
7

=
2λ1

κ12

∂ 2 f6

∂x2
7

= −2λ1

κ12

∂ 2 f1

∂x2
8

=
2β2µh

(µh +δ )κ22

∂ 2 f3

∂x2
8

= − 2β2µh

(µh +δ )κ22

∂ 2 f5

∂x2
8

=
2λ2

κ22

∂ 2 f6

∂x2
8

= −2λ2

κ22

∂ 2 f1

∂x3∂β ∗
=

∂ 2 f1

∂x4∂β ∗
=− µh

µh +δ

∂ 2 f2

∂x3∂β ∗
=

∂ 2 f2

∂x4∂β ∗
=− ε1δ

µh +δ

∂ 2 f3

∂x3∂β ∗
=

∂ 2 f3

∂x4∂β ∗
=

µh

µh +δ

∂ 2 f4

∂x3∂β ∗
=

∂ 2 f4

∂x4∂β ∗
=

ε1δ

µh +δ

It thus follows that:

a = v3

(
(2w1w3 +2w1w4)β

∗+
2w1w7β1

κ1
+

2w1w8β2

κ2
−

2w2
7β1µh

(µh +δ )κ2
1
−

2w2
8β2µh

(µh +δ )κ2
2

)
+ v4

(
(2w2w3 +2w2w4)ε1β

∗+
2w2w7ε2β1

κ1
−

2w2
7ε2β1δ

(µh +δ )κ2
1

)
(3.10)

+ v6

(
2w5w7λ1

κ1
+

2w5w8λ2

κ2
−

2w2
7λ1

κ2
1
−

2w2
8λ2

κ2
2

)
b =

(
w3 +w4

)(
v3µh

µh +δ
+

v4ε1δ

µh +δ

)
Here the coefficient b is obviously positive and the coefficient a will decide the backward bi-

furcation of the model (3.8). In particular the backward bifurcation in the model would occur
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if the coefficient a is positive. Therefore, since there is a possibility for the model to exhibits

backward bifurcation, then, reducing R0 below unity is not sufficient to control the cholera

epidemic.

4. NUMERICAL SIMULATION

We perform some numerical simulations of system (3.1) to see the effects of awareness pro-

grams parameters (δ ,ε1,ε2).

We list the values for the parameters in the system in Table (??) with the initial condi-

tions shu(0) = 0.7,sha(0) = 0.1, ihu(0) = 0.1, iha(0) = 0.1,r(0) = 0.0,sv(0) = 0.95, iv(0) =

0.05,B(0) = 0.4,E(0) = 0.4.

Our results in figures(1, 2, 3) illustrate that awareness program lowers the outbreak size defi-

Parameter Value Unit Reference

µh 0.00004 day−1 [19]

β 0.000105−0.000111 day−1 [38]

β1 .055−0.094 day−1 [38]

β2 .055−0.094 day−1 Assumed

γ0 (0.15, ...) − [10]

γ1 (γ0,0.09) − [10]

b (0,20) − [10]

κ1 105cells/mL Cells L−1 [30]

κ2 105−107cells/mL Cells L−1 [4, 13]

λ1 0.0056−0.097 day−1 [30]

λ2 0.0057−0.1 day−1 [30]

µv 0.189d−1 day−1 [11]

µb (30d)−1 day−1 [30]

µe (30d)−1 day−1 [38]

ε , ε1, ε2 0.001−0.01 day−1 Assumed

α0 1−150 Cells mL−1day−1 per vector [30]

α2 1−150 Cells mL−1day−1 per person [38, 10]

TABLE 2. Parameter values

nitely and decreases the severity of the cholera outbreak.
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FIGURE 1. Effect of Delta in the infection
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FIGURE 2. Effect of ε1 in the infection
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FIGURE 3. Effect of ε2 in the infection
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The limited resource parameter b, is varied in Figure (4). It is shown that as b is increased, the

human infection population decrease. This means that increasing the number of hospital-beds

during an outbreak, will give a high opportunity for the disease to persist. Hence, the number

of hospital beds plays an important role in controlling the spread of infectious diseases.

FIGURE 4. Varying limited resources b for R0 > 1

5. EXTENDED MODEL WITH OPTIMAL CONTROL

Optimal control theory is a powerful tool to make decisions involving complex dynamical

systems. Optimal control theory is a tool to find an optimal path or value that gives either

maximum or minimum points of functions. Optimal control is a set of ordinary differential

equations describing the paths of the control variables that minimize the cost functions. Studies

have indicated that epidemiological models may give some fundamental rules to public health

practitioners to compare the effectiveness of different potential management strategies. We



COST-EFFECTIVENESS ANALYSIS OF A CHOLERA MODEL 5401

introduce three time dependent control variables u1(t), u2(t) and u3(t) in the model (3.1). u1(t)

represents vaccination of susceptible individuals, u2(t) represents the killing of vectors, and

u3(t) represents water sanitation. The control functions u1(t), u2(t) and u3(t) are bounded

and Lebesgue integrable functions. Vaccination is introduced to the susceptible populations at

a rate of u1(t), so that u1(t)shu(t) and u1(t)sha(t) individuals per time are removed from the

susceptible classes and added to the recovered class. The elimination of the vector populations

is applied to the infected people at a rate of u2(t). Water sanitation leads to the death of vibrios

at a rate of u3(t). As a result, we obtain the following dynamical system:

dshu

dt
= µh−β shu(ihu + iha)−

β1shuB
κ1 +B

− β2shuE
κ2 +E

− (µh +δ +u1)shu

dsha

dt
= δ shu− ε1β sha(ihu + iha)−

ε2β1shaB
κ1 +B

− (µh +u1)sha

dihu

dt
= β shu(ihu + iha)+

β1shuB
κ̂1 +B

+
β2shuE
κ2 +E

− (γ0 +(γ1 + γ0)
b

ihu +b
)ihu−µhihu

diha

dt
= ε1β sha(ihu + iha)+

ε2β1shaB
κ1 +B

− (γ0 +(γ1 + γ0)
b

iha +b
)iha−µhiha

drh

dt
= u1(shu + sha)(γ0 +(γ1 + γ0)

b
ihu +b

)ihu +(γ0 +(γ1 + γ0)
b

iha +b
)iha−µhrh

dsv

dt
= µv−

λ1svB
κ1 +B

− λ2svE
κ2 +E

− (µv +u2)sv(5.1)

div
dt

=
λ1svB
κ1 +B

+
λ2svE
κ2 +E

− (µv +u2)iv

dB
dt

= εα0iv−µbB

dE
dt

= α0iv +α2ihu− (µe +u3)E

A control scheme is assumed to be optimal if it minimizes the objective functional:

J(u1,u2,u3) =
∫ t f

0

[
ihu(t)+ iha(t)+ sv(t)+ iv(t)+

a1

2
u2

1(t)

(5.2)

+
a2

2
u2

2(t)+
a3

2
u2

3(t)
]

dt

Here the parameters ci and ai (i = 1,2,3), with appropriate units, define the balancing cost

factors for control strategies. We introduced the quadratic terms to show nonlinear costs which
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are arising at high intervention levels [?, 31, 29].Hence, we want to minimize the objective

function (5.2) subject to the system (5.1). For this purpose, we have to find the values of

u1(t),u2(t) and u3(t) which minimize the objective functional (5.2), i.e. to find u∗1, u∗2 and u∗3

such that

J(u∗1,u
∗
2,u
∗
3) = min

u1,u2,u3∈Ω

J(u1,u2,u3)(5.3)

where u1,u2,u3 are Lebesgue measurable and the control set Ω is defined as:

Ω = {ui(t),ui(t) : [0, t f ]→ [0,1], i = 1,2,3}(5.4)

Note that, , the conditions for the existence of optimal control are satisfied since the control set

Ω is closed and convex, and the integrand of the objective functional (5.2) is convex [31].

To find the optimal control solution, we will use the Pontryagin’s Maximum/Minimum principle

[34]. We define the adjoint functions λi where i = shu,sha, ihu, iha,sv, iv,B,E and associated with

the state equations for shu,sha, ihu, iha,sv, iv,B and E, respectively. We then form the Hamilton-

ian, H, by multiplying each adjoint function with the right-hand side of its corresponding state

equation, and adding each of these products to the integrand of the objective functional. As a

result, we obtain

H = ihu + iha + sv + iv +1/2a1 u1
2 +1/2a2u2

2 +1/2a3u3
2

+λshu(µh−β shu(ihu + iha)−
β1shuB
κ1 +B

− β2shuE
κ2 +E

− (µh +δ )shu−u1shu)

+λsha(δ shu− ε1β sha(ihu + iha)−
ε2β1shaB
κ1 +B

−µhsha−u1sha)

+λihu(β shu(ihu + iha)+
β1shuB
κ1 +B

+
β2shuE
κ2 +E

− (γ0 +
(γ1− γ0)b

b+ ihu
+µh)ihu)(5.5)

+λiha(ε1β sha(ihu + iha)+
ε2β1shaB
κ1 +B

− (γ0 +
(γ1− γ0)b

b+ iha
+µh)iha)

+λsv(µv−
λ1svB
κ1 +B

− λ2svE
κ2 +E

−µvsv−u2sv)+λiv(
λ1svB
κ1 +B

+
λ2svE
κ2 +E

−µviv−u2iv)

+λB(ε α0iv−µbB)+λE(−µeE−Eu3 +α0iv +α2ih)

Theorem 5.1. Given an optimal control quintuple (u∗1,u
∗
2,u
∗
3) and solutions

s∗hu,s
∗
ha, i
∗
hu, i
∗
ha, i
∗
v ,B
∗ and E∗ of the corresponding state system (5.1) that minimizes J(u∗1,u

∗
2,u
∗
3)
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over Ω. Then there exists adjoint variables λshu,λsha,λihu,λiha,λiv,λB, and λE satisfying

dλi

dt
=−∂H

∂ i
(5.6)

and with transversality conditions λi(t f ) = 0 where i = ahu,sha, ihu, iha, iv,B and E with the

control quadruple (u∗1,u
∗
2,u
∗
3) is given by:

u∗1 = min
(

1,max
(

λshasha +λshushu)

a1
,0
))

u∗2 = min
(

1,max
(

λiviv +λsvsv)

a2
,0
))

(5.7)

u∗3 = min
(

1,max
(

λEE
a3

,0
))

Proof. The adjoint equations and the transversality conditions are obtained from the Pontrya-
gin’s Maximum Principle, such that

dλshu

dt
= −λshu(−β (ihu + iha)−

β1B
κ1 +B

− β2E
κ2 +E

−µh−δ −u1)

−λsha δ −λihu(β (ihu + iha)+
β1B

κ1 +B
+

β2E
κ2 +E

)

dλsha

dt
= −λsha

(
−ε1β (ihu + iha)−

ε2β1B
κ1 +B

−µh−u1

)
−λiha

(
ε1β (ihu + iha)+

ε2β1B
κ1 +B

)
dλihu

dt
= −1+λshu β shu +λsha ε1β sha−λihu(β shu +

(γ1− γ0)bihu

(b+ ihu)2 − γ0−
(γ1− γ0)b

b+ ihu
−µh)

−λiha ε1β sha

dλiha

dt
= −1+λshu β shu +λsha ε1β sha−λihu β shu

−λiha(ε1β sha +
(γ1− γ0)biha

(b+ iha)2 − γ0−
(γ1− γ0)b

b+ iha
−µh)

dλsv

dt
= −1−λsv

(
− λ1B

κ1 +B
− λ2E

κ2 +E
−µv−u2

)
−λiv

(
λ1B

κ1 +B
+

λ2E
κ2 +E

)
dλiv
dt

= −1−λiv (−µv−u2)−λBε α0−λE α0

dλB

dt
= −λshu

(
− β1shu

κ1 +B
+

β1shuB

(κ1 +B)2

)
−λsha

(
− ε2β1sha

κ1 +B
+

ε2β1shaB

(κ1 +B)2

)

−λihu

(
β1shu

κ1 +B
− β1shuB

(κ1 +B)2

)
−λiha

(
ε2β1sha

κ1 +B
− ε2β1shaB

(κ1 +B)2

)
(5.8)

−λsv

(
− λ1sv

κ1 +B
+

λ1svB

(κ1 +B)2

)
−λiv

(
λ1sv

κ1 +B
− λ1svB

(κ1 +B)2

)
+λBµb

dλE

dt
= −λshu

(
− β2shu

κ2 +E
+

β2shuE

(κ2 +E)2

)
−λihu

(
β2shu

κ2 +E
− β2shuE

(κ2 +E)2

)
−

λsv

(
− λ2sv

κ2 +E
+

λ2svE

(κ2 +E)2

)
−λiv

(
λ2sv

κ2 +E
− λ2 sv)E

(κ2 +E)2

)
−λE (−µe−u3)
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The characterizations of the optimal controls u1,u2 and u3,are based on the conditions

∂H
∂u1

= 0

∂H
∂u2

= 0(5.9)

∂H
∂u3

= 0

Solving equation (5.9) for (u∗1,u
∗
2,u
∗
3) gives the characterization (5.7). �

5.1. Numerical illustrations. The optimal control problem consists of the state system

(5.1) with initial conditions, the adjoint equations (5.8) with the transversality conditions, and

equations (5.7) to characterize the optimal controls. Forward-Backward Sweep Method [31] is

applied in order to solve it numerically.

Cost coefficients are fixed within the integral expression (5.2) and the optimal schedule of

the three controls over T = 100 days is simulated for the human populations with the initial

guess for the state variables (shu(0),sha(0), ihu(0), iha(0),rh(0),sv(0), iv(0),B(0),E(0)) =

(0.3,0.2,0.3,0.15,0.05,0.7,0.3,0.4,0.6). Hence we will see the effects of the following:

• Single optimal control scheme.

• Two optimal control schemes.

• All the control schemes.

5.1.1. Optimal Application of A Single Control. The optimal control problem can be reformu-

lated to show the effects of each optimal control method when it used alone. Assuming just one

of the three control methods is applicable by setting the other two controls to zero. It is clear

from figures (5, 6, 7) that each single optimal scheme is advantageous and effective to reduce

the number of aware infected individuals. The use of vaccination only (figure 5) or sanitation

only (figure 7) reduce the number of unaware infected at the onset of the infection. However,

the effect of using vector elimination alone remains optimal for the entire infection’s period for

unaware infected (figure 6).
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FIGURE 5. Left: Effect of vaccination only on the total number of infected hu-

mans. Right: The optimal controls.

FIGURE 6. Left: Effect of vector elimination only on the total number of in-

fected humans. Right: The optimal controls.

FIGURE 7. Left: Effect of sanitation only on the total number of infected hu-

mans. Right: The optimal controls

.
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5.1.2. Optimal Application of Two Controls. In this section, we illustrate the effects of using

two optimal schemes in the absence of the third one. It can be seen form figures (8, 9, 10)

that, all the method the number of aware infected individuals effectively while the effects on

unaware infected vary. The infection level of unaware people has been significantly reduced due

to vaccination and vector elimination (figure (8)). Using vector elimination and water sanitation

schemes reduce number of unaware infected at the beginning of the infection period (figure (9))

but then the number if unaware infected will increase. Also, it can be seen from figure (10)

using vaccination and water sanitation schemes have effects only at the onset of the infections.

FIGURE 8. Left: Effect of vaccination and vector elimination on the total num-

ber of infected humans. Right: The optimal controls.

FIGURE 9. Left: Effect of vaccination and water sanitition on the total number

of infected humans. Right: The optimal controls.



COST-EFFECTIVENESS ANALYSIS OF A CHOLERA MODEL 5407

FIGURE 10. Left: Effect of vector elimination and water sanitition on the total

number of infected humans. Right: The optimal controls.

5.1.3. Optimal Application of All Controls. Here we use all the three controls vaccination,

vector elimination and water sanitation to optimize the objective function. The simulation re-

sults in figure 11 illustrates that the number of unaware infected human is low in case of control

compared with the case of no control but not optimal because u3 is plunged to 0.011 and then

it falls to zero while the two others control takes it upper bound. On the other hand, the three

controls are useful in order to reduce the number of aware infected.

FIGURE 11. Left: Effect of all controls on the total number of infected humans.

Right: The optimal controls.
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6. COST-EFFECTIVENESS ANALYSIS

Cost-Effectiveness Analysis calculates the costs and effects gains of alternative interventions

by providing a method for organizing interventions for a given set of resource constraints. It

identifies which control profile that have the potential which gives the optimal improvement

in health with less cost.1 [21, 20]. A variety of methods have been used in applied cost-

effectiveness studies to estimate the costs and effects of different interventions.

6.1. Efficacy function. The efficacy function is given by:

(6.1) E(t) =
ih(0)− i∗h(0)

ih(0)

where ih(0) is the values of infected human obtained at the endemic equilibrium of the system

(5.1) before the introduction of interventions ( i.e. u1 = 0;u2 = 0;u3 = 0), and i∗h(0) is the values

of infected human obtained at the endemic equilibrium of the system (5.1) after the introduction

of the corresponding intervention.

Using the above formula (6.1), the efficacy of each intervention is given by the following com-

putations:

Intervention Eihu(t) Eiha(t)

All Controls 0.5640 1

u1 Only -0.0030 9.98E-03

u2 Only 0.0739 2.08E-01

u3 Only -0.0030 9.98E-03

u1 and u2 0.5533 1

u1 and u3 0.1007 2.08E-01

u2 and u3 -0.0030 9.98E-03

TABLE 3. The efficacy of each intervention

The values of efficacy in table (6.1) indicate that using all controls is the most effective in-

tervention to minimize the number of unaware infected individuals with effectiveness of 56%

followed by using vaccination and vector elimination intervention with with effectiveness of

55%. However, the differences between the efficacy of theses two interventions is only 1%. It
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is observed from table (6.1) that, the most effective way to control aware infected is either by

using all controls or using vaccination with vector elimination since they have the same efficacy

value 100%.

6.2. Infection Averted Ratio. The infection averted ratio is given by:

(6.2) IAR(t) =
Number of infection averted

Numbetr of recovered

where number of infection averted is the difference of infected human obtained at the endemic

equilibrium of the system (5.1) before the introduction of interventions and the number of in-

fected human obtained at the endemic equilibrium of the system (5.1) after the introduction of

the corresponding intervention.

Using the above formula (6.2), the IAR of each intervention is given by table (6.2).

Intervention IARihu(t) IARiha(t)

All Controls 0.1317 0.0007

u1 Only −0.0104 0.0001

u2 Only 0.2713 0.0023

u3 Only −0.0104 0.0001

u1 and u2 0.1295 0.0007

u1 and u3 0.0.3781 0.0024

u2 and u3 −0.0104 0.0001

TABLE 4. The IAR of each intervention

Comparing the results obtained in table (6.2), it is clear that the most cost-effective intervention

is the combination of vaccination with water sanitation for both unaware and aware infected

individuals. Then, it is followed by using vector elimination only for both infected classes.

However it is also clear from the table that the differences between the IAR of theses two

interventions is very small.

6.3. Incremental Cost-Effectiveness Ratio. Incremental cost-effectiveness ratio is used to

compare the differences between the costs and health outcomes of two intervention strategies
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that compete for the same resources. It is generally described as the additional cost per addi-

tional health outcome [23]. The ICER numerator includes the differences in intervention costs

(total cost TC), while, the denominator is the difference in health outcomes ( infections averted

(Ai) ). We start the analysis by ranking the total infections averted of the control interventions

in increasing order. Next, we define and calculate the ICERs as follows:

ICERihu(u1 only) =
TC(u1 only)

IAihu(u1 only)
=−82.125

ICERihu(u3 only) =
TC(u3 only)−TC(u1 only)

IAihu(u3 only)− IAihu(u1 only)
= ∞

The remaining calculations of ICER for both aware and unaware infected population are given

in table (6.3).

Strategy (ihu) IAihu TC ICERihu Strategy (iha) IAiha TC ICERiha

no strategy 0 0 − no strategy 0 0 −

u1 Only −0.0008 0.0657 −82.125 u3 Only 5.83×10−6 0 0

u3 Only −0.0008 0 ∞ u2 Only 5.83×10−6 2018 ∞

u2 and u3 −0.0008 0.0001 −9.2234×1014 All Controls 5.83×10−6 0.0003 ∞

u2 Only 0.0121 0.2018 15.6357 u2 and u3 0.0001 0.0001 −2

u1 and u3 0.0165 0.0001 −45.8410 u1 and u2 0.0001 0.3093 ∞

u1 and u2 0.0926 0.3093 4.0631 u1 only 0.0005 0.0657 −609

All Controls 0.0943 0.0003 −181.7647 u1 and u3 0.0005 0.0001 ∞

TABLE 5. The ICERihu and ICERihu of each intervention

It is observed from table (6.3), for unaware infected, using water sanitation has unlimited costs

, The lower ICERihu is obtained form using all controls. This is an indication that using all

controls strongly dominate using water sanitation (u3) only. Hence, the water sanitation (u3)

only strategy is ruled out from the set of alternatives strategies. It is also observed from table

(6.3) that for aware infected individuals four strategies have unlimited costs which dominate the

other strategies. therefore, we ruled them out from the set of alternatives strategies. Hence, we

can get the following values of the ICERs in table (6.3).
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Strategy (ihu) IAihu TC ICERihu Strategy (iha) IAiha TC ICERiha

no strategy 0 0 − no strategy 0 0 −

u1 Only −0.0008 0.0657 −82.125 u3 Only 5.83×10−6 0 0

u2 and u3 −0.0008 0.0001 6.0505×1017 u2 and u3 0.0001 0.0001 1

u2 Only 0.0121 0.2018 15.6357 u1 Only 0.0005 0.0657 164

u1 and u3 0.0165 0.0001 −45.8410

u1 and u2 0.0926 0.3093 4.0631

All Controls 0.0943 0.0003 −181.7647

TABLE 6. The ICERihu and ICERihu of each intervention

From the calculations in table (6.3), we can see that using vector elimination (u2) and water

sanitation (u3) strategy is more costly and less effective than other strategies therefore, it ex-

cluded from the control’s strategies of unaware infected. Also, the calculations show that for

aware infected using vaccination (u1 only) is strongly dominated Therefore, it is ruled out from

the set of alternatives so it does not consume limited resources. Hence, we recalculate ICER for

the remaining strategies (table (6.3)).

Strategy (ihu) IAihu TC ICERihu Strategy (iha) IAiha TC ICERiha

no strategy 0 0 − no strategy 0 0 −

u1 Only −0.0008 0.0657 −82.125 u3 Only 5.83×10−6 0 0

u2 Only 0.0121 0.2018 10.5504 u2 and u3 0.0001 0.0001 1

u1 and u3 0.0165 0.0001 −45.8410

u1 and u2 0.0926 0.3093 4.0631

All Controls 0.0943 0.0003 −181.7647

TABLE 7. The ICERihu and ICERihu of each intervention

Table (6.3) indicates that a cost saving of 10.5504 for using vector elimination (u2 only) over

the other strategies for unaware infected which implies that this strategy is exclude from further

considerations. In addition, Table (6.3) shows that water sanitation (u3 only) is the most cost-

effective strategy for the aware infected.



5412 SHAIMAA AL-SHANFARI, IBRAHIM M. ELMOJTABA, NASSER AL-SALTI

Strategy (ihu) IAihu TC ICERihu

no strategy 0 0 −

u1 Only −0.0008 0.0657 −82.125

u1 and u3 0.0165 0.0001 −3.7919

u1 and u2 0.0926 0.3093 4.0631

All Controls 0.0943 0.0003 −181.7647

TABLE 8. The ICERihu and ICERihu of each intervention

Strategy (ihu) IAihu TC ICERihu

no strategy 0 0 −

u1 Only −0.0008 0.0657 −82.125

u1 and u3 0.0165 0.0001 −3.7919

All Controls 0.0943 0.0003 0.0026

TABLE 9. The ICERihu and ICERihu of each intervention

Strategy (ihu) IAihu TC ICERihu

no strategy 0 0 −

u1 Only −0.0008 0.0657 −82.125

u1 and u3 0.0165 0.0001 −3.7919

TABLE 10. The ICERihu and ICERihu of each intervention

Repeating the entire process, we can determine the next most cost and less effective strategy for

unaware infected population. Thus, we found that the combination of vaccination and vector

elimination (u1 and u2) is the next more costly and less effective strategy; then it is followed by

using all controls strategy (tables (6.3) and (6.3)). From table (6.3), it is concluded that using

vaccination (u1 only) has the least ICER and therefore is more cost-effective control strategy

for unaware infected population.
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7. CONCLUSION

The main contribution of this work is that we have developed a cholera model with two dis-

tinct groups (aware and unaware) in the susceptible and infected classes. The disease dynamics

is formulated by presuming a general representation for both the direct transmission and the

pathogen shedding, and the interaction between environmental vibrios and human vibrios. In

addition, we study a nonlinear recovery rate which gives us more insight into the dynamics of

the disease transmission in resource limited health settings. We consider a parameter b repre-

senting the number of available hospital bed over the human population. The model exhibits

disease-free equilibrium which is locally asymptotically stable. Then we study the existence

of endemic equilibrium. The numerical results show that dynamics of cholera infection de-

creases as the number of hospital beds and awareness programs increase. Therefore, in order to

eliminate the disease, effort must be targeted to increasing hospital resources as well as media

coverage.

Then, we applied optimal control theory to cholera model. We introduced three time-dependent

control variables into the model and investigated the associated benefits of different control

strategies using cost-effectiveness analysis. Using efficacy analysis, we found that the control

strategy utilizing all three control variables is the most efficient strategy to eliminate cholera

from both aware and unaware infected populations. On the other hand, IAR analysis of cost-

effectiveness showed that the most effective way to eliminate the disease is by using vaccination

and water sanitation for both aware and unaware infected populations. ICER analysis showed

that vaccination only is the most effective strategy to control cholera for aware infected popu-

lation, while, using water sanitation only for is the best way to control the disease for unaware

infected population. Therefore, we can conclude that, the most efficient and cost-effective con-

trol strategy for the entire population is the strategy involving vaccination and water sanitation.
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