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Abstract. Let G be a graph that has n vertices and m edges. Let f: V(G) — {1,2,...,k} be a function that
assigns to each vertex v € G a positive integer f(v) € {1,2,...,k}. We assign to each edge uv € E(G) a label
which is the ged(f(u), f(v)). The function f is called k-prime cordial labeling of G if |v,(i) —vy(j)| < 1 for all
i,j€{1,2,...,k} and |es(0) —es(1)| < 1, where vf(i) denotes the number of vertices labeled with i, e;(1) and
e7(0) denote the number of edges labeled with 1 and not labeled with 1, respectively. In this paper, we introduce
the concept of trigraph of a graph G, T3(G), and we show that the trigraph of a path P,, T3(P,), and the trigraph of
acycle Cy, T3(C,) are 4-prime cordial graphs.
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1. INTRODUCTION

Let G = (V(G),E(G)) be a finite simple graph, where V (G) is the vertex set of G and E(G) is
the edge set of G. Let n be the number of vertices in V(G) and m the number of edges in E(G).
The number of edges incident to a vertex v is called the degree of v, and is denoted by dg(v).
A graph G is connected if every pair of vertices are joined by a path. We say two vertices u,
v € V(G) are adjacent or neighbors if uv is an edge of G. We say that a graph that has n vertices
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and m edges an (n,m)-graph. The concept of cordial labeling of graphs was introduced in [1]
by Cahit. In [3], M. Sandaran, R. Ponraj and S. Somasundararam, introduced the concept of
prime cordial labeling and discussed the prime labeling of certain graphs. In [4] and [5], the
authors introduced k-prime cordial labeling of certain graphs. In this paper we will show that
the trigraphs, T3(P,) and T3(C,), are 4-prime cordial graphs. But first we need to introduce the

following definitions.

Definition 1.1. Let G be an (n,m)-graph and let f: V(G) — {1,2,...,k} be a function. For
each edge uv, we assign the label ged(f(u), f(v)). We say that f is a k-prime cordial labeling
of Gif |ve(i) —vs(j)| < Lforalli,je{1,2,...,k} and |es(0) —es(1)| < 1 where v¢(x) denotes
the number of vertices labeled with x, es(1) and e (0) respectively denote the number of edges

labeled with 1 and not labeled with 1.

Definition 1.2. A graph G is called a k-prime cordial graph if it admits a k-prime cordial labeling
[3].

Definition 1.3. A shadow graph D;(G) of a connected graph G is constructed by taking two
copies of G, G’ and G” and joining each vertex v/ € G’ to the neighbors of the corresponding

vertex v/ € G” and vice-versa [3].

Definition 1.4. A trigraph of G, T3(G), of a connected graph G is constructed by taking two
copies of G, G’ and G” and joining each vertex v € G to the neighbors of the corresponding

vertex V' € G, V" € G” and joining V' to the neighbors of the corresponding vertex v/ € G” [4].

Example 1.1. The graphs below are D,(P;) and T3(P4) where Py is a path on 4 vertices.
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6938 MOHAMMAD HAILAT

2. 4-PRIME CORDIAL LABELING OF A PATH P,

In this section, we will discus the structure of the trigraph 73(P,) and show that T3(P,) is a
4-prime cordial graph.
Theorem 2.1. The trigraph Tz(P,) is a 4-prime cordial graph forn > 7.

Proof. Let V(T3 (Pn)) = {ui,vi,wi | 1<i< I’l} and

E(T3(Py)) = {uittiy1,vivig1,wiwip1 | 1 <i<n—1}
U{uivipr,vitip |1 <i<n—1}
U{uiwipr,winip1 |1 <i<n—1}

U{viwirr,wivipr |1 <i<n—1}.

In a trigraph of a path on n vertices, T3(P,), we have 3n vertices and 9n — 9 edges. That is
|V(T3(P,))| =3nand |[E(T3(P,))| =9n—9. Note that deg(u; ) = deg(u, ) = deg(v;) = deg(v,) =
deg(w;) = deg(wy,) = 3 and deg(v;) = deg(w;) = deg(w;) =6 for all i # 1,n.

Let us define a function f: V(G) — {1,2,3,4} as in the following. But first we have to divide
the discussion into four cases, depending on the value of n.

Case 1: Suppose that n =0 (mod 4). That is, n = 4¢. Define f as

fl) =2 1<i<Z,

f) =4 1<i<3,
fw)=2 i=1,3,... ,g—l,
fw)=4 i=2,4,. g

This implies that 2 is assigned to 5, v; vertices and 7, w; vertices. That is the number of vertices

34” vertices. By the same argument 4 is assigned to 5 + 7 = 34”

that 2 is assigned to is 5 + 7 =
vertices. Thatis v¢(2) = T fand vye(4) = %’. In this part of the graph all edges are either labeled
with 2, since 2 = ged(2,2) = ged(2,4) and 4 = gcd(4,4). That is the number of edges that are

labeled with 2 or 4 equals 6(3"_62)+3(6) = 9”2_ 2. Thatis e/(0) = @. We continue to define the




ON THE CORDIAL LABELING OF CERTAIN TRIGRAPHS 6939

function f for the remaining vertices as

) = flu) = flw) =1 fori=Z+1,2+3,...

2
) = flu) = fw) =3 fori= g+2,g+4,....

This implies v7(1) = 4 +% =3 and v¢(3) = 4+ 2 = 3. Also, all the edges in the second

part of the graph are labeled with 1 = gcd(1,3) = ged(1,4) = ged(1,2).It follows that (1) =
6(3n—3)+3(3) _ 9n—
2 72

2. We summarize the previous information in the following table:

ve(1) | ve(2) | ve(3) | ve(4) | er(0) | ef(1)

3n 3n 3n 3n | 9n=9 | 9n—9
g 7 7 4 2| T2
Table 1

From Table 1, f satisfies the definition of 4-prime cordial labeling for T3(P,), since

ve(@) —ve(j)| =0<1and|ef(0) —efp(1)]=0<1foralli,j=1,2,3,4.

Case 2: Suppose that n =1 (mod 4). Then n = 1+ 4t for some positive integer ¢, so that

t= "4;1. In this case we define f follows

flu)) =2 for1 <i<2r+1,
fvi)=4  for1<i<2t,
flwi)=2 fori=1,3,...,2t — 1,
flwi) =4 fori=2,4,...,2t,
fwar—1) =1, fa1) =3, fluzys1)=4,
) = fu) = fw) =1 fori=20+2,20+4,...,

Fi) = f(u) = f(w)) =3 fori=2r+3,2t+5,....
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This implies that:

2 1 3n+1
vf(l):(5>3+1=3t+1=3<”4 >+1: ”: ,

3n+1
4

1\ 3n-3
vf(3):3t:3(”4 ): ”4 ,

—1 3n+1
vf(4)=2t+t+1:3<nT)+1: n:

ve(2) =2t+1t+1=3t+1=

It follows that:

, (1)_6(3(2t—1)+2)+12_36t—18+18_3_6t_9(4t)_9(n—1)_9n—9
A 2 - 2 T2 2 T 2 T a2

-9 9m—9
ef(O):(9n—9)—( 7 >: >

We summarize the previous results:

ve(1) [ ve(2) | ve(3) [ ve(4) | ef(0) | ef(1)

3n+1 3n+1 3n—3 3n+1 9n—9 9n—9
4 4 4 4 2 2

Table 2

It follows that f satisfies the conditions of the 4-prime cordial labeling.

Case 3: Suppose that n =2 (mod 4). That is n = 2+ 4¢, so that t = %. We can label the
first 2¢ and the last 2¢ vertices as we did in the previous two cases. Now we label the following

vertices as:

fwarg1) = f(warg2) = 1,
fluz1) = f(vas1) =2,
f(vars2) =3,

fluzi2) = 4.
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This implies that:

2t -2 3 2

3n+2
vi(2)=2t+t4+2=3t+2= ”: :
2t 3n—2
N=3(Z)+1=3+1=
vr(3) (2)+ + R
3n—2
vr(d) =2 +1+1=3+1= ”4 .

It follows that

/(1) 3(6(2t—2))+9+9+6+6+4+2+6+2 9n—10
f pr— pu— ,
2 2

9 —10\ 9n—8
ef(O):9n—9—(”2 ): ”2 .

We summarize the above results as:

ve(1) [ ve(2) [ ve(3) | ve(4) | ef(0) | ep(1)

3n+2 | 3n+2 | 3n—2 | 3n—2 | 9n—8 | 9n—10
4 4 F 7 p) p)

Table 3
From the table above, we have |v¢(i) —vy(j)| < 1 and |es(0) —es(1)| = % =1 < 1, so that the

graph is 4-prime cordial graph.

Case 4: Suppose that n =3 (mod 4). That is n = 3+ 4¢, so that t = “72. We can label the

first 2¢ and the last 2¢ vertices as in the previous cases. Now we label the following vertices

Ut 415 W2r415 V2415 U442, W2t 42, V2142, Ut 43, W23, V2143

as

fluzi1) =2, fwag) =4, f(vas1) =3,
fluz2) =1, fway2) = f(vari2) =4,

flusiz) =1, fwag3) =2, fwag3) =3.
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This implies that:

21 -3 3n—1
vf(1):3<3)+2:3t+2:3<”4 >+2: ”4 :

-3 3n—1
vf(z):3t+2:3(” >+2: !

4 4
n—3 3n—1

3)=3t+2=3 ) -
vp(3)=3r+ ( 1 >+ R
vf(4):3z+3=3<”;3>+3:3”:3.

It follows that:

3(6(2r—1)+94+104+10+6  36:+17 9(dr)+17 9(n—3)+17 9n—10
er(l) = 2 — T2 T 2 T T a2 T T

04(0) = (9n—9) <9n;10) _ 9n2—8.

We summarize the above results in the following table:

ve(1) [ ve(2) [ ve(3) [ ve(4) | ef(0) | er(1)

3n—1 3n—1 3n—1 3n+3 | 9n—10 | 9n—8
4 4 4 4 2 2

Table 4

From the table above, we have |v(i) —vy(j)| < 1foralli,j=1,2,3,4 and |es(0) —ep(1)| =
1 < 1, so that the graph is 4-prime cordial graph. UJ

3. PRIME-CORDIAL LABELING OF A CYCLE C,, ON n VERTICES

In this section we will prove that the trigraph 73(C,) is a 4-prime cordial graph.
Theorem 3.1. The trigraph T5(C,) is a 4-prime cordial graph, for n > 9.
Proof. Let V(T3(Cy)) = {ui,vi,w; | 1 <i< n}and

E(T3(Cp)) = {stittip1,vivig1, wiwipr | 1 <i<n—1}
U{uiWig1, Uivig1, Villig1, Wit 1, Viwipiwiviy | 1 <i<n—1}

U{unVi, UnW1, valt1, VaW1, wpvi, wply }.
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In a trigraph of a cycle, T3(C,), we have 3n vertices and 9n edges since the degree of each

vertex is 6 and we have 3n vertices, so that the number of edges equals @ =9n. That is

|V(T3(Cy))| = 3n and |E(T5(Cy))| = 9n. We divide the discussion into four cases, depending

on n, the number of vertices in each cycle.

Case 1: Suppose that n =0 (mod 4). In this case we define f: V(T3(C,)) — {1,2,3,4} as

follows:

. n
fvai) = fluzic) = f(waic1) =2, 1<i<y,
. n
fWair1) = fluzi) = f(wai) =4, 1<i< P
._n—4
fvgiaina) = flugiaina) = fwppaipa) =1, 1<i<——,
. _n—38
f(V§+2i+3) = f(”g+2i+3) = f(W§+2i+3> =3, I<i< 4

This implies that

vp(2)=3 Z) -
vi(3) =3 (”;8) +6= 34—”,
a=3() ¥
It follows that, the number of edges that are labeled with 2 or 4 = 3(6(%_23))+37 = 9"517 , and the

number of edges labeled with 3 is equal to 9. Thus

_ =17 g 9nl
2 2
9n+1 9n-—1
2 2

er(0)

er(1) =9n—
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We summarize the results in the following table:

ve(L) [ ve(2) | ve(3) [ ve(4) | ef(0) | ef(1)

3n 3n 3n 3n 9n+1 | 9n—1
4 4 4 4 2 2
Table 5

From Table 5, we have [v¢(i) —v/(j)| =0 < 1 and |es(0) —es(1)| = 1 < 1, so that the graph is

4-prime cordial graph.

Case 2: Suppose that n =1 (mod 4). In this case we define f: V(T3(C,)) — {1,2,3,4} as

follows:
3
fluziz1) =2, 1<l<n:7
3
fuy) =4, lélén:,

n—1
4 )
-5
FOuss o) = Flitngs ) = Flwags ) =1, 1<i< 2,
-9
f("%wi) :f(“#wi) :f(W%Hi) =3, 1<i<? 1
F01) = F(vas2) = Flvags) = ) =1,
fVugs) = flungs) = fluna) = fWass) = fWass) = f(wasr) =3
This implies that:
-5 3n+1
vf(1):3(”4 )+4: ”4 ,
n—1 n+3 3n+1
s () ()
-9 3n—3
Vf(3):3(n4 )+6: n4 )
n—1 n+3 3n+1
() ()
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It follows that the number of edges that are labeled with 2 or 4 = 6

15 515 , and the number of edges labeled 3 equals %. Thus,
On—15 16 9n—+1
0 — —_— =
er(0) 5 5 5
In+1 9n—1
ef( ) n 2 5

We summarize the above results in the following table:

6945

("71)(3)—2-2-2-2-2-2+3+3 _

’

ve(L) [ ve(2) | ve(3) | v(4) | ef(0) | ef(1)

3n+1 3n+1 3n—3 3n+1 On+1 9n—1

3 3 7 3 2 2
Table 6

2

From Table 6, we have |v,(i) —v¢(j)| =0or 1 <1and |es(0) —es(1)| < 1, so that the graph is

4-prime cordial graph.

Case 3: Suppose that n =2 (mod 4). In this case we define f: V(T3(C,)) — {1,2,3,4} as

follows:

2
f(u2i71):27 lgl\n: 5
2
flo) =4, 1<i<=
n—2

fvai)=f(wy) =2, 1<i<

4
faig1) = fwaip1) =4, 1<i<

f(V#Jrzl-) = f(u#Jrzl‘) = f(W#H,-) =1,

f("#ui) = f(“%ui) = f(W#Jrzi) =3,
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This implies that:

number of edges labeled 3 equals F3H31343483 — 18 "Thjs implies that e £(0) =

so that ef(1) = 9n — 97” = %.

MOHAMMAD HAILAT

n—=6

4

N

We summarize the above results as:

(132) 2=
()

()
~2(M2)+

It follows that number of edges labeled with 2 or 4 = 6

+2

4

+8=

_3n—2
==

3n+2

4

n+2
4

_3n—2
==

("52)(3)—2—2-1-2-2+3

2

Ve(L) [ ve(2) | ve(3) [ ve(4) | ef(0) | ef(1)

3n+2 3n—2 3n+42 3n—2 9n 9n

i 1 4 4 2 2
Table 7

9n—18
2

__ 9n—18
=5,

18 __
+8=

and

9
2 £l

From Table 7, we have |v;(i) —v¢(j)] =0or1 <1 and |es(0) —es(1)| =0 < 1, so that the

graph is 4-prime cordial graph.

Case 4: Suppose that n =3 (mod 4). In this case we define f: V(T3(C,)) — {1,2,3,4} as

follows:

fv2) = fluziz1) = f(wa) =2,

1<

f2ir1) = fluzi) = f(wair1) =4, 1

fup i) = flunga ) =1, 1<i<

f(w”;f—3+2i) =1

f("%ui) = f(”#ui) = f(

1<i<

n+1

i<

n+1

<

/N

4
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This implies that

_3n—1
==

4
vr(4) :2(”:1> . (”;3) oot

(51)(3)-2-2-2+3-3-3-3+2 9,19
2 -2 >

It follows that number of edges labeled with 2 or 4 = 6

and number of edges labeled 3 equals . Thus e/(0) = 2512 4+ 18 = 21-1 5o that ef(1) =

_ 9%—1 _ 9n+1
On—=5—-==5-.

We summarize the above results as:

ve(1) | ve(2) | ve(3) | ve(4) | er(0) | ef(1)

3n—1 3n+3 3n—1 3n—1 In—1 In+1
4 4 4 4 2 2

Table 8

From Table 8, we have |vs(i) —vs(j)| =0or1 < 1 and |ef(0) —ey(1)| = 0 < 1, so that the
graph is 4-prime cordial graph.
It follows that 73(C},) is a 4-prime cordial graph for all n > 9. O
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