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Abstract. In this paper, we study the invariance of certain curvature conditions in (κ,µ)-contact metric manifold

under D-homothetic deformation. Finally we give an example to verify the results.
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1. INTRODUCTION

The class of (κ,µ)-contact metric manifolds encases both Sasakian and non-Sasakian struc-

tures. This class of manifolds are invariant under D-homothetic transformation. It is noted that

the class of spaces acquired through D-homothetic deformation [13] is a contact metric manifold

whose curvature satisfies R(X ,Y )ξ = 0. In [13], [14], the authors used D-homothetic deforma-

tion on Sasakian and K-contact structures to get results on the first Betti number , second Betti

number and harmonic forms. A plane section in the tangent space Tp(M) is called a φ -section

if there exist a unit vector X in Tp(M) orthogonal to ξ such that {X ,φX} is an orthonormal ba-

sis of the plane section. Then the sectional curvature K(X ,φX) = g(R(X ,φX)X ,φX) is called

a φ -sectional curvature. A contact metric manifold M(φ ,ξ ,η ,g) is said to be of constant φ -

sectional curvature if at any point p ∈ M, the sectional curvature K(X ,φX) is independent of
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choice of non-zero X ∈ Dp, where D denotes the contact distribution of the contact metric

manifold defined by η = 0.

The Riemannian curvature tensor R of Sasakian manifold of constant φ -sectional curvature

is determined by Ogiue [9]. The geometry of contact Riemannian manfolds of constant φ -

sectional curvature is obtained by Tanno [15]. If the φ -sectional curvature H is constant on

K-contact Riemannian manifold M(φ ,ξ ,η ,g) then H can be deformed by a D-homothetic de-

formation of the structure tensors [16]. An extensive research about D-homothetic deformation

on contact geometry is carried out in recent years. The D-homothetic deformation is related to

the following tensor structures. In other words, it means that the changing of the tensor form

(1.1) η
′ = aη , ξ

′ = (
1
a
)ξ , φ

′ = φ , g′ = ag+(a−1)η⊗η ,

where a is a positive constant. In particular, some authors (Carriazo et al [3]), (De et al [4])

studied D-homothetic deformations of certain structures . An almost contact metric manaifold

is said to be η-Einstein if its Ricci tensor S is of the form

(1.2) S = αg+βη⊗η ,

where α and β are smooth functions on the manifold.

The notion of local symmetry of a Riemannian manifold has been studied by many authors

in several ways to different structures. As a weaker version of local symmetry Takahashi [12]

introduced the notion of a local φ -symmetry on a Sasakian manifold. Generalizing the notion

of a local φ -symmetry of Takahashi [12]. De et al. [6] introduced the idea of φ -recurrent

Sasakian manifolds. The notion of a generalized recurrent manifold has been introduced by

Dubey [7] and studied by others. Again, the notion of a generalized Ricci recurrent manifold

has been introduced and studied by De et. al. [5]. The properties of the extended general-

ized φ -recurrent β -Kenmotsu, Sasakian and (LCS)2n+1-manifolds have been studied in [11],

[10] and [18] respectively. Motivated by the above studies, in this paper we characterize the

(κ,µ)-contact metric manifolds under D-homothetic deformation. We study the invariance

properties of extended generalized φ -recurrent, locally φ -Ricci symmetric (κ,µ) manifolds un-

der D-homothetic deformation. Also η-parallel Ricci tensor is considered in (κ,µ)-contact

metric manifolds. Finally, we give an example of such manifold.
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2. PRELIMINARIES

Let M be (2n+1)-dimensional almost contact metric manifold. Then it carries two fields φ

and ξ and a 1-form η . The field φ represents the endomorphism of the tangent spaces, the field

ξ is called characteristic vector field and η is a 1-form satisfying

(2.1) φ
2 =−I +η⊗ξ , g(X ,ξ ) = η(X),

(2.2) η(ξ ) = 1, φξ = 0, η ◦φ = 0,

(2.3) g(φX ,φY ) = g(X ,Y )−η(X)η(Y ),

(2.4) g(φX ,Y ) =−g(X ,φY ),g(X ,φY ) = dη(X ,Y ),

for any vector fields X ,Y ∈ χ(M). In a contact metric manifold, we characterize a (1,1) tensor

field h by h =
1
2
Lξ φ , where L denotes the Lie differentiation. At this point h is symmetric and

satisfies hφ =−φh. Also we have Trh = Trφh = 0 and hξ = 0. The (κ,µ)-nullity distribution

of a Riemannian manifold (M,g) is a distribution

N(κ,µ) : p 7→ Np(κ,µ) = {Z ∈ χp(M) : R(X ,Y )Z = κ[g(Y,Z)X−g(X ,Z)Y ]

+µ[g(Y,Z)hX−g(X ,Z)hY ]}
(2.5)

for any X ,Y,Z ∈ χp(M) and κ and µ being constants, where R denotes the Riemannian curvature

tensor and χp(M) denotes the tangent vector space of M at any point p∈M. If the characteristic

vector field of a contact metric manifold belongs to the (κ,µ) nullity distribution, then the

relation

(2.6) R(X ,Y )ξ = κ(η(Y )X−η(X)Y )+µ(η(Y )hX−η(X)hY )

holds. A contact metric manifold with ξ ∈ N(κ,µ) is called a (κ,µ)-contact metric manifold

[1]. In a (κ,µ)-contact metric manifold M the following relations hold [1], [2]:

(2.7) h2 = (κ−1)φ 2,

(2.8) ∇X ξ =−φX−φhX ,
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(2.9) (∇X φ)Y = g(X +hX ,Y )ξ −η(Y )(X +hX),

(2.10) (∇X η)Y = g(X +hX ,φY ),

(2.11) R(ξ ,X)Y = κ(g(X ,Y )ξ −η(Y )X)+µ(g(hX ,Y )ξ −η(Y )hX),

(2.12)

S(X ,Y )= [2(n−1)−nµ]g(X ,Y )+[2(n−1)+µ]g(hX ,Y )+[2(1−n)+n(2κ+µ)]η(X)η(Y ),n≥ 1

(2.13) S(X ,ξ ) = 2nκη(X),

(2.14) r = 2n[2n−2+κ−nµ],

(2.15) (∇X h)(Y ) = [(1−κ)g(X ,φY )+g(X ,hφY )]ξ +η(Y )[(1−κ)φX +φhX ]−µη(X)φhY,

where S and r are the Ricci tensor and scalar curvature respectively and Q is the Ricci opertor,

i.e., g(QX ,Y ) = S(X ,Y ).

3. THE D-HOMOTHETIC DEFORMATION IN (κ,µ) CONTACT METRIC MANIFOLD

Let (M,φ ,ξ ,η ,g) be (2n+1) dimensional (κ,µ)-contact metric manifold and (M, φ̄ , ξ̄ , η̄ , ḡ)

be obtained from (M,φ ,ξ ,η ,g) by homothetic deformation (1.1). Throught the paper the

quantity with bar denote quantities in (M, φ̄ , ξ̄ , η̄ , ḡ) and the quantity without bar are for

(M,φ ,ξ ,η ,g). The relation between R̄ and R of (M, φ̄ , ξ̄ , η̄ , ḡ) as follows: [8] .

R̄(X ,Y )Z = R(X ,Y )Z +(1−a)[g(φY,Z)φX−g(φX ,Z)φY +2η(X)η(Z)hY

−2η(Y )η(Z)hX +2g(φY,X)φZ +η(Y )g(X ,Z)ξ −η(X)g(Y,Z)ξ ]

+
(1−a)

a
[2η(Y )g(hX ,Z)ξ −2η(X)g(hY,Z)ξ +(1−κ){η(Y )g(X ,Z)ξ

−η(X)g(Y,Z)ξ}+g(φhX ,Z)φY −g(φhY,Z)φhX ]+ (a2−1)[η(Y )η(Z)X

−η(X)η(Z)Y ],

(3.1)
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for any vector fields X , Y , Z on M.

Using (3.1), we derive

S̄(Y,Z) = aS(Y,Z)+(a−1)[(a2−2a−κ +1)g(Y,Z)+(2na2 +2na+2a−a2 +κ−1)

η(Y )η(Z)+a(2+µ)g(hY,Z)].
(3.2)

Theorem 3.1. Under a D-homothetic deformation the expression Qφ − φQ of a (2n + 1)-

dimensional (κ,µ)-contact metric manifold is invariant, provided µ =−2.

Proof: From (3.1) we have

(3.3)

Q̄X = QX +
a−1

a
[(a2−2a−κ +1)X +(2na2 +2na+2a−a2 +κ−1)η(X)ξ +a(2+µ)hX ].

Operating φ̄ = φ on both sides of above equation from the left, we have,

(3.4) φ̄ Q̄X = φQX +
a−1

a
[(a2−2a−κ +1)φX +a(2+µ)φhX ].

Again, putting φ̄X = φX in (3.2) we have

(3.5) Q̄φ̄X = QφX +
a−1

a
[(a2−2a−κ +1)φX +a(2+µ)hφX ].

From (3.3) and (3.5) we get

(3.6) (φ̄ Q̄− Q̄φ̄)X = (φQ−Qφ)X +2a(a−1){2+µ}φhX .

Hence the proof.

Lemma 3.1. In a (2n + 1)-dimensional η-Einstein (κ,µ) manifold M(φ ,ξ ,η ,g), the Ricci

tensor is expressed as

(3.7) S(X ,Y ) = (
r

2n
−κ)g(X ,Y )− (

r
2n
−2nκ−κ)η(X)η(Y ).

Proof: On contracting (1.2) we have

(3.8) r = (2n+1)α +β ,

where r is the scalar curvature of the manifold. Again putting X = ξ in (2.13) we obtain,

(3.9) α +β = 2nκ.
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Solving (3.8) and (3.9) we obtain values for α =
r

2n
−κ and β =− r

2n
+(2n+1)κ . Putting the

values of α and β in (1.2), we get (3.7).

Theorem 3.2. Under D-homothetic deformation, a (2n+ 1)- dimensional η-Einstein (κ,µ)-

contact metric manifold transforms to η-Einstein (κ,µ)-contact metric manifold provided µ =

−2.

Proof: Let M(φ ,ξ ,η ,g) be a (2n+ 1)-dimensional η-Einstein (κ,µ)-contact metric mani-

fold which becomes M(φ̄ , ξ̄ , η̄ , ḡ) under a D-homothetic deformation. Then from (3.1) it fol-

lows by virtue of (3.7) that

(3.10) S̄(X ,Y ) = Āḡ(X ,Y ) = B̄η̄(X)η̄(Y )+(
2+µ

a
)ḡ(hX ,Y ),

where Ā and B̄ are smooth functions given by

(3.11) Ā =
1
a
(

r
2n
−κ +(

a−1
a

)(a2−2a−κ−1))

and

B̄ =−
(a−1

a

)
(

r
2n
−κ +(

a−1
a

)(a2−2a−κ +1))− 1
a2 (

r
2n
−2nκ−κ− (

a−1
a

))

[2na2 +2na+2a−a2 +κ−1]).
(3.12)

The Proof follows by (3.10).

Theorem 3.3. Under D-homothetic deformation, the φ -sectional curvature of a (2n + 1)-

dimensional (κ,µ)-contact metric manifold is invariant, provided κ = (1−3a).

Proof: Here we consider the φ -sectional curvature on a (2n+1)-dimensional (κ,µ)-contact

metric manifold. From (3.1) it can be easily seen that

(3.13) K̄(X ,φX)−K(X ,φX) =−(1−a)(3a+κ−1).

Hence we have the proof of the theorem.
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4. EXTENDED GENERALIZED φ -RECCURRENT, LOCALLY φ -RICCI SYMMETRY AND

η -PARALLEL (κ,µ)-MANIFOLD

Firstly, we study the properties of the extended generalized φ -reccurrent (κ,µ)- manifolds

under D-homothetic deformation.

Definition 4.1. A (κ,µ)-manifold M (φ ,ξ ,η ,g), is said to be an extended generalized φ -

recurrent manifold under D-homothetic deformation if its curvature tensor R̄ satisfies

(4.1) φ
2((∇W R̄)(X ,Y )Z = A(W )φ 2(R̄(X ,Y )Z)+B(W )φ 2(G(X ,Y )Z),

for X, Y , Z, W ∈ χ(M), where A and B are non-vanishing 1-forms such that A(X) = g(X ,ρ1),

B(X) = g(X ,ρ2) and G is a tensor field of type (1,3) defined as

G(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y.

The 1-forms A and B are called the associated 1-forms of the manifold.

Definition 4.2. A (κ,µ) manifold M (φ ,ξ ,η ,g) is said to be generalized Ricci-recurrent man-

ifold under D-homothetic deformation if its non-vanishing Ricci tensor S̄ satisfies the relation

(4.2) (∇W S̄)(Y,Z) = A(W )S̄(Y,Z)+B(W )g(Y,Z),

for all vector fields W, X, Y ∈ χ(M).

Theorem 4.1. If an extended generalized φ -recurrent (κ,µ)-manifold M under D-homothetic

deformation is a generalized Ricci-recurrent manifold, then the 1-forms A and B are related as

2n(1−a2−κa)A(W )+(4n2−2n−1)B(W ) = 0.

Proof: Let us suppose that the manifold M(φ ,ξ ,η ,g), is an extended generalized φ -recurrent

(κ,µ)-manifold under D-homothetic deformation. Then from (2.1), (2.2), (2.3) and (4.1), we

have

−(∇W R̄)(X ,Y )Z +η((∇W R̄)(X ,Y )Z)ξ = A(W )[−R̄(X ,Y )Z +η(R̄(X ,Y )Z)ξ ]

+B(W )[−G(X ,Y )Z +η(G(X ,Y )Z)ξ ],
(4.3)
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from which it follows that

−g((∇W R̄)(X ,Y )Z,U)+η((∇W R̄)(X ,Y )Z)η(U) = A(W )[−g(R̄(X ,Y )Z,U)

+η(R̄(X ,Y )Z)η(U)]+B(W )[−g(G(X ,Y )Z,U)

+η(G(X ,Y )Z)η(U)].

(4.4)

Let {ei, i = 1,2, ....,2n+ 1} be an orthonormal basis of the tangent space at any point of the

manifold. Replacing X =U = ei in (4.4) and taking summation over i, 1≤ i≤ 2n+1, we have

(∇W S̄)(Y,Z)−g((∇W R̄)(ξ ,Y )Z,ξ ) = A(W )[S̄(Y,Z)−η(R̄(ξ ,Y )Z)]

+B(W )[(2n−1)g(Y,Z)+η(Y )η(Z)].
(4.5)

In consequence of (2.1), (2.2), (3.1) we have

(4.6) η(R̄(ξ ,Y )Z) = (
a2−1+κ

a
)[g(Y,Z)−η(Y )η(Z)]+(µ− 2(1−a)

a
)g(hY,Z).

The covariant derivative of the above equation along the vector field W gives

g((∇W R̄)(ξ ,Y )Z,ξ ) = [
a2−1+κ

a
−µ(1−κ)+

2(1−κ)(1−a)
a

]g(φW,Y )η(Z)

+ [
a2−1+κ

a
−µ +

2(1−a)
a

]g(φhW,Y )η(Z)−µ(1−κ)

g(φW,Z)η(Y )−µg(φhW,Z)η(Y )−µg(φhW,Z)η(Y )

−µ(µ− 2(1−a)
a

)g(φhY,Z)η(W ).

(4.7)

In view of (4.6), (4.7), (4.5) becomes

(∇W S̄)(Y,Z)− [
a2−1+κ

a
−µ(1−κ)+

2(1−κ)(1−a)
a

]g(φW,Y )η(Z)

− [
a2−1+κ

a
−µ +

2(1−a)
a

]g(φhW,Y )η(Z)+µ(1−κ)g(φW,Z)η(Y )+µg(φhW,Z)η(Y )

+µg(φhW,Z)η(Y )+µ(µ− 2(1−a)
a

)g(φhY,Z)η(W )

= A(W )[S̄(Y,Z)− (
a2−1+κ

a
)[g(Y,Z)−η(Y )η(Z)]+(µ− 2(1−a)

a
)g(hY,Z)]

+B(W )[(2n−1)g(Y,Z)+η(Y )η(Z)].

(4.8)
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From (4.8) and the definition (4.2), it follows that an extended generalized φ -recurrent (κ,µ)-

manifold under D-homothetic deformation is a generalized Ricci-recurrent manifold if and only

if

[
a2−1+κ

a
−µ(1−κ)+

2(1−κ)(1−a)
a

]g(φW,Y )η(Z)+ [
a2−1+κ

a
−µ

+
2(1−a)

a
]g(φhW,Y )η(Z)−µ(1−κ)g(φW,Z)η(Y )−µg(φhW,Z)η(Y )

−µg(φhW,Z)η(Y )−µ(µ− 2(1−a)
a

)g(φhY,Z)η(W )− (
a2−1+κ

a
)A(W )

[g(Y,Z)−η(Y )η(Z)]− (µ− 2(1−a)
a

)A(W )g(hY,Z)]+B(W )[2(n−1)g(Y,Z)

+η(Y )η(Z)] = 0.

(4.9)

Let {ei : i = 1,2, ...,2n+ 1} be an orthonormal basis of the tangent space at any point of the

manifold. Setting Y = Z = ei in (4.9) and taking summation over i, 1≤ i≤ 2n+1, we have

(4.10) 2n(1−a2−κa)A(W )+(4n2−2n−1)B(W ) = 0.

Next, we deal with the study of locally φ -Ricci symmetric (κ,µ)-manifolds under D-

homothetic deformation.

Theorem 4.2. The property of locally φ -Ricci symmetry on an (κ,µ)-manifold is invariant

under the D-homothetic deformation provided µ =−2.

Proof: Differentiating (3.2) covariantly with respect to W we have

(∇W Q̄)X = (∇W Q)X +(
a−1

a
)(2na2 +2na+2a−a2 +κ−1)((∇W η)(X)ξ

+η(X)(−φW −φhW ))+(2+µ)(∇W h)X .

(4.11)

Simplifying by using (2.10) and (2.15) and operating φ 2 on both sides and suppose that X is

orthogonal to ξ , we find that

(4.12) φ̄
2(∇W Q̄)(X) = φ

2(∇W Q)(X)+(2+µ)µη(W )φhX .

Hence the proof.

Now, we deal with the study of η-parallel (κ,µ)-manifolds under D-homothetic deformation.
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Theorem 4.3. Under D-homothetic deformation, an η-Parallel Ricci tensor in a (κ,µ)- mani-

fold remains η-parallel, provided µ =−2.

Proof: Differentiating (3.1) covariantly with respect to W and then using (2.10) and (2.15)

we have

(∇W S̄)(X ,Y ) = (∇W S)(X ,Y )+(
a−1

a
)(2na2 +2na+2a−a2 +κ−1)(η(Y )(∇W η)(X)

+η(X)(∇W η)(Y ))+(a−1)(2+µ)[(1−κ)g(W,φX)η(Y )−g(W,φhX)η(Y )

− (1−κ)η(X)g(φW,Y )−η(X)g(φhW,Y )−µη(W )g(φhX ,Y )].

(4.13)

Replacing the vector fields X by φX and Y by φY in (4.13) and then by using (2.1) and (2.2) we

obtain

(4.14) (∇W S̄)(X ,Y ) = (∇W S)(X ,Y )− (a−1)(2+µ)µη(W )g(X ,φY ).

Hence the Proof.

5. EXAMPLE

We consider 3-dimensional manifold M = {(x,y,z) ∈ R3}, where (x,y,z) are the standard

coordinates in R3. Let {E1,E2,E3} be linearly independent global frame on M given by E1 =
∂

∂x ,

E2 = ∂

∂y and E3 = 2y ∂

∂x + 2x ∂

∂y +
∂

∂ z . [E1,E2] = 0, [E2,E3] = 2E1, [E1,E3] = 2E2. Let g be a

metric defined by g(E1,E2) = g(E2,E3) = g(E1,E3) = 0, g(E1,E1) = g(E2,E2) = g(E3,E3) = 1.

Let η be the 1-form defined by η(V ) = g(V,E1) for any V ∈ χ(M). Let φ be the (1,1)-tensor

field defined by φE1 = 0, φE2 = E3, φE3 = −E2 and hE1 = 0, hE2 = E2 and hE3 = −E3.

Using the linearity of φ and g, we have η(E1) = 1, φ 2V = −V +η(V )ξ and g(φV,φW ) =

g(V,W )−η(V )η(W ), for any V,W ∈ χ(M).

The Riemannian connection ∇ of the metric tensor g is given by

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ]).

Using Koszul’s formula, we get the following,

∇E1E3 = 2E2,∇E1E2 =−2E3,∇E1E1 = 0,∇E2E3 = 0,∇E2E2 = 0,∇E2E1 =−2E3,

∇E3E3 = 0,∇E3E2 = 0,∇E3E1 = 0.
(5.1)
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From (5.1) it can be easily seen that (φ ,ξ ,η ,g) is a (κ,µ) manifold. Next we find the curvature

tensor as follows:

R(E1,E2)E3 = 0,R(E2,E3)E3 =−4E2,R(E1,E3)E3 = 0,

R(E1,E2)E2 = 0,R(E2,E3)E2 = 4E3,R(E1,E3)E2 = 0,

R(E1,E2)E1 =−4E2,R(E2,E3)E1 = 0,R(E1,E3)E1 = 4E3.

(5.2)

In view of the expression of the curvature tensor we find the Ricci tensor as follows:

(5.3) S(E1,E1) = g(R(E1,E2)E2,E1)+g(R(E1,E3)E3,E1) = 0.

Similarly we find S(E2,E2) =−4 = S(E3,E3). Hence r =−8.

It is well known that in a 3-dimensional manifold, the curvature tensor R satisfies the relation

(5.4) R(X ,Y )Z = S(Y,Z)X−S(X ,Z)Y +g(Y,Z)QX−g(X ,Z)QY − r
2
[g(Y,Z)X−g(X ,Z)Y ].

From (2.12) we have

(5.5) S(X ,Y ) =−µg(X ,Y )+µg(hX ,Y )+(2κ +µ)η(X)η(Y ).

From (5.5) we can find that

R(X ,Y )Z = 2µ[g(X ,Z)Y −g(Y,Z)X ]+µ[g(hY,Z)X−g(hX ,Z)Y +g(Y,Z)hX−g(X ,Z)hY ]

+ (2κ +µ)[η(Y )X−η(X)Y ]η(Z)+(2κ +µ)[g(Y,Z)η(X)−g(X ,Z)η(Y )]ξ

− r
2
[g(Y,Z)X−g(X ,Z)Y ].

(5.6)

which is equivalent to

′R(X ,Y,Z,W ) = µ[g(X ,Z)g(Y,W )−g(Y,Z)g(X ,W )]+µ[g(hY,Z)g(X ,W )

−g(hX ,Z)g(Y,W )+g(Y,Z)g(hX ,W )−g(X ,Z)g(hY,W )]

+(2κ +µ)[η(Y )g(X ,W )−η(X)g(Y,W )]η(Z)

+(2κ +µ)[g(Y,Z)η(X)−g(X ,Z)η(Y )]η(W )

− r
2
[g(Y,Z)g(X ,W )−g(X ,Z)g(Y,W )].

(5.7)

In view of above relation we get

K(E1,φE1) = 0,
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K(E2,φE2) = g(R(E2,φE2)E2,φE2) = g(R(E1,E3)E2,E3) = 2µ +
r
2

.

Similarly we have K(E3,φE3) = 2µ +
r
2

. Again from (3.1) it can be easily shown that

K̄(E2,φE2)−K(E2,φE2) = −(1−a)(3a−1). Similarly we have K̄(E3,φE3)−K(E3,φE3) =

−(1− a)(3a− 1) Therefore (κ,µ)-manifold satisfies the relation (3.13) and hence Theorem

(3.3) is verified.
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