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Abstract. Liman, Mohopatra and Shah proved that if p(z) is a polynomial of degree n having no zeros in |z| < 1,

then for all a, 8 € C with |@| > 1, || < 1and |z| =1,
al—1 ol —1 ol —1
Dup(e) o (U)o < ({8 (120) e (15 ) fmaxioco)
i

e (%) |ees (5 ]

where Dy p(z) = np(z) + (@ —z)p’(z) is the polar derivative of p(z) with respect to the point o. We extend and

generalize this inequality for the polynomial p(z) which does not vanish in |z| < k, k < 1. Our result also generalizes
other known inequalities as well.
Keywords: Bernstein inequality; polar derivative; polynomial; zero.
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1. INTRODUCTION
Bernstein [4] established an estimate of the derivative of a polynomial p(z) of degree n in
terms of the maximum modulus of p(z) on the unit circle by proving

(1.1) max |p'(z)| < nmax |p(z)|.
|z|=1 |z]=1
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In (1.1) equality is attained if p(z) is of the form az", where o is a non zero constant. Erdos
conjectured that if we restrict p(z) to the polynomials of degree n having no zero in |z| < 1, then

(1.1) can be sharpened and replaced by

n
(1.2) max |p’(z)| < = max|p(z)|.
|z|=1 2 |z|=1

Inequality (1.2) was proved later by Lax [9]. Equality is attained in (1.2) for p(z) = az" + 3,
where || = | B]. For the same class of polynomials as considered by Erdos and Lax, Aziz and
Dawood [1] involved min |p(z)| on the unit circle and proved a refinement of (1.2). In fact, they

proved

(13) max /()| < { max (o) - min (2} |

|z|=1 |z|=1 |z|=1

Dewan and Hans [6] improved (1.3) by proving that if p(z) is a polynomial of degree n having
no zeros in |z| < 1, then for any € C with |B| <l and |z| =1
np
2p'(2) + —-p(2)

: gg{(‘ugh‘g‘)rgaym@l

w0 (e 5]-[20) ey

Let o be any real or complex number and let p(z) be a polynomial of degree n. We define

the polar derivative [11] of p(z) with respect to o, denoted by Dy p(z), as

Do p(z) = np(z) + (o —2)p' ().

Dy p(z) is a polynomial of degree at most n — 1. Since,

D
lim aP(Z)

O—ro0 o

=p'(2),

therefore, Dy p(z) is considered as a generalized form of the ordinary derivative of p(z).
Aziz and Shah [2] extended (1.1) to polar derivative and proved that if p(z) is a polynomial
of degree n, then for every a with |a| > 1,

(1.5 max|Dep(2) < o max |p(2) |
a ma

|z|=
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Aziz and Shah [3] refined and extended their result (1.5) by considering that the polynomial
p(z) of degree n having no zeros in |z| < 1 and for every real or complex number ¢ satisfying
o] > 1,

16 maxlap(o)] <5 { (ol + Dmaxlp()] - (]~ Dminlp(a)] |

|z[=1 |z]=1

n
Considering the more general class of polynomials of degree n, namely, p(z) =apo+ Y, ayz’,
v=y
1 < u <n, we find some generalizations of (1.6) in the literature ( see Dewan et al. [7] and
Bidkham et al. [5]). The next result was proved by Liman et al. [10]. It generalizes inequalities

(1.4) and (1.6) proved by Dewan and Hans [6] and Aziz and Shah [3] respectively.

Theorem 1.1. If p(z) is a polynomial of degree n having no zero in |z| < 1, then for all o, B

with |a| > 1, |B| < 1and |z| =1,

o — 1 o — 1

Dup(e) 418 p0) <5 (la 820 | e 1 ) maxtoe)

1.7 — (

2. MAIN RESULTS

a1 |- e B2 Y min o .

|z|=1

In this paper, by involving some coefficients of the polynomial p(z), we generalize and ex-
tend inequality (1.7). The result also generalizes other inequalities mentioned in the preceding

section. More precisely, we prove the following result.

n
Theorem 2.1. Let p(z) = a,7"+ Y, an—vZ"Y, 1 < u <n, be a polynomial of degree n which
v=q
does not vanish in |z| < k, k < 1. Then, forall o, B € Cwith || > A, |B| <1 and |z] =1,

o] —A o] —A
at+ Bt B E‘lg\p(@!

zDap(z) +npP |?‘+_AAP(Z)‘ Sg { (k—n

_ la| —A la| —A )
2.1 — (& -
e (1o B Lt IR i e
where
2.2) 4 = Hlan—ulk1 + nlay [k

Hlan—p|+nlan|kt1
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Remark 2.2. Under the assumptions of Theorem 2.1, we can verify that A = 1 when k =1,

whereas, for kK < 1 we can verify that A < k as shown below. Using inequality (3.4), we have

K < nla K%

1 1
= |ap_pulk* (% — 1) < nlay, |kK*H <% - 1) ,

or  Llan—yulk* T+ nlan K < nja, kPP wan— gk,

W] an—p [k* 1+ nlay | k*H
Hlan—p |+ nla k=1

<kM<k ask<1l and u>1,

re. A<k

Remark 2.3. Taking k =1 (so that A = 1) in Theorem 2.1, inequality (2.1) for u = 1 reduces
to (1.7) due to Liman[10]. Thus, Theorem 2.1 is an extension and a generalization of Theorem

n
1.1 for the lacunary polynomial p(z) = a,z"+ ¥ ay—vz" "V, 1 <u <n.
v=p
If we take B = 0 in Theorem 2.1, it takes the following simplified form.

n
Corollary 24. If p(z) = ay 7"+ ¥ an—vz"V, 1 < u <n, is a polynomial of degree n and
v=u
p(z) #0in |z| <k, k <1, then for all oo € C with |ot] > 1

3 maxlaDap()] < 5 { (e 1) maxlp()] - (k- "la - 1) min (2} |

where A is given by (2.2).

Remark 2.5. If we take 1 =1 and k = 1 in Corollary 2.4, then (2.3) reduces to (1.6) due to Aziz
and Shah [3] and therefore Theorem 2.1 extends and generalizes (1.6) to lacunary polynomials

of the type p(z) = ap"+ ¥ an—vZ" vV, 1 <u<n.
V=

Dividing both sides of (2.1) by || and taking the limit as || — oo, we have the following

result.
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n
Corollary 2.6. If p(z) = ap?"+ Y, an—vZ" Y, 1 < u <n, is a polynomial of degree n and
V=U
p(z) #0in |z| <k, k <1, then for any B € C with |B| <1 and |z| = 1,

'@+ egrte) < 5] (k00 e o+ o] maslote
24 - (e 2 - [ ] ),

where A is given by (2.2).

Remark 2.7. If we take k = 1 (so that A =1) and u = 1 in Corollary 2.6, inequality (2.4)
reduces to (1.4) due to Dewan and Hans [6]. Further more, if B =0 along withk=1and u =1,

inequality (2.4) becomes (1.3) due to Aziz and Dawood [1].

3. LEMMAS

For the proof of Theorem 2.1, we require the following lemmas. The first lemma is due to

Laguerre [8, 11]

Lemma 3.1. If all the zeros of an n'" degree polynomial p(z) lie in a circular region C, and ®
is any zero of Do p(z), where o is any real or complex number, then at most one of the points ®
and o may lie outside C.

n
Lemma 3.2. If p(z) =ao+ Y, avz’, 1 <u <n, is a polynomial of degree n having no zeros in

v=p
2] <k,k>1, thenon |z] = 1

E||a—”|'k#—1+1
n \ap
(3.1 @ =k == P ()
n |ao|
and
3.2) Blaglpw )
n |ao|

This lemma is due to Qazi [12].

n
Lemma 3.3. If p(z) = a,7"+ Y, an—vz"Y, 1 < u <n, is a polynomial of degree n having all
v=p

its zeros in the closed disk |z| < k,k < 1, then for any real or complex number o with |a| > A
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and |z] =1

o] —A

(3.3) |Dap(z)| > "TrA

p(2)].
where A is given by (2.2).

Before proving Lemma 3.3, we take note of an important consequence of Lemma 3.2 and

Lemma 3.3. If p(z) is polynomial assumed as in Lemma 3.3 and ¢(z) = 7" p(%), then ¢(z) has

11
no zero in |z| < e > 1. Thus, on applying Lemma 3.2 to ¢(z), by inequality (3.2) we obtain

(3.4) B
n

1 n
Proof of Lemma 3.3. Let ¢(z) =7"p(=) =an,+ Y, an—vz". Then, it can be easily verified that
< v=u

3.5) l4'(2)] = Inp(z) —2p'(2)|  for o] =1.

1
Since p(z) has all its zeros in |z| < k, k < 1, therefore, the polynomial g(z) has no zero in |z| < o

1
z > 1. Thus, applying Lemma 3.2 to ¢(z), we have by (3.1) for |z| =1

Ulan—p| 1
|
1P (2)] > Ln o] ke q'(2)]
_ku—l—l E‘an*ﬂl 1

no|a,| k#t!

= Wlan—y| +”’an|k”_l
n|an|k** + | an— |1

' (z)],

nlaniH + a1
lan—p |+ nla, k41

therefore, |¢'(z)] < ' (2)].

Equivalently, for |z| = 1

(3.6) 4 (2)] <A|p'(2)].

(3.7 1P'(2)|+14' ()| < (14+A4)|p'(2)],
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nlan |k + w|ay—y |k
tlan—y| +nla, k41

where A =

Now,
n|p(z)| = |np(z) —zp'(z) +20' ()|
<|np(z) —zp'(2)|+1p'(z)] on [z] =1,

which on using inequality (3.5) gives for |z| =1

(3.8) nlp(2)] < |p'(2)|+14'(2)]-
combining (3.7) and (3.8), we have for |z| =1

nlp(z)| < (14A4)|p'(2)].
3.9) ie. P2 >—Ip()

By definition, if a € C, particularly for |a| > A, we have

Dop(z) =np(z)+ (a0 —2)p'(2).
Then,
[Dap(2)] = |np(z) —zp'(z) + ap'(2)]
> |al|p'(2)] = Inp(z) —zp'(2)],

which on using inequality (3.5) gives for |z| = 1

(3.10) |Dap(z)| > |o|[p'(2)| — |4 (2)]-

Using (3.6) to (3.10), we have for |z| = 1

IDap(2)| = |l (2)] — AP (2)]

= (la| =A)[P'(2)],

which in conjunction with (3.9) gives for |z| = 1

af —A

D > gl =a
|Dap(z)| > n T4

p(2)]-

6497
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n
Lemma 3.4. Let p(z) = apd"+ Y, an—vz"V, 1 < u <n, be a polynomial of degree n having
V=i
all its zeros in |z| <k, k < 1, then for every o, B € C with |a| > A,

Bl < 1land|z| =1, we have

jaf —A
1+A

o+p min [p(z)],

|z|=k

—A
(3.11) zDap(z)+nB|?|+A p(z)' > :—n

where A is given by (2.2).

Proof of Lemma 3.4. If p(z) has a zero on |z| = k, then (3.11) follows trivially. Therefore, we
assume that p(z) has all its zeros in |z| < k. Let m = |1;nir11|p(z)|, then m > 0 and |p(z)| > m,
where |z| = k. Therefore, for every A with |A| < 1, it follows by Rouche’s theorem that the
polynomial G(z) = p(z) — Am <£>n has all its zeros in |z| < k. By lemma 3.1, Dy G(z) has all

its zeros in |z| < k, where

LMG@):LMPQ%—Da(Amg)

" Zn—l
=Dgp(z) — {nlmk—n — (0t —z)nAm = }

=Dgp(z) — aAmn

with || > A.

Applying Lemma 3.3 to the polynomial G(z), we have for |z| = 1

jaf —A
which is equivalent to
o —A
(3.12) |zDG(z)| > n| 0 |+A |G(z)] on |z]=1.

Since zDyG(z) has all its zeros in |z] < k < 1, by using Rouche’s theorem, it can be easily
af —A
1+A

verified from (3.12) that the polynomial zDyG(z) + Bn G(z) has all its zeros in [z] < 1,

where |B| < 1. Then,

B B 7 lo| —A .7
T() = Duple) ~ armny + Bl Tt ()= 2 )
jaf A :

_ % loj -4
G.13 —Dap(e) 1B (o)~ A (o L)
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will have no zeros in |z| > 1. This implies for every  with |B| < 1 and |z| > 1,

o —
(3.14) 1-|—A Mo g2

p(Z) >

If (3.14) is not true, then there is a point z = zo with |z9| > 1 such that

la| —A n la| —A
D —_.
20Dap(20) +nB W p(20) a+p W
Take
ZoDaP(Zo) +np o P(Zo)

_ 1A |
"m<%0> ( +ﬁ|016|+A)

then |A| < 1 and with this choice of A, we have T(z9) = 0 from (3.13). But this contradicts

the fact that 7'(z) # O for |z| > 1. Thus, for B € C with |B| < I inequality (3.14) holds and for

|B| = 1, it follows by continuity. Hence,

|—A
1+A

Zn

Dap(z )+nﬁ’ p(z)‘ 2n‘% in|p(z)|.

—_— m‘
1+A ' lz|=k

O

n
Lemma 3.5. If p(z) = a, 2"+ ¥ ay,—vZ"V, 1 < u <n, is a polynomial of degree n, then for
v=u
all o, B € Cwith |B| < 1and |a| > k> A, where k < 1, we have for |z| = 1

n ol —A
1 = o LA e ()1,

3.15 D <
315 Dup(e) + 11 (0 < o B

+B

where A is given by (2.2).

Proof of Lemma 3.5. LetM = max|p(z)|. I € C such that [1] < 1, then |7Lp(z)|<‘M<£)n‘

|z|=k

n
for |z| = k. Therefore, it follows by Rouche’s Theorem that G(z) = M ]Zc—n — Ap(z) has all its zeros

in |z| < k. Thus, by using Lemma 3.1,

n—1

DaG(z) = aMn (an > — ADgp(2)

has all its zeros in |z| < k for |a| > A.
On applying Lemma 3.3 to the polynomial G(z), we have for |z] = 1

o] —

. >n———
(3.16) |zDaG(z)| > T+ A

26!
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Following a similar argument as used in the proof of Lemma 3.4, the result follows. UJ

n
Lemma 3.6. If p(z) = a,z"+ ¥ ay,—vZ"V, 1 < u <n, is a polynomial of degree n, then for
v=u

all o, B € Cwith |B| < 1and |a| > k > A, where k < 1, we have for |z] =1

x| —A la| —A
Dup(e) #1815 0(6) + a0 4B 00c)
g glal=a o] - 4
(17 A G L R et | Rt

2\ [k
where A is given by (2.2) and Q(z) = <%> p <?)

Proof of Lemma 2.6. Let M = Tna)li |p(z)|. For A with |A| > 1, it follows by Rouche’s theorem
e

that the polynomial G(z) = p(z) — AM has no zeros in |z| < k. Consequently, the polynomial

(3.18) H(z) = (%)@

has all its zeros in |z| < k, also |G(z)| = |H(z)| for |z| = k. Since all the zeros of H(z) lie in
|z| < k, therefore, for § with |§| > 1, by Rouche’s Theorem all the zeros of G(z) + §H (z) lie in
|z < k. Hence, by Lemma 3.3 for every o with || > A, and |z| = 1, we have

jaf —A

3.19
(3.19) "1¥A

|G(z) + 0H (z)| < |zD¢(G(z) + 0H(z))]

On the other hand, by Lemma 3.1, all the zeros of Dy (G(z) + 6H(z)) lie in |z| < k < 1, where

|| > A. Therefore, for any B with || < 1, Rouche’s theorem implies that all the zeros of

2D (G(z) + 6H (2)) + Bn |?|_'__AA (G(z)+6H(z)) liein |z| < 1. This means that the polynomial
6200 T()=DaG0) + DRG0 + 5Dt () 0N (2
: 2) =2DaG(2) + =Gl ofl(2) +nB="—-H(z

will have no zeros in |z| > 1. Now, using a similar argument as used in the proof of Lemma 3.4,

we get for |z| > 1,

(3.21) zDaG(z) +np li“'T_;G(Z)

I1+A

< ’zDaH(Z) +np laj =4, (Z)‘ :

Therefore, by the equalities

oo = ()6 (5)=() e (5) () oA ()
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and substituting for G(z) and H(z) in (3.21), we get
ol —A o —A
(Par 4B T 0c) ) ~anar (2415124

1+A

@A\ =i la-A
(3.23) < ’(ZDaQ(Z)+”ﬁ A Q(Z)) — AnM (;) (‘Hﬁ 1+A )‘
This implies that

—A

<zDap(z)+nﬁ|(f|+A p(z))' AnM <z+ﬁ|a|+A )‘

la| —A - | —
(3.24) < ‘(zDaQ(Z)ﬂLnﬁmQ(Z)) —AnM (k) ( B 1+A )’
As |p(z)| =10(z)| for |z| =k, that is, ‘m‘ax|p( 2)| = ‘rr|1ax\Q( z)| = M, by Lemma 3.5 for Q(z), we
obtain

| —A _ | —

(.29 () +1BIH0(e) < 2wtk o p 1A,

Thus, taking a suitable choice of the argument of A,

(zDaQ(z)nLnﬁwf’T_AAQ(Z)) ~AnM <k> (OHLB'?'—%A >‘

| 1|+ AA‘ - 'zDaQ(z) B

(3.26) = [A|nMK ™" |0+ B

| —A
1+A Q@"

By combining the right hand sides of (3.24) and (3.26) for |z| = 1 and |B| < 1, we get

—A
< |A|nME™" |+ B ol -A ‘—‘zDaq(Z)Jrnﬁ‘a’_ACI(Z) :
I1+A 1+A
ie,
af A af -
Dup(e) + 115 (o) +Du0le) 1115 = 010)
jaf A af -
et
Taking |A| — 1, we have
A —A
D) +18 400+ [Da(o) 82 010
a4 jaf A
S”{ vy ' ’ TP ’}M
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0

Lemma 3.7. Let H(z) = a,z" + Z an—vz"V, 1 < u <n, be a polynomial of degree n having
all its zeros in |z| < k,k <1, and G( ) be a polynomial of degree not exceeding that of H(z). If
G(2)| < [H(z)] for |z| =k,

=1, we have

(3.27) zDoG(z) +np

where A is given by (2.2).

Proof of Lemma 2.7. Since |AG(z)| <|G(z)| < |H(z)| for |z] =1 and A € C with |A| < 1, then
it follows by Rouche’s theorem that the polynomials H(z) and H(z) — AG(z) have the same
number of zeros in the open disk |z| < k. Also, the inequality |G(z)| < |H(z)| for |z| = k implies
that any zero of H(z) on |z| = k is also a zero of G(z). Therefore, H(z) — AG(z) has all its zeros
in the closed disk |z| <k, k < 1. Thus, applying Lemma 3.3, we have for all real or complex o

with || <A and |z] =1

o] —A

Da (H() = AGE)| = n' T =

|H(z) —AG(z)|.

Following a similar argument as used in the proof of Lemma 3.4, we have for any 8 with || < 1

and |z| = 1
Da (H(:) - 2G| = n A () 2602)
>l ) - 26(0)
Thus, for |z| = 1
628 T() = DaH() - 1:DaG) 1B LA ) - 26(0) 20,

which implies that for |z| = 1

|06|

(3.29) {zDaH(z)+n|l3| il _AH(Z)} —?L{ G(z) +n|B|

1+A ()}7&0'

Hence, we can conclude that for |z| =1

|06|

(3.30) 2DgH(z) +nf——F—

21162 > [spuGlo) + 11 =)
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If (3.30) is not true, then there exist a point zg on the unit circle that

la| —A la| —A
DyH H DG G .
20DaH (z0) +nf 1A (z0)| < |20DaG(20) +nB W (z0)
If we choose

la|—A

20D H (z0) +nf3 T H(zp)
A= +A

ol —A ’

wDaGla) 18 X Gi)

then |A| < 1 and hence (3.29) gives T'(z9) = O for |z9| = 1. This is a contradiction to (3.28).
Hence, (3.30) must hold for B € C with || < 1. For || = 1, (3.30) holds by continuity. This

completes the proof of Lemma 2.7.

4. PROOF OF THE THEOREM

We now prove Theorem 2.1.

n
Proof of Theorem 2.1. Since p(z) =a,z"+ Y, an—v7" ", 1 < u <n,does not vanish in |z| < k,
v=u
and if m = |n|1i1]1<|p(z)\, then m < |p(z)| for |z| = k. Now for real or complex A with |A] < 1,
Z =
we have |Am| < m < |p(z)| for |z| = k. Therefore, it follows by Rouche’s theorem that the

polynomial G(z) = p(z) — Am has no zero in |z| < k. Therefore, the polynomial

@.1) H(z) = <§>G (k—_2> = 0(z) — Am (i)

<

2

n [k
where Q(z) = (%) p (?)’ will have all its zeros in |z| <k, k < 1. Also, |G(z)| = |H(z)| for

|z| = k. Applying Lemma 3.7 for the polynomial H(z) and G(z), we have

o] —A

4.2
(4.2) 14+A |

zD¢G(z) +np

‘?’J:AA G(Z)‘ < ‘ZDaH(Z) +npP

where |ot| > k, |B < 1| and |z| = 1.
Substituting for G(z) and H(z) in (4.2), we conclude that for every o, B with |a| > A, |B] < 1

and |z| =1
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al—A
2D p(z) — Anmz+np |1’?

which implies that

o 82

—A — n —A
4.3) < ZDaP(Z)+nﬁ|(f|—|—A 0(z) ~Zmn () (aJrB'?'JrA )’

Since all the zeros of Q(z) lie in |z| < k and |p(z)| = |Q(z)| for |z| = k, therefore, by applying
Lemma 2.4 to Q(z), we get

loe| — A . | —A] .
ZD(xQ(Z)—FnﬁH—AQ(Z)‘ <nk"|la+p 1A ‘m—lllc’Q(Z)‘
R la| —A| .
(4.4) =nk +ﬁ—1—|—A ‘|rzr|n_111<’p(z)|

Then, for an appropriate choice of the argument of A, we have

Dep(2) +npl% AQ(z)—Im"@n(“*ﬁ'a'_A)‘

1+A 1+A
o —A _ o) —
4.5) = zDap(z)+nB|1|+A 0(z)| — |A|mnk™" a+B|1|+A on|z| =1.

Combining the right hand sides of (4.3) and (4.5), we can rewrite inequality (4.5) as

o] —A o] —A o —
Dap(@) +nB A p(a)| 3|+ 1% <|epo0(e) g4 o)
_ - o] —A _
|A|mnk™" |+ B 1A for |z] = 1.
Equivalently,
| —A la| —A
< et B
Dap(z) +nB=——=p(2)| < |2Da@(2) +nf =" —=0()
o —A

- |l|mn{k" o+p
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As |[A| — 1, we have

Dup(a)+p1 =500 < [pa0te) + U 000
o8 o)

It implies for every real or complex number  with || < 1 and |z| =1,

—A —A
2|Dap(a) 4180 p(0)| < |Dapc) + N =)
o] -4
+ ppa0c) +np = 000)
(4.6) —wm{k ‘”*ﬁ“LA’ ‘z+ﬁwt;w}.

Inequality (4.6) in conjunction with Lemma 3.6 gives for || < 1 and |z| = 1,

Sn{k
_ loe| —A lo| —A :
—nldkm =~ =~

from which (2.1) follows. ]

jaf —A
1+A

06+B’1+A ‘ ‘ B’1‘+A '}ﬁglp(m

2|zDap(z) +nf=——-p(2)

o+
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