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Abstract. In this paper, we establish existence and uniqueness of coupled best proximity point for a mixed g-

monotone mapping satisfying the proximally coupled weak (ψ,φ) contraction in partially ordered metric spaces.

The results presented in this paper generalize the results of Kumam et al. [Fixed point theory and applications

2014, 2014:107]. Also some examples and applications of the main results in this paper are given.
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1. INTRODUCTION AND PRELIMINARIES

The classical contraction mapping principal of Banach is one of the most useful and funda-

mental results in fixed point theory. Several authors studied and extended it in many directions.
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Existence and uniqueness of a fixed points for self mappings was extended to partially ordered

metric spaces has been considered recently in Ran and Reurings [1], Bhaskar and Lakshmikan-

tham [2], Nieto and Lopez [3], Agarwal, El-Gebeily and O’Regan [4] and Lakshmikantham and

Ciric [5] (see also [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]).

The study of the existence and convergence of best proximity points is an interesting field of

optimization which recently attracted the attention of several researchers (see [24, 25, 26, 27,

28, 29, 30, 31, 32, 34, 33]). One can also find the existence of best proximity point in the setting

of partially ordered metric spaces in [19, 20, 21, 22, 23, 24].

In the sequel, we will use the following notations. Set A and B are nonempty subsets of a metric

space X,

d(A,B) = inf{d(x,y) : x ∈ A,y ∈ B},

A0 = {x ∈ A : d(x,y) = d(A,B) f or some y ∈ B}

B0 = {y ∈ B : d(x,y) = d(A,B) f or some x ∈ A}

Definition 1.1. An element x ∈ A is said to be a best proximity point of the non-self mapping

T : A→ B if

d(x,T x) = d(A,B).

Because of the fact that d(x,T x)≥ d(A,B) for all x ∈ A, the global minimum of the mapping

x 7→ (x,T x) is attained at a best proximity point. Moreover, if the underlying mapping is a

self-mapping, then it can be observed that a best proximity point is essentially a fixed point.

Definition 1.2. [2] Let X be a non-empty set. An element (x,y)∈ X×X is called a coupled fixed

point of the mapping T if T (x,y) = x and T (y,x) = y.

Definition 1.3. [5] Let X be a nonempty set and let T : X ×X → X and g : X → X be two

given mappings. An element (x,y) ∈ X × X is said to be a coupled coincidence point of if

T (x,y) = g(x) and T (y,x) = g(y) for all x,y ∈ X.

Definition 1.4. [5] Let X be a nonempty set and let T : X×X → X and g : X → X be two given

mappings. We call T and g are commutative if g(T (x,y)) = T (g(x),g(y)) for all x,y ∈ X.
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Definition 1.5. [21] Let A, B be subsets of a metric space X. An element (x,y) ∈ A×A is called

a coupled best proximity point of the mapping T : A×A→ B if d
(
x,T (x,y)

)
= d(A,B) and

d
(
x,T (y,x)

)
= d(A,B).

Here, if we take A = B, then this definition reduced to Definition 1.2.

Definition 1.6. [2] Let (X ,≤) be a partially ordered set and T : X ×X → X. We say that T

has the mixed monotone property if T(x,y) is monotone nondecreasing in x and is monotone

nonincreasing in y, that is, for any x,y ∈ X

x1,x2 ∈ X x1 ≤ x2⇒ T (x1,y)≤ T (x2,y)

y1,y2 ∈ X y1 ≤ y2⇒ T (x,y1)≥ T (x,y2).

Definition 1.7. [20] A mapping T : A× A→ B is said to be the proximal mixed monotone

property if T(x, y) is proximally nondecreasing in x and is proximally nonincreasing in y, that is
x1 ≤ x2

d(u1,T (x1,y)) = d(A,B)

d(u2,T (x2,y)) = d(A,B)

⇒ u1 ≤ u2,

and 
y1 ≤ y2

d(v1,T (x,y1)) = d(A,B)

d(v2,T (x,y2)) = d(A,B)

⇒ v2 ≤ v1,

where x1,x2,y1,y2,u1,u2,v1,v2 ∈ A.

If we take A = B in the above definition, then proximal mixed monotone property reduces to

mixed monotone property.

Definition 1.8. [18] Let Φ denote all functions φ : [0,∞)→ [0,∞) which satisfy

(i) φ is continuous and nondecreasing,

(ii) φ(t) = 0 if and only if t = 0,

(iii) φ(t + s)≤ φ(t)+φ(s),∀t,s ∈ (0,∞].
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Definition 1.9. [18] Let ψ denote all functions ψ : [0,∞)→ [0,∞) which satisfy limt→r ψ(t)> 0

for all r > 0 and limt→0+ ψ(t) = 0.

In [18] Luong and Thuan obtained a result of coupled fixed. Following is the main theoretical

results of Luong and Thuan.

Theorem 1.10. [18] Let (X ,≤) be a partially ordered set and suppose there is a metric d on X

such that (X,d) is a complete metric space. Let T : X ×X → X be mapping having the mixed

monotone property on X such that

(1.1) φ
(
d(T (x,y),T (u,v))

)
≤ 1

2
φ
(
d(x,u)+d(y,v)

)
−ψ

(d(x,u)+d(y,v)
2

)
for all x,y,u,v ∈ X with x≥ u and y≤ v, where ψ ∈Ψ and φ ∈Φ. If there exist x0,y0 ∈ X such

that x0 ≤ T (x0,y0) and y0 ≥ T (y0,x0). Suppose either

(a) T is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn}→ x, then xn ≤ x for all n,

(ii) if a non-increasing sequence {yn}→ y, then y≥ yn for all n.

Then there exist x,y ∈ X such that T (x,y) = x and T (y,x) = y.

Recently, Kumam et al.[20] extended the results of Luong and Thuan [18]. They also in-

troduced the concept of the proximal mixed monotone property and established coupled best

proximity point theorem. Following is the main results of Kumam et al.[20].

Theorem 1.11. [20] Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be

nonempty closed subsets of the metric space (X, d) such that A0 6= /0. Let T : A×A→ B satisfy

the following conditions:

(i) T is a continuous proximally coupled weak (ψ,φ) contraction on A having the proximal

mixed monotone property on A such that T (A0,A0)⊆ B0;.

(ii) There exist elements (x0,y0) and (x1,y1) ∈ A0×A0 such that

d(x1,T (x0,y0)) = d(A,B) with x0 ≤ x1,
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and

d(y1,T (y0,x0)) = d(A,B) with y0 ≥ y1.

Then there exists (x,y) ∈ A×A such that

d(x,T (x,y)) = d(A,B) and d(y,T (y,x)) = d(A,B).

Motivated by the results of [18] and [20], we present the coupled best proximity point and

coupled fixed point, and by defining the concept of proximal mixed g-monotone mapping and

proximally coupled weak (ψ,φ) contraction on A. The existence and uniqueness of coupled best

proximity points are obtained in partially ordered metric spaces. We also provide an example

to support of our results.

2. MAIN RESULTS

In this section we first present following definitions.

Definition 2.1. Let (X ,d,≤) be a partially ordered metric space. Let A, B be nonempty subsets

of X, and T : A×A→ B and g : A→ A be two given mappings. We say that T has the proximal

mixed g-monotone property provided that for all x,y ∈ A, if
g(x1)≤ g(x2),

d(g(u1),T (g(x1),g(y)) = d(A,B)

d(g(u2),T (g(x2),g(y)) = d(A,B)

=⇒ g(u1)≤ g(u2),

and 
g(y1)≤ g(y2),

d(g(u3),T (g(x),g(y1)) = d(A,B)

d(g(u4),T (g(x),g(y2)) = d(A,B)

=⇒ g(u4)≤ g(u3),

where x1,x2,y1,y2,u1,u2,u3,u4 ∈ A.

Definition 2.2. Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty subsets

of X. Let T : A×A→ B and g : A→ A be two given mappings. T is said to be proximally coupled
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weak (ψ,φ) contraction on A, whenever
g(x1)≤ g(x2) g(y1)≥ g(y2),

d(g(u1),T (g(x1),g(y1)) = d(A,B)

d(g(u2),T (g(x2),g(y2)) = d(A,B)

=⇒ φ
(
d(g(u1),g(u2))

)
≤ 1

2
φ

(
d(g(x1),g(x2))+d(g(y1),g(y2))

)
−ψ

(d(g(x1),g(x2))+d(g(y1),g(y2))

2

)
,(2.1)

where x1,x2,y1,y2,u1,u2 ∈ A.

Lemma 2.3. Let (X ,d,≤) be a partially ordered metric space and A, B be nonempty subsets of

X, A0 6= /0 and T : A×A→ B and g : A→ A be two given mappings. If T has the proximal mixed

g-monotone property, with g(A0) = A0, T (A0,A0)⊆ B0

(2.2)


g(x1)≤ g(x2) g(y1)≥ g(y2),

d(g(x2),T (g(x1),g(y1)) = d(A,B)

d(g(u),T (g(x2),g(y2)) = d(A,B)

=⇒ g(x2)≤ g(u)

where x1,x2,y1,y2,u ∈ A0.

Proof. Since g(A0) =A0, T (A0,A0)⊆B, it follows that T (g(x2),g(y1))∈B0. Hence there exists

g(u∗1) ∈ A0 such that

(2.3) d(g(u∗1),T (g(x2),g(y1)) = d(A,B).

Using the fact that T has the proximal mixed g-monotone property, together with 2.2 and 2.3,

we get

(2.4)


g(x1)≤ g(x2)

d(g(x2),T (g(x1),g(y1)) = d(A,B)

d(g(u∗1),T (g(x2),g(y1)) = d(A,B)

=⇒ g(x2)≤ g(u∗1).
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Also, from the proximal mixed g-monotone property of T with 2.2 and 2.4, we get

(2.5)


g(y2)≤ g(y1)

d(g(u),T (g(x2),g(y2)) = d(A,B)

d(g(u∗1),T (g(x2),g(y1)) = d(A,B)

=⇒ g(u∗1)≤ g(u).

From 2.4 and 2.5, one can conclude the g(x2)≤ g(u). Hence the proof is complete. �

Lemma 2.4. Let (X ,d,≤) be a partially ordered metric space and A, B be nonempty subsets of

X, A0 6= /0 and T : A×A→ B and g : A→ A be two given mappings. Let T have the proximal

mixed g-monotone property, with g(A0) = A0, T (A0,A0)⊆ B0 If

(2.6)


g(x1)≤ g(x2) g(y1)≥ g(y2),

d(g(y2),T (g(y1),g(x1)) = d(A,B)

d(g(u),T (g(y2),g(x2)) = d(A,B)

=⇒ g(x2)≤ g(u)

where x1,x2,y1,y2,u ∈ A0.

Proof. The proof is the same as Lemma 2.3, so we omit the details. �

Following is the main result of this paper.

Theorem 2.5. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let T : A×A→ B and g : A→ A be

two given mappings satisfying the following conditions:

(a) T and g are continuous;

(b) T has the proximal mixed g-monotone property on A such that g(A0) = A0, T (A0,A0)⊆

B0;

(c) T is a proximally coupled weak (ψ,φ) contraction on A;

(d) there exist elements (x0,y0) and (x1,y1) ∈ A0×A0 such that

d(g(x1),T (g(x0),g(y0))) = d(A,B) with g(x0)≤ g(x1),

and

d(g(y1),T (g(y0),g(x0))) = d(A,B) with g(y0)≥ g(y1).
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Then there exists (x,y) ∈ A×A such that

d(g(x),T (g(x),g(y))) = d(A,B) and d(g(y),T (g(y),g(x))) = d(A,B).

Proof. Let (x0,y0),(x1,y1) ∈ A0 × A0 be such that d(g(x1),T (g(x0),g(y0))) = d(A,B)

with g(x0) ≤ g(x1), and d(g(y1),T (g(y0),g(x0))) = d(A,B) with g(y0) ≥ g(y1). Since

T (A0,A0) ⊆ B0 and g(A0) = A0, there exists an element (x2,y2) ∈ A0 × A0 such that

d(g(x2),T (g(x1),g(y1))) = d(A,B) and d(g(y2),T (g(y1),g(x1))) = d(A,B). Hence from

Lemma 2.3 and Lemma 2.4 we obtain g(x1)≤ g(x2) and g(y1)≥ g(y2). Continuing this process,

we can construct the sequences {xn},{yn} ∈ A0 such that

d
(
g(xn+1),T (g(xn),g(yn))

)
= d(A,B) f or all n≥ 0,

with

(2.7) g(x0)≤ g(x1)≤ g(x2)≤ · · · ≤ g(xn)≤ g(xn+1)≤ · · ·

and

d
(
g(yn+1),T (g(yn),g(xn))

)
= d(A,B) f or all n≥ 0,

with

(2.8) g(y0)≥ g(y1)≥ g(y2)≥ · · · ≥ g(yn)≥ g(yn+1)≥ · · ·.

Then d
(
g(xn),T (g(xn−1),g(yn−1))

)
= d(A,B) and d

(
g(xn+1),T (g(xn),g(yn))

)
= d(A,B)

g(xn−1) ≤ g(xn) and g(yn−1) ≥ g(yn). Now using the fact that T is a proximally coupled weak

(ψ,φ) contraction on A, we get

φ
(
d(g(xn),g(xn+1))

)
≤ 1

2
φ
(
d(g(xn−1),g(xn))+d(g(yn−1),g(yn))

)
−ψ

(d(g(xn−1),g(xn))+d(g(yn−1),g(yn))

2

)
.(2.9)

Similarly,

φ
(
d(g(yn),g(yn+1))

)
≤ 1

2
φ
(
d(g(yn−1),g(yn))+d(g(xn−1),g(xn))

)
−ψ

(d(g(yn−1),g(yn))+d(g(xn−1),g(xn))

2

)
.(2.10)
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Adding (2.9) and (2.10), we get

φ
(
d(g(xn),g(xn+1))

)
+φ
(
d(g(yn),g(yn+1))

)
≤ φ

(
d(g(xn−1),g(xn))+d(g(yn−1),g(yn))

)
−2ψ

(d(g(xn−1),g(xn))+d(g(yn−1),g(yn))

2

)
.

(2.11)

By the definition of φ , we have

(2.12)

φ
(
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))

)
≤ φ

(
d(g(xn),g(xn+1))

)
+φ
(
d(g(yn),g(yn+1))

)
.

From (2.11) and (2.12), we get

φ
(
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))

)
≤ φ

(
d(g(xn−1),g(xn))+d(g(yn−1),g(yn))

)
−2ψ

(d(g(xn−1),g(xn))+d(g(yn−1),g(yn))

2

)
.

(2.13)

Since φ is nondecreasing, we get

(2.14) d(g(xn),g(xn+1))+d(g(yn),g(yn+1))≤ d(g(xn−1),g(xn))+d(g(yn−1),g(yn)).

Putting δn = d(g(xn),g(xn+1))+d(g(yn),g(yn+1)) then the sequence (δn) is decreasing. There-

fore, there is some δ ≥ 0such that

(2.15) lim
n→∞

δn = lim
n→∞

[
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))

]
= δ .

We shall show that δ = 0. Suppose, to the contrary, that δ > 0. Then taking the limit as n→ ∞

both sides of (2.13) and having in mind that we assume limt→r ψ(t) > 0 for all r > 0 and φ is

continuous, we have

(2.16) φ(δ ) = lim
n→∞

φ(δn)≤ lim
n→∞

φ(δn−1)−2ψ

(
δn−1

2

)
= φ(δ )−2 lim

n→∞
ψ

(
δn−1

2

)
< φ(δ ),

a contradiction. Thus δ = 0, that is,

(2.17) lim
n→∞

δn = lim
n→∞

[
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))

]
= 0.
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Now, we prove that {g(xn)} and {g(yn)} are Cauchy sequences. Suppose that at least

one of the sequences {g(xn)} or {g(yn)} is not a Cauchy sequence. This implies that

limn,m→∞ d(g(xn),g(xm))9 0 or limn,m→∞ d(g(yn),g(ym))9 0, and, consequently

(2.18) lim
n,m→∞

[
d(g(xn),g(xm))+d(g(yn),g(ym))

]
9 0.

Then there exists an ε > 0 for which we can find sub-sequences {g(xn(k))}, {g(xm(k))} of

{g(xn)} and {g(yn(k))}, {g(ym(k))} of{g(yn)} such that n(k) is the smallest index for which

n(k)> m(k)> k,

(2.19)
[
d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))

]
≥ ε.

This means that

(2.20)
[
d(g(xn(k)−1),g(xm(k)))+d(g(yn(k)−1),g(ym(k)))

]
< ε.

Therefore by using (2.19), (2.20) and the triangle inequality, we obtain

ε ≤ d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))

≤ d(g(xn(k)),g(xn(k)−1))+d(g(xn(k)−1),g(xm(k)))

+d(g(yn(k)),g(yn(k)−1))+d(g(yn(k)−1),g(ym(k)))

≤ d(g(xn(k)),g(xn(k)−1))+d(g(yn(k)),g(yn(k)−1))+ ε.

On taking the limit k→ ∞ and using (2.17), we obtain

(2.21) lim
k→∞

[
g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))

]
= ε.

By the triangle inequality

d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))

≤ d(g(xn(k)),g(xn(k)+1))+d(g(xn(k)+1),g(xm(k)+1))

+d(g(xm(k)+1),g(xm(k)))+d(g(yn(k)),g(yn(k)+1))

+d(g(yn(k)+1),g(ym(k)+1))+d(g(ym(k)+1),g(ym(k)))

= δn(k)+δm(k)+d(g(xn(k)+1),g(xm(k)+1))+d(g(yn(k)+1,g(ym(k)+1)).
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Using the property of φ , we obtain

φ(αk) = φ

(
δn(k)+δm(k)+d(g(xn(k)+1),g(xm(k)+1))+d(g(yn(k)+1,g(ym(k)+1))

)
≤ φ

(
δn(k)

)
+φ
(
δm(k)

)
+φ
(
d(g(xn(k)+1),g(xm(k)+1))

)
+φ
(
d(g(yn(k)+1,g(ym(k)+1))

)
.(2.22)

where αk = d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k))). Since g(xn(k))≥ g(xm(k)) and g(yn(k))≤

g(ym(k)), using the fact that T is a proximally coupled weak (ψ,φ) contraction on A, we get

φ
(
d(g(xn(k)+1),g(xm(k)+1))

)
≤ 1

2
φ
(
d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))

)
−ψ

(d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))

2

)
≤ 1

2
φ(αk)−ψ

(
αk

2

)
.(2.23)

Similarly, we also have

φ
(
d(g(yn(k)+1),g(ym(k)+1))

)
≤ 1

2
φ
(
d(g(yn(k)),g(ym(k)))+d(g(xn(k)),g(xm(k)))

)
−ψ

(d(g(yn(k)),g(ym(k)))+d(g(xn(k)),g(xm(k)))

2

)
≤ 1

2
φ(αk)−ψ

(
αk

2

)
.

(2.24)

From (2.22),(2.23), (2.24), we obtain

φ(αk)≤ φ
(
δn(k)+δm(k)

)
+φ(αk)−2ψ

(αk

2
)
.

On taking the limit k→ ∞ using (2.17) and (2.21), we have

(2.25) φ(ε)≤ φ(0)+φ(ε)−2 lim
k→∞

ψ
(αk

2
)
= φ(ε)−2 lim

k→∞
ψ
(αk

2
)
< φ(ε).

Which is a contradiction. This shows that {g(xn)} and {g(yn)} are Cauchy sequences. Since

A is a closed subset of a complete metric space X, there exist x′,y′ ∈ A such that g(xn)→ x′

and g(yn)→ y′ as n→ ∞. Here xn,yn ∈ A0, g(A0) = A0 so that g(xn),g(yn) ∈ A0. Since A0 is
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closed, we conclude that x′,y′ ∈ A0×A0, i.e., there exist x,y ∈ A0 such that g(x) = x′, g(y) = y′.

Therefore

(2.26) g(xn)→ g(x) and g(yn)→ g(y).

Since {g(xn)} is monotone increasing and {g(yn)} is monotone decreasing, we have g(xn) ≤

g(x) and g(yn)≥ g(y). From (2.7) and (2.8), we have

(2.27) d
(
g(xn+1),T (g(xn),g(yn))

)
= d(A,B),

and

(2.28) d
(
g(yn+1),T (g(yn),g(xn))

)
= d(A,B).

Since T is continuous, we have, from (2.26),

T (g(xn),g(yn))→ T (g(x),g(y)),

and

T (g(yn),g(xn))→ T (g(y),g(x)).

Thus, the continuity of the metric d implies that

(2.29) d
(
g(xn+1),T (g(xn),g(yn))

)
→ d

(
g(x),T (g(x),g(y))

)
,

and

(2.30) d
(
g(yn+1),T (g(yn),g(xn))

)
→ d

(
g(y),T (g(y),g(x))

)
.

Therefore from (2.27), (2.28), (2.29),(2.31)

d
(
g(x),T (g(x),g(y))

)
= d(A,B) d

(
g(y),T (g(y),g(x))

)
= d(A,B).

�

If g is assumed to be the identity mappings in Theorem 2.5.

Corollary 2.6. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let T : A×A→ B given mappings

satisfying the following conditions:
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(a) T be continuous;

(b) T has the proximal mixed monotone property on A such that T (A0,A0)⊆ B0;

(c) T is a proximally coupled weak (ψ,φ) contraction on A;

(d) there exist elements (x0,y0) and (x1,y1) ∈ A0×A0 such that

d(x1,T (x0,y0)) = d(A,B) with x0 ≤ x1 and

d(y1,T (y0,x0)) = d(A,B) with y0 ≥ y1.

Then there exists (x,y) ∈ A×A such that

d(x,T (x,y)) = d(A,B) and d(y,T (y,x)) = d(A,B).

Corollary 2.7. Let (X ,d,≤) be a partially ordered complete metric space. Let A be a nonempty

closed subsets of the metric space (X, d). Let T : A×A→A and g : A→A be two given mappings

satisfying the following conditions:

(a) T and g are continuous;

(b) T has the mixed g-monotone property on A such that g(A) = A and T (A,A)⊆ A;

(c) T is a coupled weak (ψ,φ) contraction on A;

(d) There exist elements (x0,y0) and (x1,y1) ∈ A×A such that

g(x1) = T (g(x0),g(y0)) with g(x0)≤ g(x1) and

g(y1) = T (g(y0),g(x0)) with g(y0)≥ g(y1).

Then there exists (x,y) ∈ A×A such that

d(g(x),T (g(x),g(y))) = 0 and d(g(y),T (g(y),g(x))) = 0.

Theorem 2.8. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let T : A×A→ B and g : A→ A be

two given mappings satisfying the following conditions:

(a) g is continuous;

(b) T has the proximal mixed g-monotone property on A such that g(A0) = A0, T (A0,A0)⊆

B0;

(c) T is a proximally coupled weak (ψ,φ) contraction on A;
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(d) there exist elements (x0,y0) and (x1,y1) ∈ A0×A0 such that

d
(
g(x1),T (g(x0),g(y0))

)
= d(A,B) with g(x0)≤ g(x1),

and

d
(
g(y1),T (g(y0),g(x0))

)
= d(A,B) with g(y0)≥ g(y1).

(e) if {xn} is a nondecreasing sequence in A such that xn→ x, then xn ≤ x and if {yn} is a

nonincreasing sequence in A such that yn→ y, then yn ≥ y.

Then there exists (x,y) ∈ A×A such that

d
(
g(x),T (g(x),g(y))

)
= d(A,B) and d

(
g(y),T (g(y),g(x))

)
= d(A,B).

Proof. As in the proof of Theorem 2.5, there exist sequences {xn} and {yn} in A0 such that

(2.31) d
(
g(xn+1),T

(
g(xn),g(yn)

))
= d(A,B) with g(xn)≤ g(xn+1) f or all n≥ 0,

and

(2.32) d
(
g(yn+1),T

(
g(yn),g(xn)

))
= d(A,B) with g(yn)≥ g(yn+1) f or all n≥ 0.

Also, g(xn)→ g(x) and g(yn)→ g(y). From (e), we get g(xn)≤ g(x) , and g(yn)≥ g(y). Since

T (A0,A0)⊆ B0, it follows that T (g(x),g(y)) and T (g(y),g(x)) are in B0. Therefore, there exists

(x∗1,y
∗
1) ∈ A0×A0 such that d

(
x∗1,T (g(x),g(y))

)
= d(A,B) and d(y∗1,T (g(y),g(x))) = d(A,B).

Since g(A0) = A0, there exist x∗,y∗ ∈ A0 such that g(x∗) = x∗1 and g(y∗) = y∗1. Hence,

(2.33) d
(
g(x∗),T (g(x),g(y))

)
= d(A,B) and

(2.34) d(g(y∗),T
(
g(y),g(x))

)
= d(A,B).

Since g(xn)≤ g(x), and g(yn)≥ g(y) and T is a proximally coupled weak (ψ,φ) contraction on

A for (2.31) and (2.33), and also for (2.32) and (2.34), we get

φ
(
d
(
g(xn+1),g(x∗)

))
≤ 1

2
φ
(
d(g(xn),g(x))+d(g(yn),g(y))

)
−ψ

(d(g(xn),g(x))+d(g(yn),g(y))
2

)
,
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φ
(
d
(
g(yn+1),g(y∗)

))
≤ 1

2
φ
(
d(g(yn),g(y))+d(g(xn),g(x))

)
−ψ

(d(g(yn),g(y))+d(g(xn),g(x))
2

)
.

By taking the limit of the above two inequalities, we get g(x) = g(x∗) and g(y) = g(y∗). Hence,

from (2.33) and (2.34), we get d
(
g(x),T (g(x),g(y))

)
= d(A,B) and d(g(y),T

(
g(y),g(x))

)
=

d(A,B). �

Remark 2.9. If we replace the continuity of T by the condition (e) of Theorem 2.8 in Corollary

2.6, then the Corollary 2.6 holds true.

Note that the assumptions in Theorems 2.5 and 2.8 do not guarantee the uniqueness of cou-

pled best proximity point. The next example shows this fact.

Example 2.10. Let X = {(0,2),(2,0),(−2,0),(0,−2)} ⊂ R2 and consider the usual order

(x,y) ≤ (z, t) ⇔ x ≤ z and y ≤ t. Thus, (X ,≤) is a partially ordered set. Besides, (X,d)

is a complete metric space considering d the euclidean metric. Let A = {(0,2),(2,0)} and

B = {(0,−2),(−2,0)} be a closed subset of X. Then, d(A,B) = 2
√

2, A = A0 and B = B0. Let

T : A×A→ B and g : A→ A be two mappings defined as T ((x1,x2),(y1,y2)) = 2(−x2,−x1) and

g(x) = x. Then, it can be seen that T is continuous such that T (A0×A0)⊆ B0 and g(A0) = A0.

The only comparable pairs of points in A are gx ≤ gx for x ∈ A, hence proximal mixed g-

monotone property and proximally coupled weak (ψ,φ) contraction on A are satisfied trivially.

It can be shown that the other hypotheses of the theorem are also satisfied. However, T has

three coupled best proximity points ((0,2),(0,2)),((0,2),(2,0)) and ((2,0),(2,0)).

One can prove that the coupled best proximity point is in fact unique, provided that the prod-

uct space A×A endowed with the partial order mentioned earlier has the following property:

Every pair o f elements has either a lower bound or an upper bound.

It is known that this condition is equivalent to the following. For every pair of (x,y),(z, t) ∈

A×A, there exists (u,v) ∈ A×A that is comparable to (x, y) and (z, t).

Theorem 2.11. Suppose that all the hypotheses of Theorem 2.5 hold and further, for all

(x,y),(z, t) ∈ A0× A0, there exists (u,v) ∈ A0× A0 such that (u, v) is comparable to (x, y),
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(z, t) (with respect to the ordering in A×A). Then there exists a unique (x,y) ∈ A×A such that

d
(
g(x),T

(
g(x),g(y)

))
= d(A,B) and d

(
g(y),T

(
g(y),g(x)

))
= d(A,B).

Proof. From Theorem2.5, there exists an element (x,y) ∈ A×A such that

(2.35) d
(
g(x),T

(
g(x),g(y)

))
= d(A,B)

and

(2.36) d
(
g(y),T

(
g(y),g(x)

))
= d(A,B).

Now, suppose that there exists an element z, t ∈ A×A such that

(2.37) d(g(z),T (g(z),g(t))) = d(A,B)

and

(2.38) d(g(t),T (g(t),g(z))) = d(A,B)

Case 1: Let (g(x), g(y)) be comparable to (g(z),g(t)) with respect to the ordering in A×A.

Since d
(
g(x),T (g(x),g(y))

)
= d(A,B) and d

(
g(z),T (g(z),g(t))

)
= d(A,B) it follows from the

fact that T is a proximally coupled weak (ψ,φ) contraction on A, we get

φ
(
d
(
g(x),g(z)

))
≤ 1

2
φ
(
d(g(x),g(z))+d(g(y),g(t))

)
−ψ

(d(g(x),g(z))+d(g(y),g(t))
2

)
,(2.39)

φ
(
d
(
g(y),g(t)

))
≤ 1

2
φ
(
d(g(y),g(t))+d(g(x),g(z))

)
−ψ

(d(g(y),g(t))+d(g(x),g(z))
2

)
.(2.40)

Adding (2.39) and (2.40), we get

φ
(
d
(
g(x),g(z)

))
+φ
(
d
(
g(y),g(t)

))
≤ φ

(
d(g(x),g(z))+d(g(y),g(t))

)
−2ψ

(d(g(x),g(z))+d(g(y),g(t))
2

)
.

(2.41)
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By the definition of φ , we have

(2.42) φ
(
d(g(x),g(z))+d(g(y),g(t))

)
≤ φ

(
d
(
g(x),g(z)

))
+φ
(
d
(
g(y),g(t)

))
.

From (2.41) and (2.42), we have

φ
(
d(g(x),g(z))+d(g(y),g(t))

)
≤ φ

(
d(g(x),g(z))+d(g(y),g(t))

)
−2ψ

(d(g(x),g(z))+d(g(y),g(t))
2

)
.

(2.43)

this implies that 2ψ

(
d(g(x),g(z))+d(g(y),g(t))

2

)
≤ 0 and using the property of ψ , we get

d(g(x),g(z))+d(g(y),g(t)) = 0, hence gx = gz and gy = gt.

Case 2: let (g(x),g(y)) is not comparable to (g(z),g(t)), then there exists (g(u1),g(v1)) ∈

A0 × A0 which is comparable to (g(x),g(y)) and (g(z),g(t)). Since T (A0,A0) ⊆ B0 and

g(A0) = A0, there exists (g(u2),g(v2)) ∈ A0×A0 such that d(g(u2),T (g(u1),g(v1))) = d(A,B)

and d(g(v2),T (g(v1),g(u1))) = d(A,B).

We assume, without loss of generality, that (g(u1),g(v1))≤ (g(x),g(y)), i.e., g(u1)≤ g(x) and

g(v1) ≥ g(y). Therefore (g(y),g(x)) ≤ (g(v1),g(u1)). From Lemma 2.3 and Lemma 2.4, we

get 
g(u1)≤ g(x), g(v1)≥ g(y),

d(g(u2),T (g(u1),g(v1)) = d(A,B)

d(g(x),T (g(x),g(y)) = d(A,B)

=⇒ g(u2)≤ g(x)


g(u1)≤ g(x), g(v1)≥ g(y),

d(g(v2),T (g(v1),g(u1)) = d(A,B)

d(g(y),T (g(y),g(x)) = d(A,B)

=⇒ g(v2)≥ g(y).

On continuing this process, we construct sequences {un} and {vn} such that

d
(
g(un+1),T (g(un),g(vn))

)
= d(A,B)

and

d
(
g(vn+1),T (g(vn),g(un))

)
= d(A,B)
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with (g(un),g(vn))≤ (g(x),g(y)). By using the fact that T is a proximally coupled weak (ψ,φ)

contraction on A, we get 
g(un)≤ g(x), g(vn)≥ g(y),

d
(
g(un+1),T (g(un),g(vn))

)
= d(A,B)

d(g(x),T (g(x),g(y)) = d(A,B)

=⇒ φ
(
d
(
g(un+1),g(x)

))
≤ 1

2
φ
(
d(g(un),g(x))+d(g(vn),g(y))

)
−ψ

(d(g(un),g(x))+d(g(vn),g(y))
2

)
.(2.44)

Similarly, we have 
g(un)≤ g(x), g(vn)≥ g(y),

d(g(vn+1),T (g(vn),g(un)) = d(A,B)

d(g(y),T (g(y),g(x)) = d(A,B)

=⇒ φ
(
d
(
g(vn+1),g(y)

))
≤ 1

2
φ
(
d(g(vn),g(y))+d(g(un),g(x))

)
−ψ

(d(g(vn),g(y))+d(g(un),g(x))
2

)
.(2.45)

Adding (2.44) and (2.45), we obtain

φ
(
d
(
g(un+1),g(x)

))
+φ
(
d
(
g(vn+1),g(y)

))
≤ φ

(
d(g(un),g(x))+d(g(vn),g(y))

)
−2ψ

(d(g(un),g(x))+d(g(vn),g(y))
2

)
.

But

φ
(
d
(
g(un+1),g(x)

)
+d
(
g(vn+1),g(y)

))
≤ φ

(
d
(
g(un+1),g(x)

))
+φ
(
d
(
g(vn+1),g(y)

))
,

hence

φ
(
d
(
g(un+1),g(x)

)
+d
(
g(vn+1),g(y)

))
≤ φ

(
d(g(un),g(x))+d(g(vn),g(y))

)
−2ψ

(d(g(un),g(x))+d(g(vn),g(y))
2

)
.

(2.46)
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Using the fact that φ is nondecreasing, we get

(2.47) d
(
g(un+1),g(x)

)
+d
(
g(vn+1),g(y)

)
≤ d
(
g(un),g(x)

)
+d
(
g(vn),g(y)

)
.

Therefore d
(
g(un),g(x)

)
+ d
(
g(vn),g(y)

)
is a decreasing sequence. Hence there exists r ≥ 0

such that

lim
n→∞

[
d
(
g(un),g(x)

)
+d
(
g(vn),g(y)

)]
= r.

We shall show that r = 0. Suppose, to the contrary, that r > 0. On taking the limit as n→ ∞ in

(2.46), we have

φ(r)≤ φ(r)−2 lim
n→∞

ψ

(d(g(un),g(x))+d(g(vn),g(y))
2

)
< φ(r),

which is a contradiction. Hence, r = 0, that is,

lim
n→∞

[
d
(
g(un),g(x)

)
+d
(
g(vn),g(y)

)]
= 0,

so that g(un)→ g(x) and g(vn)→ g(y). Analogously, one can prove that g(un)→ g(z) and

g(vn)→ g(t). Therefore, g(x) = g(z) and g(y) = g(t). Hence the proof is complete. �

Considering g is assumed to be the identity mappings in Theorem 2.11 then we obtained the

following result.

Corollary 2.12. Suppose that all the hypotheses of Corollary 2.6 hold and further, for all

(x,y),(z, t) ∈ A0× A0, there exists (u,v) ∈ A0× A0 such that (u, v) is comparable to (x, y),

(z, t) (with respect to the ordering in A×A). Then there exists a unique (x,y) ∈ A×A such that

d
(
x,T
(
x,y)

)
= d(A,B) and d

(
y,T
(
y,x)

)
= d(A,B).

If A = B in Theorem 2.11, we obtained the following result.

Corollary 2.13. Suppose that all the hypotheses of Corollary 2.7 hold and further, for all

(x,y),(z, t) ∈ A×A, there exists (u,v) ∈ A×A such that (u, v) is comparable to (x, y), (z, t)

(with respect to the ordering in A×A). Then there exists a unique (x,y) ∈ A×A such that

d
(
g(x),T

(
g(x),g(y))

)
= 0 and d

(
g(y),T

(
g(y),g(x))

)
= 0.

We shall illustrate our results by the following example.
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Example 2.14. Let X = R and d(x,y) =| x− y | be the usual metric on X and let the usual

ordering (x,y) ≤ (u,v)⇔ x ≤ u,y ≥ v. Assume that A = [1,∞) and B = (0,−1] and A, B are

nonempty closed subsets of X. We also have A0 = {1} and B0 = {−1} and d(A,B) = 2.

Let T : A×A→ B and g : A→ A be two mappings such that T (x,y) =−x+y
2 and g(x) = x2. Then

T and g are continuous and T(1, 1) = -1 and g(1) = 1, i.e., T (A0,A0)⊆ B0 and g(A0) = A0. We

now define functions φ ,ψ : [0,∞]→ [0,∞] by φ(t) = t and ψ(t) = t with these φ and φ , it is easy

to see that T satisfy the inequality 2.1. Hence T satisfies all the hypotheses of Theorem 2.11 then

there exists a unique point (1,1) ∈ A×A such that d
(
g(1),T (g(1),g(1))

)
= 2 = d(A,B).

3. APPLICATION

Now we present some applications of the main results in the previous Section.

Theorem 3.1. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let T : A×A→ B and g : A→ A be

two given mappings satisfying the following conditions:

(a) T and g are continuous;

(b) T has the proximal mixed g-monotone property on A such that g(A0) = A0, T (A0,A0)⊆

B0;

(c) T is a proximally coupled weak (ψ,φ) contraction on A, that is


g(x1)≤ g(x2) g(y1)≥ g(y2),

d(g(u1),T (g(x1),g(y1)) = d(A,B)

d(g(u2),T (g(x2),g(y2)) = d(A,B)

=⇒
∫ (d(g(u1),g(u2))

)
0

φ(t)dt ≤ 1
2

∫ [d(g(x1),g(x2))+d(g(y1),g(y2))]

0
φ(t)dt

−
∫ 1

2 [d(g(x1),g(x2))+d(g(y1),g(y2))]

0
ψ(t)dt,(3.1)

where x1,x2,y1,y2,u1,u2 ∈ A and φ and ψ are locally integrable function from [0,∞]

into itself satisfying the following condition
∫ s

0 φ(t)dt > 0
∫ s

0 ψ(t)dt > 0 ∀s > 0,

(d) there exist elements (x0,y0) and (x1,y1) ∈ A0×A0 such that
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d(g(x1),T (g(x0),g(y0))) = d(A,B) with g(x0)≤ g(x1),

and

d(g(y1),T (g(y0),g(x0))) = d(A,B) with g(y0)≥ g(y1).

Then there exists (x,y) ∈ A×A such that

d(g(x),T (g(x),g(y))) = d(A,B) and d(g(y),T (g(y),g(x))) = d(A,B).

Remark 3.2. This results also true if we replace the continuity of T by the condition (e) of

Theorem 2.8.

Corollary 3.3. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let T : A×A→ B given mappings

satisfying the following conditions:

(a) T be continuous;

(b) T has the proximal mixed monotone property on A such that T (A0,A0)⊆ B0;

(c) T is a proximally coupled weak (ψ,φ) contraction on A, that is
x1 ≤ x2 y1 ≥ y2,

d(u1,T (x1,y1) = d(A,B)

d(u2,T (x2,y2) = d(A,B)

=⇒
∫ (d(u1,u2)

)
0

φ(t)dt ≤ 1
2

∫ [d(x1,x2)+d(y1,y2)]

0
φ(t)dt

−
∫ 1

2 [d(x1,x2)+d(y1,y2)]

0
ψ(t)dt,(3.2)

where x1,x2,y1,y2,u1,u2 ∈ A and φ and ψ are locally integrable function from [0,∞]

into itself satisfying the following condition
∫ s

0 φ(t)dt > 0
∫ s

0 ψ(t)dt > 0 ∀s > 0,

(d) there exist elements (x0,y0) and (x1,y1) ∈ A0×A0 such that

d(x1,T (x0,y0)) = d(A,B) with x0 ≤ x1 and

d(y1,T (y0,x0)) = d(A,B) with y0 ≥ y1.
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Then there exists (x,y) ∈ A×A such that

d(x,T (x,y)) = d(A,B) and d(y,T (y,x)) = d(A,B).

Remark 3.4. This results also true if we replace the continuity of T by the condition (e) of

Theorem 2.8.

Corollary 3.5. Let (X ,d,≤) be a partially ordered complete metric space. Let A be a nonempty

closed subsets of the metric space (X, d). Let T : A×A→A and g : A→A be two given mappings

satisfying the following conditions:

(a) T and g are continuous;

(b) T has the mixed g-monotone property on A such that g(A) = A and T (A,A)⊆ A;

(c) T is a coupled weak (ψ,φ) contraction on A, that is

g(x1)≤ g(x2) g(y1)≥ g(y2),

∫ (d(g(u1),g(u2))
)

0
φ(t)dt ≤ 1

2

∫ [d(g(x1),g(x2))+d(g(y1),g(y2))]

0
φ(t)dt

−
∫ 1

2 [d(g(x1),g(x2))+d(g(y1),g(y2))]

0
ψ(t)dt,(3.3)

where x1,x2,y1,y2,u1,u2 ∈ A and φ and ψ are locally integrable function from [0,∞]

into itself satisfying the following condition
∫ s

0 φ(t)dt > 0
∫ s

0 ψ(t)dt > 0 ∀s > 0,

(d) There exist elements (x0,y0) and (x1,y1) ∈ A×A such that

g(x1) = T (g(x0),g(y0)) with g(x0)≤ g(x1) and

g(y1) = T (g(y0),g(x0)) with g(y0)≥ g(y1).

Then there exists (x,y) ∈ A×A such that

d(g(x),T (g(x),g(y))) = 0 and d(g(y),T (g(y),g(x))) = 0.

Remark 3.6. This results also true if we replace the continuity of T by the condition (e) of

Theorem 2.8.
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