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Abstract. In this paper, we study the effect of the behavior of predators on prey-predator interaction. We assume

that there is one prey population that suffers from the fear of predators which could force it to move in to the refuge;

and three are two predator populations, one of them is aggressive in its attack and the other one using sit-and-wait

procedure, which is less aggressive. All the model’s equilibrium points have been found and their stability was

established. The possibility of transcritical and Hopf bifurcation was also investigated and numerical simulations

were given. The effect of prey refuge and fear also are detected. The cost of them is to allow the model to reach

to double transcritical point. The effect of the competition between prey populations is to convert the model from

the stable limit cycle to a spiral stable equilibrium point of afraid prey with predator. When it becomes large it

converts the model to the stable trivial solution.
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1. PRELIMINARIES

Theory predicts that organisms should modulate behavior to maximize their expected fitness

[1]. Since death is the most definite negative effect on fitness, it is very important for individuals

to avoid predation and therefore a strong selection for proper anti-predator response is to be
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expected. Behavioral adjustments to predator presence are very widespread responses used by

organisms in many taxa [10]. The optimal behaviorally mediated anti-predator response is of

course highly dependent on what kind of predator an organism is encountering. For example,

[11] showed that damselfly larvae that swim to escape fish predators have a very low chance of

survival, while the same escape response in the presence of invertebrate predators resulted in

much higher chances of survival. Their study illustrates that a good anti-predator response to

one type of predator can be maladaptive in the presence of another predator type. It is therefore

vital for the prey to be able to identify and correctly assess the risk linked to a specific predator.

Since many organisms encounter several different types of predators, plasticity in the behavioral

response to predators is expected to be beneficial for prey populations [4, 13]. In order to study

the effects of preys’ behavior changes due to the fear of predators and the effect of predator

populations, we developed a mathematical model with one prey population and two predator

populations. It is assumed that the prey population fears the predator and each predator follows

a different type of attack; one of them is very aggressive and the other one follows the sit-and-

wait strategy which considered to be less aggressive in its nature [2, 3, 5].

2. MATHEMATICAL MODE BUILDING AND ANALYSIS

To develop our model we assume that there is one prey population and two predator pop-

ulations. It is assumed that the prey population suffers from fear of predator which affect its

reproduction and cause it to move inside a refuge for sometimes which affects the availability

of food and causes the rise of inter-species competition [7], therefore the reproduction term of

the prey population takes the form

bN
1+ e1P1 + e2P2

−dN− sN2

Where the term

f (e;P1,P2) =
1

1+ e1P1 + e2P2

represents the fear of the prey from the predator. It is also assumed that one predator is ag-

gressive in nature and therefore its attack follows Holling type-II functional response, and the

other one is less aggressive in its behavior and therefore it follows a modified Holling type-II
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functional response in its attack [8]. Taking these assumption into consideration, our model is

represented by the following set of differential equations

(1)

dN
dt

=
bN

1+ e1P1 + e2P2
−dN− sN2− b1N(1−m1)P1

1+α1N
− b2N(1−m2)P2

1+α2N + γP2

dP1

dt
=−c1P1 +

b1λ3N(1−m1)P1

1+α1N

dP2

dt
=−c2P2 +

b2λ4N(1−m2)P2

1+α2N + γP2

where N represents the prey which afraid and stay in refuges, P1 and P2 represent bold and

aggressive predator respectively. The next table is demonstrated the meaning of each parameter:

2.1. Equilibrium Points. The system (1) has the following equilibrium points:

(i) E0(0,0,0), the trivial equilibrium point.

(ii) E1(
b−d

s
,0,0), representing the existence of prey which stay in refuge.

(iii) E2(
c1

b1λ3(1−m1)−α1c1
,P∗1 ,0), representing the existence of afraid pray and first

predator. Where P∗1 is the root of equations H2X2 + H1X + H0 = 0, where, H2 =

e1(α1c1− b1λ3(1−m1))
2, H1 = b1λ 2

3 (1−m1)(b1(1−m1)+ e1d)− 2α1b1(1−m1)+

c1e1λ3(α1d− s)+α2
1 c2

1, H0 = λ3(b1(1−m1)(d−b)λ3 + c1(α1(b−d)+ s))

(iv) E3(N∗,0,P∗2 ), representing the existence of afraid pray and second predator which is

faster than first predator. Where N∗ represents the solution of equation N∗ = AX3 +

BX2 +CX +D = 0, A = λ4γe2s(α2c2− b2λ4(1−m2)), B = −(b2(1−m2)+ γd)(1−

m2)e2b2λ 2
4 + c2λ4([2α2(1−m2)+ γ(α2d + s)]e2− sγ2)−α2

2 c2
2e2,

C = c2

[
λ4((b−d)γ2− γ(b2(1−m2)− e2d)+2b2e2(1−m2))−2α2c2(e2−

1
2

γ)

]
, D = c2

2(γ−e2) . Consequently we can choose all factors to be positive or negative. We

will consider the equation N∗ = AX∗32 +BX∗22 +CX∗2 +D = 0. Consequently by using

Descartes’s Sign Rule it can be chosen D > 0 with B < 0 and C > 0 or D < 0 with B > 0

and C > 0 to get positive solution and, it can be taken D > 0, with any sign of b and c

except B > 0 and C < 0 to get a unique positive solution.
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Parameters The meaning

b The birth rate of prey.

d The death rate of prey.

s The competition rate between prey.

b1, α1 (units; 1/time), (units; 1/prey) respectively are describe the

effect of capture rate and handling time on the feeding rate

of the bold predator.

b2, α2 (units; 1/time), (units; 1/prey) respectively are describe the

effect of capture rate and handling time on the feeding rate

of the aggressive predator.

γ measures the effect of anti-bold predator behaviour of prey.

c1, c2 The death rate of bold predators and aggressive predators

respectively.

e1, e2 fear parameter of prey from bold predator and aggressive

predator respectively.

m1, m2 refuge parameter of prey according of fear from bold preda-

tor and aggressive predator respectively.

b1λ3 The increment rate of the bold predator.

b2λ4 The increment rate of the aggressive predator.

TABLE 1. Table of meaning of parameters

(v) E6(N∗,P∗1 ,P
∗
2 ), representing the coexistence of all populations, where, N∗ =

c1

b1λ3(1−m1)−α1c1
, P∗1 =

−N∗

c1
∗ f (X), where f (X) is the root of equation M2X2 +

M1X +M0 = 0 , such that,

M2 = e1c1c2λ4γ2(α1c1−b1λ3(1−m1)),

M1 = −γ
[
−(c2(α1(γ− e2)+α2e2−b2λ4e2(1−m2))α1λ4c3

1 +λ3(α1e1(α1−α2)c2
2 +
(
2b1c2

1(1−m1)((γ− e2)α1 +
1
2 α2e2

)]
+

−γ
[(

α1(((1−m1)+ γd)− sγe1λ4c2−λ 2
4 b1b2e1(1−m1)(1−m2)

)
c2

1 +λ 2
3
(
2e1c2(α1− 1

2 α2)+((1−m1)(γ− e2)b1
)]

−λ 2
3 γ [e1(b2(1−m2)+ γd)λ4] (m1−1)b1c1c2− γe1λ 3

3 b2
1c2

2(1−m2)
2
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M0 = λ3
[
α1(α2−α1)((α2−α1)+α1γ)c2

2 + e2
(
2(α2−α1)(γ(

1
2 s− 1

2 α1d)−α1b2(1−m2)
)
+α1 (γ((b−d)α1 + s)

]
λ4c2 −

(λ3α1b2(1−m2)γ)λ4c2 − bλ3e2λ 2
4 c3

1 ((α1d− s)γ +b2α1(1−m2))(m2 − 1)− 2λ − 32(1−m1)c2
2
[
( 3

2 (α1−α2)(α1− 1
3 α2)e2

]
−

2λ − 32(1−m1)c2
2
[
− 3

2 α1(α1α− 2
3 α2)γ

]
+ e2λ3

(
(α1d− 1

2 α2d− 1
2 s)γ +2b2(α1− 1

2 α2)(1−m2)
)
+λ3λ4c2γ

[
(b−d)α1 +

1
2 s
]
+

λ3λ4c2γ [−b2α1(1−m2)] +
1
2 λ3b1b2e2c2

1λ 2
4 (γd + (1−m2)b2)(1−m2) + b1c1c2λ 3

3 (1−m1)
2 [(3α1−2α2)−3γ(α1− 1

3 α2)c2
]
+

b1c1c2λ 3
3 (1−m1)

2 [((γd +2b2(1−m2))e2 +(b−d)γ−b2(1−m2)γ)λ4 +λ 3
3 b3

1c2
2(1−m1)

3(γ− e2)
]
.

Notice that it is need to take the negative solution of f (x) to get P∗1 is positive. So

b1λ3(1−m1)−α1c1 is positive, this implies M2 is negative. To get unique negative

solution this need to take M0 is positive. In addition it can be chosen M0 is negative with

M1 is negative and M2
1 −4M2M0 > 0 to get two negative solution.

2.2. Local stability of the equilibrium points.

Theorem 1. The stability of the system (1)is given by:

(i) E0(0,0,0) is locally asymptotically stable if b−d < 0.

(ii) E1(
b−d

s
,0,0) is locally asymptotically stable if −c1 +

b1λ3(b−d)(1−m1)
s+α1(b−d) < 0 and −c2 +

b2λ4(b−d)(1−m2)
s+α2(b−d) < 0.

(iii) E2(
c1

b1λ3(1−m1)−α1c1
,P∗1 ,0) is locally asymptotically stable if

−c2 +
b2λ4N∗(1−m2)

(1+α2N∗) < 0 and α2
1 sN∗2 +α1(2sN∗−b1P∗1 (1−m1)+ s > 0.

(iv) E3(N∗,0,P∗2 ) is locally asymptotically stable if −c1 +
b1λ3N∗(1−m1)

(1+α1N∗) < 0 and[
γ2sP∗22 +(sγ(2α2N∗+2)+b2(γλ4−α2)(1−m2))P∗2 + s(1+α1N∗)2]> 0.

(v) E4(N∗,P∗1 ,P
∗
2 ), is locally asymptotically stable by using Qualitative Matrix Stability

method.

Proof

From equations (1), the Jacobian matrix of the system is given by:

J(Ei) =


S∗1 S∗2 S∗3

b1λ3P1(1−m1)
(1+α1N)2 −c1 +

b1λ3N(1−m1)
(1+α1N)2 0

b2λ4P2(1−m2)(1+γP2)
(1+α2N+γP2)2 0 −c2 +

b2λ4N(1−m2)(1+α2N)
(1+α2N+γP2)2

 .

Where, S∗1 = b
1+e1P1+e2P2

− d − sN − b1P1(1−m1)
1+α1N − b2P2(1−m2)

1+α2N+γP2
+ N(−s + b1α1P1(1−m1)

(1+α1N)2 +
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b2α2P2(1−m2)
(1+α2N+γP2)2 ), S∗2 =−N(b1(1−m1)

(1+α1N) +
be1

(1+e1P1+e2P2)2 ), S∗3 =−N(b2(1−m2)(1+α2N)
(1+α2N+γP2)2 + be2

(1+e1P1+e2P2)2 ).

By evaluating the Jacobian matrix at each equilibrium points, we get:

(i) The Jacobian matrix at E0(0,0,0) is given by:

J(E0) =


b−d 0 0

0 −c1 0

0 0 −c2

 ,

clearly the eigenvalues of the matrix are b− d, −c1 and −c2 and it is obvious that

E0(0,0,0) is asymptotically stable if b−d < 0 .

(ii) The Jacobian matrix at E1

(
b−d

s
,0,0

)
is given by:

J(E1) =


d−b b−d

s

(
be1α1(d−b)−s(be1+b1(1−m1)

s+α1(b−d)

)
b−d

s

(
be2α2(d−b)−s(be2+b2(1−m2)

s+α2(b−d)

)
0 −c1 +

b1λ3(b−d)(1−m1)
s+α1(b−d) 0

0 0 −c2 +
b2λ4(b−d)(1−m2)

s+α2(b−d)

 ,

clearly this is upper triangular matrix, so the eigenvalues of the matrix are d−b, −c1 +

b1λ3(b−d)(1−m1)
s+α1(b−d) and −c2 +

b2λ4(b−d)(1−m2)
s+α2(b−d) which implies that E1(

b−d
s

,0,0) is asymp-

totically stable if b−d > 0, −c1 +
b1λ3(b−d)(1−m1)

s+α1(b−d) < 0 and −c2 +
b2λ4(b−d)(1−m2)

s+α2(b−d) < 0.
(iii) The Jacobian matrix at E2(N∗,P∗1 ,0) is given by:

J(E2) =


N∗(−s+ b1α1P∗1 (1−m1)

(1+α1N∗)2 ) −N∗( b1(1−m1)
(1+α1N∗) +

be1
(1+e1P∗1 )2 ) −N∗( b2(1−m2)

(1+α2N∗) +
be2

(1+e1P∗1 )2 )

b1λ3P∗1 (1−m1)
(1+α1N∗)2 0 0

0 0 −c2 +
b2λ4N∗(1−m2)
(1+α2N∗)

 .

It is obvious that −c2 +
b2λ4N∗(1−m2)

(1+α2N∗) is one of the eigenvalue of the Jacobian matrix.

The other eigenvalues is gotten from reduced matrix, which is: N∗(−s+ b1α1P∗1 (1−m1)

(1+α1N∗)2 ) −N∗( b1(1−m1)
(1+α1N∗) +

be1
(1+e1P∗1 )

2 )

b1λ3P∗1 (1−m1)

(1+α1N∗)2 0

 .
The characteristic polynomial is:

P(λ ) = λ 2 +
(α2

1 sN∗2+α1(2sN∗−b1P∗1 (1−m1)+s)
(1+α1N∗)3 N∗λ +

b1(1−m1)(1+e1P∗1 )
2+e1b(1+α1N∗)

(1+α1N∗)3(1+e1P∗1 )
2 .
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Clearly, this point is locally asymptotically stable if

(α2
1 sN∗2 +α1(2sN∗−b1P∗1 (1−m1)+ s)> 0.

(iv) The Jacobian matrix at E3(N∗,0,P∗2 ) is given by:

J(E3) =


N∗(−s+ b2α2P∗2 (1−m2)

(1+α2N∗+γP∗2 )2 ) −N∗( b1(1−m1)
(1+α1N∗) +

be1
(1+e2P∗2 )2 ) −N∗( b2(1−m2)(1+α2N∗)

(1+α2N∗+γP∗2 )
+ be2

(1+e2P∗2 )2 )

0 −c1 +
b1λ3N∗(1−m1)
(1+α1N∗) 0

b2λ4P∗2 (1−m2)(1+γP∗2 )
(1+α2N∗+γP∗2 )2 0 −γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )2

 .

It is clearly that−c1+
b1λ3N∗(1−m1)

(1+α1N∗) is one of the eigenvalue of the Jacobian matrix. The

other eigenvalues is gotten from reduced matrix, which is: N∗(−s+ b2α2P∗2 (1−m2)

(1+α2N∗+γP∗2 )
2 ) −N∗(b2(1−m2)(1+α2N∗)

(1+α2N∗+γP∗2 )
+ be2

(1+e2P∗2 )
2 )

b2λ4P∗2 (1−m2)(1+γP∗2 )
(1+α2N∗+γP∗2 )

2
−γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )
2

 .
The characteristic polynomial is:

(2) P(λ ) = λ
2 +

γ2sP∗22 +(sγ(2α2N∗+2)+b2(γλ4−α2)(1−m2))P∗2 + s(1+α1N∗)2

(1+α2N∗+ γP∗2 )2 N∗λ+

b2λ4(1−m2)N∗P∗2
(
sγα2(1+ e2P∗2 )N

∗+ s(1+ e2P∗2 )N
∗ [sγ(1+ e2P∗2 )

2 +be2α2
])

(1+ e2P∗2 )2(1+α2N∗+ γP∗2 )3 +

b2λ4(1−m2)N∗P∗2 (2be2γP∗2 +be2
2(1−m2)P∗2 +2b2e2(1−m2)P∗2 +be2 +b2(1−m2))

(1+ e2P∗2 )2(1+α2N∗+ γP∗2 )3 .

Clearly, this point is locally asymptotically stable if[
γ2sP∗22 +(sγ(2α2N∗+2)+b2(γλ4−α2)(1−m2))P∗2 + s(1+α1N∗)2]> 0.

(v) The Jacobian matrix at E4(N∗,P∗1 ,P
∗
2 ) is given by:

J(E4) =


N∗(−s+ b1α1P∗1 (1−m1)

(1+α1N∗)2 +
b2α2P∗2 (1−m2)
(1+α2N∗+γP∗2 )2 ) −N∗( b1(1−m1)

(1+α1N∗) +
be1

(1+e1P∗1 +e2P∗2 )2 ) B∗

b1λ3P∗1 (1−m1)
(1+α1N∗)2 0 0

b2λ4P∗2 (1−m2)(1+γP∗2 )
(1+α2N∗+γP∗2 )2 0 −γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )2

 ,

where B∗ =−N∗(b2(1−m2)(1+α2N∗)
(1+α2N∗+γP∗2 )

+ be2
(1+e1P∗1 +e2P∗2 )

2 ) To prove the stability of the coex-

istence equilibrium point we will use the Qualitative matrix stability method.

Q3 = sign(J4) =


− − −

+ 0 0

+ 0 −

 .
Then:
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N

P1

P2

+−

−
−

+

FIGURE 1. The signed digraph with the color test.

(i) From Q3 we have q11 =−, q22 = 0, q33 =−. Thus condition (1) and (2) of theorem

are satisfied.

(ii) Since, q12 = −q21 =, q13 = −q31, q23 = q32 = 0 which means every pair of inter-

acting nodes have opposite sign and this implies that condition (3) of theorem is

satisfied.

(iii) From it is clear that condition (4) of theorem is satisfied.

(iv) det(J3) 6= 0 since the solution of Jx = 0 is only the trivial solution.

Thus from figure there are two predation links between N and P1 and between N and P2.

since these links are connected by node P1 and P2 , then the entire signed digraph forms

a predation community.

Color test

We color each node with a negative feedback loop with gray and the other nodes by

white as in figure .

Applying the color test to our model we find that:

* The node N is gray and the other nodes P1 and P2 are white.

* However, condition (ii) is not satisfied because there is no predation link between white

nodes.

* The gray node N is connected by a predation link to both white nodes P1 and P2.

In conclusion, the signed matrix Q3 fails the color test. Hence the Jacobian matrix

J4 corresponding to the equilibrium point E4(N∗,P∗1 ,P
∗
2 ) ,where Q3 = sign(J4) is

qualitative stable. Then the equilibrium is locally asymptotically stable.
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2.3. Global stability of the equilibrium points. The global stability of stability points will

be analysed by transforming the system of equations (1) into a linear system and then choosing

a suitable Lyapunov function to analyse each equilibrium point or by using Dulac’s criteria,

following the same strategy as [?].

Theorem 2. The global stability of the system of equations (1) is given by: E1 = (N∗,0,0) =

(
b−d

s
,0,0) is global asymptotically stable.

Proof

By letting N =N∗+n, P1 =P∗1 + p1and P2 =P∗2 + p2 , where n, p1 and p2 are small perturbations

about N∗, P∗1 and P∗2 respectively, the system of equations (1) is turned into a linear system which

is of the form ṅi = J(Ei)ni, where J(Ei) is the Jacobian matrix of equations (1). Thus, the linear

system of equations (1) is,

(3)

dn
dt

=
[
(−s+ b1α1P∗1 (1−m1)

(1+α1N∗)2 +
b2α2P∗2 (1−m2)

(1+α2N∗+γP∗2 )
2 )
]

N∗n−
[

b1(1−m1)
(1+α1N∗) +

be1
(1+e1P∗1 +e2P∗2 )

2

]
N∗p1

−
[

b2(1−m2)(1+α2N∗)
(1+α2N∗+γP∗2

+ be2
(1+e1P∗1 +e2P∗2 )

2 )
]

N∗p2

d p1

dt
=

b1λ3P∗1 (1−m1)

(1+α1N∗)2 n

d p2

dt
=
[

b2λ4P∗2 (1−m2)(1+γP∗2 )
(1+α2N∗+γP∗2 )

2

]
n−
[

γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )
2

]
p2

Global stability of E1(N∗1 ,0,0) = (
b−d

s
,0,0). We define a Lyapunov function as V (n, p1, p2) =

n2

2N∗
+

p2
1

2
+

p2

2
. It is obvious that V (n, p1, p2) is a positive definite function. Differentiating V

with respect to time t we get, V̇ (n, p1, p2) =
nṅ
N∗

+ p1 ṗ1 + p2 ṗ2. By substituting for ṅ, ṗ1 and

ṗ2 in equations of system (3) gives,

V̇ (n, p1, p2)=−( r
κ

n2+a2 p)n2, which is negative semi-definite. Therefore, E1(N∗,0,0) is glob-

ally asymptotically stable.

2.3.1. Hopf bifurcation.

Theorem 3. The system (1) undergoes a Hopf bifurcation at the positive equilibrium:

(i) E2(N∗,P∗1 ,0) when s = s0 =
b1(1−m1)α1P∗1
(1+α1N∗)2
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(ii) E3(N∗,0,P∗2 ) when s = s0 =
b2(1−m2)(α2− γλ4)P∗2

(1+α2N∗+ γP∗2 )
2

Proof

(i) The eigenvalues of the linearized system around the equilibrium point E2 are:

µ1,2 = α(s)± iβ (s)

where:

α(s) =
1
2

trac(J)

β (s) =
√

det(J)− (α(s))2

where J is the Jacobian of the linearized system at the equilibrium point E2.

From 2.2, Trase J(E2) = N∗
(
−s+

b1(1−m1)α1P∗1
(1+α1N∗)2

)
, and determinant

J(E2) =
b1λ3(1−m1)N∗P∗1 (b1(1−m1)(1+e1P∗1 )

2+be1(1+α1N∗))
(1+α1N∗)3(1+e1P∗1 )

2 , Now at s0, α(s0) = 0,

β (s0) =
b1λ3(1−m1)N∗P∗1

(
b1(1−m1)(1+ e1P∗1 )

2 +be1(1+α1N∗)
)

(1+α1N∗)3(1+ e1P∗1 )
2 6= 0

and
dα

ds
|s=s0 =

−N∗

2
6= 0.

Therefore from Hopf Theorem the proof is concluded.

(ii) The eigenvalues of the linearized system around the equilibrium point E3 are:

µ1,2 = φ(s)± iψ(s)

where:

φ(s) =
1
2

trac(J)

ψ(s) =
√

det(J)− (φ(s))2

where J is the Jacobian of the linearized system at the equilibrium point E3.

From 2.2, Trase J(E3) = N∗
(
−s+ b2(1−m2)(α2−γλ4)P∗2

(1+α2N∗+γP∗2 )
2

)
, and determinant

J(E3) =
b2(1−m2)N∗[e2

2P∗2 (γ2sN∗P∗2 +α2γsN∗+γsN∗+b2(1−m2))+R∗]
(1+α2N∗+γP∗2 )

3(1+e2P∗2 )
2 , where R∗ is equal(

e2γP∗22 (2sN∗+b)+P∗2
(
2α2γsN∗2 + γN∗(α2b+2s)+2bγ +2b2(1−m2)

)
+b(1+α2N∗)

)
+

γ2sN∗P∗2 +α2γsN∗2 + γsN∗+b2(1−m2) , Now at s0,

φ(s)(s0) = 0, ψ(s0)> 0 if (α2− γλ4)> 0 and
dφ

ds
|s=s0 =

−N∗

2
6= 0.

Therefore from Hopf Theorem the proof is concluded.
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2.3.2. Transcritical bifurcation.

Theorem 4. The system (1) undergoes a Transcritical bifurcation at the positive equilibrium

(i) E1(N∗,0,0) = (b−d
s ,0,0) when (a) m1 =

b1λ3(b−d)− c1(α1(b−a)+ s)
b1λ3(b−d)

or

(b) m2 =
b2λ4(b−d)− c2(α2(b−a)+ s)

b2λ4(b−d)

(ii) E2(N∗,P∗1 ,0) when m2 =
N∗ (b1λ3−α1c1)− c1

b1λ3N∗

(iii) E3(N∗,0,P∗2 ) when m1 =
N∗ (b2λ4−α2c2)− c2

b2λ4N∗

Proof

(i)(a) The eigenvalues of the linearized system around the equilibrium point E1 are:

J (E1) =


d−b b−d

s

(
be1α1(d−b)−s(be1+b1(1−m1)

s+α1(b−d)

)
b−d

s

(
be2α2(d−b)−s(be2+b2(1−m2)

s+α2(b−d)

)
0 −c1 +

b1λ3(b−d)(1−m1)
s+α1(b−d) 0

0 0 −c2 +
b2λ4(b−d)(1−m2)

s+α2(b−d)

 ,

J (E1,m10) =

 d−b b−d
s

(
be1α1(d−b)−s(be1+b1(1−m1)

s+α1(b−d)

)
b−d

s

(
be2α2(d−b)−s(be2+b2(1−m2)

s+α2(b−d)

)
0 0 0

0 0 −c2 +
b2λ4(b−d)(1−m2)

s+α2(b−d)

 .(4)

Let us define v = (v1,v2,v3)
T and w = (w1,w2,w3)

T are the right and left eigenvectors

of λ2 = 0. From (4) and J (E1,m10)v = 0 as well as J T (E1,m10)w = 0, then,(
(d−b)v1 +H∗∗3 ,

(λ4b2(1−m2)(b−d)− (α2(b−d)+ s)c2)v3

s+α2(b−d)
v3,0

)
= (0,0,0)T

where H∗∗3 = (be1(d−b)λ3−c1s)v2
sλ3

+ (α2b2e2−e2(α2d−s)b+b2(1−m2)s)(b−d)v3
s(α2b−α2d+s) and

(
(d−b)w1,

be1λ3((d−b)− c1s)w1

sλ3
,H2∗∗

)T

= (0,0,0)T

where H2∗∗ = (α2b2e2−e2(α2d−s)b+b2(1−m2)s)(d−b)w1
s(α2(b−d)+s) + (λ4b2(1−m2)(b−d)−(α2(b−d)+s)c2)w3

s+α2(b−d) w3, So the

left eigenvector is (0,w2,0)T and the right eigenvector is
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(b2e1λ3−bde1λ3+c1s)v2

sλ3(d−b) ,v2,0
)T

. Here, w2 and v2 are any non-zero real numbers. Now,

system (1) can be rewritten as in the following vector form:

Ẋ = f (X),

where X = (N,P1,P2)
T and

f (X) =


bN

1+ e1P1 + e2P2
−dN− sN2− b1N(1−m1)P1

1+α1N
− b2N(1−m2)P2

1+α2N + γP2

−c1P1 +
b1λ3N(1−m1)P1

1+α1N

−c2P2 +
b2λ4N(1−m2)P2

1+α2N + γP2

.

Taking derivative on f (X) with respect to m1, we get

fm1(X) =


b1NP1
1+α1N

−b1λ3NP1
1+α1N

0

 , then fE1,m10
(X) =


0

0

0

 .

Hence, wT fE1,m10
(X) = 0.

Next, taking derivative on fm1(X) with respect to X = (N,P1,P2)
T , then,

D fE1,m10
(X) =


0

b1N∗

1+α1N∗
0

0 − b1λ3N∗

1+α1N∗
0

0 0 0

 .

We have, wT
(

D fE1,m10
(X) · v

)
=

b1λ3N∗v1w2

1+α1N∗
6= 0 Furthermore, we find D2 f (X) = D(J(Ei)) =

D(D( f (X))) and then subistitute the value of m10 and E1, so we end by

wT [D2 fE1,m10
(X)(v,v)] =

2c1(α1(b−d)+ s)v1v2w2

(b−d)(1+α1N∗)
6= 0.

where, (v,v) is a Kronecker product of (v1,v2,v3)
T . Therefore, according to the So-

tomayor’s theorem for local bifurcation [9], system (1) has a transcritical bifurcation at

steady state E1 when the parameter m1 passes through the bifurcation value m10 .
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(i)(b) The eigenvalues of the linearized system around the equilibrium point E1 are:

J (E1) =


d−b b−d

s

(
be1α1(d−b)−s(be1+b1(1−m1)

s+α1(b−d)

)
b−d

s

(
be2α2(d−b)−s(be2+b2(1−m2)

s+α2(b−d)

)
0 −c1 +

b1λ3(b−d)(1−m1)
s+α1(b−d) 0

0 0 −c2 +
b2λ4(b−d)(1−m2)

s+α2(b−d)

 ,

J (E1,m20) =

 d−b b−d
s

(
be1α1(d−b)−s(be1+b1(1−m1)

s+α1(b−d)

)
b−d

s

(
be2α2(d−b)−s(be2+b2(1−m2)

s+α2(b−d)

)
0 −c1 +

b1λ3(b−d)(1−m1)
s+α1(b−d) 0

0 0 0

 .(5)

Let us define v = (v1,v2,v3)
T and w = (w1,w2,w3)

T are the right and left eigenvectors

of λ3 = 0. From (5) and J (E1,m20)v = 0 as well as J T (E1,m10)w = 0, then,(
(d−b)v1 +H∗∗4 ,

(λ3b1(1−m1)(b−d)− (α1(b−d)+ s)c1)v2

s+α1(b−d)
v2,0

)
= (0,0,0)T

where H∗∗4 = (be2(d−b)λ4−c2s)v3
sλ4

+ (α1b2e1−e1(α1d−s)b+b1(1−m1)s)(b−d)v2
s(α1b−α1d+s) and

(
(d−b)w1,

be2λ4((d−b)− c2s)w1

sλ4
,H5∗∗

)T

= (0,0,0)T

where H5∗∗ = (α1b2e1−e1(α1d−s)b+b1(1−m1)s)(d−b)w1
s(α1(b−d)+s) + (λ3b1(1−m1)(b−d)−(α1(b−d)+s)c1)w2

s+α1(b−d) w2, So the

left eigenvector is (0,w2,0)T and the right eigenvector is(
(b2e2λ4−bde2λ4+c2s)v3

sλ4(d−b) ,0,v3

)T
. Here, w2 and v3 are any non-zero real numbers. Now,

system (1) can be rewritten as in the following vector form:

Ẋ = f (X),

where X = (N,P1,P2)
T and

f (X) =


bN

1+ e1P1 + e2P2
−dN− sN2− b1N(1−m1)P1

1+α1N
− b2N(1−m2)P2

1+α2N + γP2

−c1P1 +
b1λ3N(1−m1)P1

1+α1N

−c2P2 +
b2λ4N(1−m2)P2

1+α2N + γP2

. Taking

derivative on f (X) with respect to m2, then,

D fE1,m20
(X) =


0 0

b2N∗

(1+α2N∗)

0 0 0

0 0 − b2λ4N∗

(1+α2N)

 .
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We have, wT
(

D fE1,m20
(X) · v

)
=−b2λ4N∗v3w3

(1+α1N∗) 6= 0.

Furthermore, we find D2 f (X) = D(J(Ei)) = D(D( f (X))) and then subistitute the

value of m20 and E1, so we end by

wT [D2 fE1,m20
(X)(v,v)] =

2c2(v1− γN∗v3)(α2(b−d)+ s)v3w3

(b−d)(1+α2N∗)2 6= 0.

where, (v,v) is a Kronecker product of (v1,v2,v3)
T . Therefore, according to the So-

tomayor’s theorem for local bifurcation, system (1) has a transcritical bifurcation at

steady state E1 when the parameter m2 passes through the bifurcation value m20 .
(ii) The eigenvalues of the linearized system around the equilibrium point E2 are:

J (E2) =


N∗
(
−s+ b1α1P∗1 (1−m1)

(1+α1N∗)2

)
−N∗

(
b1(1−m1)
(1+α1N∗) +

be1
(1+e1P∗1 )2

)
−N∗

(
b2(1−m2)
(1+α2N∗) +

be2
(1+e1P∗1 )2

)
b1λ3P∗1 (1−m1)
(1+α1N∗)2 0 0

0 0 −c2 +
b2λ4N∗(1−m2)
(1+α2N∗)

 .

J (E2,m20) =

 N∗
(
−s+ b1α1P∗1 (1−m1)

(1+α1N∗)2

)
−N∗

(
b1(1−m1)
(1+α1N∗) +

be1
(1+e1P∗1 )2

)
−N∗

(
c2

λ4N∗ +
be2

(1+e1P∗1 )2

)
b1λ3P∗1 (1−m1)
(1+α1N∗)2 0 0

0 0 0

 .(6)

Let us define v = (v1,v2,v3)
T and w = (w1,w2,w3)

T are the right and left eigenvec-
tors of λ3 = 0. From (6) and J (E2,m20)v = 0 as well as J T (E2,m20)w = 0, then,

(
N∗(−s+

b1α1P∗1 (1−m1)

(1+α1N∗)2 )v1−N∗(
b1(1−m1)

(1+α1N∗)
+

be1

(1+ e1P∗1 )
2 )v2−N∗(

c2

λ4N∗
+

be2

(1+ e1P∗1 )
2 )v3,

b1λ3P∗1 (1−m1)

(1+α1N∗)2 v1,0
)
= (0,0,0)T

and

(
N∗(−s+

b1α1P∗1 (1−m1)

(1+α1N∗)2 )w1 +
b1λ3P∗1 (1−m1)

(1+α1N∗)2 w2,−N∗
(

b1(1−m1)

(1+α1N∗)
+

be1

(1+ e1P∗1 )
2

)
w1,−N∗

(
c2

λ4N∗
+

be2

(1+ e1P∗1 )
2

)
w1

)T

= 0

So the left eigenvector is (0,0,w3)
T and the right eigenvector is(

0,v2,−
λ4N∗[(1+e1P∗1 )

2(1−m1)b1+e1b(1+α1N∗)]v2

(1+α1N∗)(c2(1+e1P∗1 )
2+λ4e2bN∗)

)T

. Here, w3 and v2 are any non-zero real

numbers. Now, system (1) can be rewritten as in the following vector form:

Ẋ = f (X),

where X = (N,P1,P2)
T and
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f (X) =


bN

1+ e1P1 + e2P2
−dN− sN2− b1N(1−m1)P1

1+α1N
− b2N(1−m2)P2

1+α2N + γP2

−c1P1 +
b1λ3N(1−m1)P1

1+α1N

−c2P2 +
b2λ4N(1−m2)P2

1+α2N + γP2

. Taking

derivative on f (X) with respect to m2, we get

fm2(X) =


b2NP2

1+α2N + γP2

0

− b2λ4NP2

1+α2N + γP2

 , then fE2,m20
(X) =


0

0

0

 .

Hence, wT fE2,m20
(X) = 0.

Next, taking derivative on fm2(X) with respect to X = (N,P1,P2)
T , we get,

D fE2,m20
(X) =


0 0

b2N∗

(1+α2N∗)

0 0 0

0 0 − b2λ4N∗

(1+α2N)

 .

We have, wT
(

D fE2,m20
(X) · v

)
=

[b1(1−m1)(1+e1P∗21 )2+be1(1+α1N∗)]b2λ 2
4 N∗2v2w3

(1+α1N∗)(1+α2N∗)(c2(1+e1P∗1 )2+be1λ4N∗) 6= 0. Furthermore, we find

D2 f (X) = D(J(Ei)) = D(D( f (X))) and then subistitute the value of m20 and E2, so we

end by

wT [D2 fE2,m20
(X)(v,v)] =

2c2(v1− γv3N∗)v3w3

N∗(1+α1N∗)
6= 0.

where, (v,v) is a Kronecker of (v1,v2,v3)
T . Therefore, according to the Sotomayor’s

theorem for local bifurcation, system (1) has a transcritical bifurcation at steady state E2

when the parameter m2 passes through the bifurcation value m20 .
(iii) The eigenvalues of the linearized system around the equilibrium point E3 are:

J (E3) =


N∗(−s+ b2α2P∗2 (1−m2)

(1+α2N∗+γP∗2 )2 ) −N∗( b1(1−m1)
(1+α1N∗) +

be1
(1+e2P∗2 )2 ) −N∗( b2(1−m2)(1+α2N∗)

(1+α2N∗+γP∗2 )
+ be2

(1+e2P∗2 )2 )

0 −c1 +
b1λ3N∗(1−m1)
(1+α1N∗) 0

b2λ4P∗2 (1−m2)(1+γP∗2 )
(1+α2N∗+γP∗2 )2 0 −γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )2

 .

J (E3,m10) =

 N∗(−s+ b2α2P∗2 (1−m2)

(1+α2N∗+γP∗2 )
2 ) −N∗( b1(1−m1)

(1+α1N∗) +
be1

(1+e2P∗2 )
2 ) −N∗( b2(1−m2)(1+α2N∗)

(1+α2N∗+γP∗2 )
+ be2

(1+e2P∗2 )
2 )

0 0 0
b2λ4P∗2 (1−m2)(1+γP∗2 )

(1+α2N∗+γP∗2 )
2 0 −γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )
2

(7)
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Let us define v = (v1,v2,v3)
T and w = (w1,w2,w3)

T are the right and left eigenvec-
tors of λ2 = 0. From (7) and J (E3,m10)v = 0 as well as J T (E3,m10)w = 0, then,(

N∗
[
(−s+ b2α2P∗2 (1−m2)

(1+α2N∗+γP∗2 )
2 )v1− ( b1(1−m1)

(1+α1N∗) +
be1

(1+e2P∗2 )
2 )v2− ( b2(1−m2)(1+α2N∗)

(1+α2N∗+γP∗2 )
+ be2

(1+e2P∗2 )
2 v3

]
,0,G∗1

)
= (0,0,0)T , where

G∗1 =
b2λ4P∗2 (1−m2)(1+γP∗2 )

(1+α2N∗+γP∗2 )
2 v1 +

−γb2λ4P∗2 N∗(1−m2)

(1+α2N∗+γP∗2 )
2 v3 and

(
N∗(−s+

b1α1P∗1 (1−m1)

(1+α1N∗)2 )w1 +
b1λ3P∗1 (1−m1)

(1+α1N∗)2 w2,−N∗
(

b1(1−m1)

(1+α1N∗)
+

be1

(1+ e1P∗1 )
2

)
w1,−N∗

(
c2

λ4N∗
+

be2

(1+ e1P∗1 )
2

)
w1

)T

= 0

So the left eigenvector is (0,w2,0)T and the right eigenvector is
(

v1,
λ3v1

[
e2

2P2
2 (γ

2sN∗P∗2 + sγN∗(1+α2N∗)+b2(1−m2))+G∗2
]

γ(1+α2N∗+ γP∗2 )
,
(1+ γP2)v1

γN∗

)T

, where G∗2 = P∗2 (γ
2P∗22 (2sN∗ + b) + γ(2α2sN∗2 + N∗(2s + α2b)) + 2b2(1−m2)) +

e2b(1+α2N∗)+ γ2sN∗P∗2 + γsN∗(1+α2N∗)+ b2(1−m2) . Here, w2 and v1 are any

non-zero real numbers. Now, similarly system (1) can be rewritten as in the following

vector form:

Ẋ = f (X),

where X = (N,P1,P2)
T and

f (X) =


bN

1+ e1P1 + e2P2
−dN− sN2− b1N(1−m1)P1

1+α1N
− b2N(1−m2)P2

1+α2N + γP2

−c1P1 +
b1λ3N(1−m1)P1

1+α1N

−c2P2 +
b2λ4N(1−m2)P2

1+α2N + γP2

.

Taking derivative on f (X) with respect to m1, we get

fm1(X) =



b1NP1

1+α1N

−b1λ3NP1

1+α1N
0


, then fE3,m10

(X) =


0

0

0

 .

Hence, wT fE3,m10
(X) = 0.

Next, taking derivative on fm1(X) with respect to X = (N,P1,P2)
T . Then,

D fE3,m10
(X) =


0

b1N∗

1+α1N∗
0

0 − b1λ3N∗

1+α1N∗
0

0 0 0

 .
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We have, wT
(

D fE1,m10
(X) · v

)
=

(e2
2P∗22 [γ2sN∗P∗2 +γsN∗(1−m2)]+G∗3)b1λ 2

3 N∗v1w2

γ(1+α1N∗)(1+α2N∗+γP∗2 )(c1(1+e2P∗2 )2+b1e1λ3N∗) 6= 0 , where

G∗3 = e2
[
γ2

2 P∗22 (2sN∗+b)+P∗2
(
γ(2sα2N∗2 +N∗(2s+α2b)+2b

)
+2b2(1−m2)+b(1+α2N∗)

]
+ γ2sN∗P∗2 +

γsN∗(1+α2N∗)+ b2(1−m2) Furthermore, we find D2 f (X) = D(J(Ei)) = D(D( f (X))) and

then subistitute the value of m10 and E3, so we end by

wT [D2 fE3,m10
(X)(v,v)] =

c1(v1 + v2)v2w2

N∗(1+α1N∗)
6= 0.

where, (v,v) is a Kronecker product of (v1,v2,v3)
T . Therefore, according to the So-

tomayor’s theorem for local bifurcation, system (1) has a transcritical bifurcation at

steady state E3 when the parameter m1 passes through the bifurcation value m10 .

3. NUMERICAL SOLUTION

In this section we will present some numerical simulations in order to show the theoretically

established results. The values of the parameters are taken from the following table, and some

of them will be varied in order to see their effect.

Parameters value

b 0.4

d 0.2

s 0.0009

b1, α1 0.05, 0.002

b2, α2 0.05, 0.002

γ 0.002

c1, c2 0.1, 0.1

e1, e2 0.002, 0.002

m1, m2 0.6, 0.6

λ3 0.1

λ4 0.1

TABLE 2. Table of value of parameters
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value of m1 The existence

point

[0,0.6) (N∗,P∗1 ,0)

0.6 (N∗,P∗1 ,P
∗
2 )

(0.6,1] (N∗,0,P∗2 )

value of m2 The existence

point

[0,0.6) (N∗,0,P∗2 )

0.6 (N∗,P∗1 ,P
∗
2 )

(0.6,1] (N∗,P∗1 ,0)

As we have see in figure 2, which demonstrate the effect stability of the trivial solution when

the inter-species competition is very big and b−d < 0, i.e. when the death rate is greater than

the birth rate. In Figure 2 (i) s = 0.0009 and in (ii) s = 0.8 with b > d . While in Figure

2(iii) s = 0.0009,b < d. Figure 3 illustrate the stability of the existence of prey only (N∗,0,0)

under some conditions. The stability of the solution which reach the point (N∗,P∗1 ,0), which

represents the existence of prey and the first predator, is shown in figure 4. Figure 5 shows

the stability of the solutions when it reach the point (N∗,0,P∗2 ) which represents the existence

of prey and second predator. The stability of the solutions when it reaches the coexistence

point is illustrated in figure 6. The limit cycles are illustrated in figures 7,8 and 9 for the

solutions of existence of prey with first predator, with the second predator and when it reaches

the coexistence point, respectively. Figure 10 shows the effect of transcritical parameter which

is refuge parameters m1 and m2 as illustrated in next table:
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value of s The existence point The situation

[0,0.000314) (N∗,P∗1 ,0) limit cycle.

(0.000314,0.0036] (N∗,P∗1 ,0) Local asymptotically

stable point.

(0.0036,1) (N∗,0,0) Local asymptotically

stable point.

value of s The existence point The situation

(0,0.000279995] (N∗,0,P∗2 ) limit cycle.

(0.000279995,0.0036] (N∗,0,P∗2 ) Local asymptotically

stable point.

(0.0036,1] (N∗,0,0) Local asymptotically

stable point.

The effect of hopf bifurcation parameter which is the inter-species competition parameter

is demonstrated in figures 11 and 12. The next table explains this result. We can see that

when the value of this parameter changes the solutions changes from a stable limit cycle to an

asymptotically stable point of the prey with one predator where we have the phenomenon of

hopf bifurcation. When it further changes the solutions moves towards the point where the prey

exists alone, where we have a transcritical bifurcation.

Figures 15-18 show the effect of fear parameters e1 and e2. As we can see when e1 is small

the solution reach the point of existence of prey with the first predator. If the value of fear pa-

rameter e1 increases, the solution reaches same point but with decreasing in amount of predator

population. If the value of the fear continues to increase, then the solution will reach to the point

of existence prey only. Same situation happens if the value e2 increased but here the solution

reach the point of existence of prey with the second predator.
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FIGURE 2. The stability of trivial point N = P1 = P2 = 70,s = 0.0009,e1 = e2 =

α1 =α2 == γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.6,m2= 0.6,b= 0.4,d =

0.41

FIGURE 3. The stability of prey N = P1 = P2 = 70,s = 0.004,e1 = e2 = α1 =

α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.6,m2 = 0.6,b = 0.4,d =

0.2,b1 = b2 = 0.05
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FIGURE 4. The stability of prey with first predator N = P1 = P2 = 70,s =

0.0009,e1 = e2 =α1 =α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.6,m2=

0.8

FIGURE 5. The stability of prey with second predator N = P1 = P2 = 70,s =

0.0009,e1 = e2 =α1 =α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.8,m2=

0.6
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FIGURE 6. The stability of coexistence point N =P1 =P2 = 70,s= 0.0009,e1 =

e2 = α1 = α2 == γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.6,m2 = 0.6

FIGURE 7. The limit cycle of first predator with prey N = P1 = P2 = 70,s =

0.0003,e1 = e2 = α1 = α2 == γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 =

0.6,m2 = 0.8,b = 0.4,d = 0.2
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FIGURE 8. The limit cycle of second predator with prey N = P1 = P2 = 70,s =

0.0003,e1 = e2 = α1 = α2 == γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 =

0.8,m2 = 0.6,b = 0.4,d = 0.2

FIGURE 9. The limit cycle of coexistence point N = P1 = P2 = 70,s =

0.0003,e1 = e2 = α1 = α2 == γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 =

0.6,m2 = 0.6,b = 0.4,d = 0.2
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(i)
(ii)

(iii)
(iv)

FIGURE 10. Effect of transcriptional refuge parameter on model, N = P1 =

P2 = 70,s = 0.0004,e1 = e2 = α1 = α2 = γ1 = γ2 = 0.002,c1 = c2 = λ3 = λ4 =

0.1,m1 = 0.8,m2 = 0.6

FIGURE 11. Effect of hopf bifurcation parameter on model on the point of first

predator with prey.
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FIGURE 12. Hopf bifurcation diagram of model on the point of first predator

with prey.

FIGURE 13. Effect of hopf bifurcation parameter on model on the point of sec-

ond predator with prey.
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FIGURE 14. Hopf bifurcation diagram of the point of second predator with prey.

FIGURE 15. Effect of fear parameter on model N = P1 = P2 = 70,s =

0.0009,e1 = e2 =α1 =α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.6,m2=

0.8
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FIGURE 16. Phase plane of effect of fear parameter on model N = P1 = P2 =

70,s = 0.0009,e1 = e2 = α1 = α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 =

0.6,m2 = 0.8

FIGURE 17. Effect of fear parameter on model, N = P1 = P2 = 70,s =

0.0009,e1 = e2 =α1 =α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 = 0.8,m2=

0.6

FIGURE 18. Phase plane of effect of fear parameter on model, N = P1 = P2 =

70,s = 0.0009,e1 = e2 = α1 = α2 = γ = 0.002,c1 = c2 = λ3 = λ4 = 0.1,m1 =

0.8,m2 = 0.6
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4. CONCLUSION

In this paper we formulated model of one prey with two predators population; aggressive

predator, bold predator and prey which is afraid and stay in refuge. We use holing type II func-

tional response and Beddington-DeAngeiis functional response[12] . We proved the locally and

globally stabilities of equilibria. In addition we hold a hopf and double transcritical bifurca-

tions of some parameters. The cost of fear and prey refuge is allow model to reach to double

transcritical. we notice that if fear is good when it is small. The effect of competition of prey

population is to convert the model from the stable limit cycle to a spiral stable equilibrium point

of prey with predator. When it becomes large it converts model to stable trivial solution.
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